
Citation: Narayanaswamy, R.; Patro,

B.P.; Jeyaraman, N.; Gangadaran, P.;

Rajendran, R.L.; Nallakumarasamy,

A.; Jeyaraman, M.; Ramani, P.; Ahn,

B.-C. Evolution and Clinical

Advances of Platelet-Rich Fibrin in

Musculoskeletal Regeneration.

Bioengineering 2023, 10, 58.

https://doi.org/10.3390/

bioengineering10010058

Academic Editors: Ólafur

E. Sigurjónsson and Elena A. Jones

Received: 14 November 2022

Revised: 20 December 2022

Accepted: 21 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Review

Evolution and Clinical Advances of Platelet-Rich Fibrin in
Musculoskeletal Regeneration
Ragunanthan Narayanaswamy 1, Bishnu Prasad Patro 2 , Naveen Jeyaraman 1,3 , Prakash Gangadaran 4,5 ,
Ramya Lakshmi Rajendran 4 , Arulkumar Nallakumarasamy 2,3,* , Madhan Jeyaraman 1,3,6,7,* ,
Prasanna Ramani 8,9 and Byeong-Cheol Ahn 4,5

1 Department of Orthopaedics, Rathimed Speciality Hospital, Chennai 600040, India
2 Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, India
3 Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India
4 Department of Nuclear Medicine, School of Medicine, Kyungpook National University,

Kyungpook National University Hospital, Daegu 41944, Republic of Korea
5 BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents,

Department of Biomedical Science, School of Medicine, Kyungpook National University,
Daegu 41944, Republic of Korea

6 Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research
Institute, Chennai 600056, India

7 Department of Biotechnology, School of Engineering and Technology, Sharda University,
Greater Noida 201310, India

8 Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences,
Amrita Vishwa Vidyapeetham, Coimbatore 641112, India

9 Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT),
Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India

* Correspondence: arulmmcian@gmail.com (A.N.); madhanjeyaraman@gmail.com (M.J.)

Abstract: Over the past few decades, various forms of platelet concentrates have evolved with
significant clinical utility. The newer generation products, including leukocyte-platelet-rich fibrin
(L-PRF) and advanced platelet-rich fibrin (A-PRF), have shown superior biological properties in
musculoskeletal regeneration than the first-generation concentrates, such as platelet-rich plasma
(PRP) and plasma rich in growth factors. These newer platelet concentrates have a complete matrix
of physiological fibrin that acts as a scaffold with a three-dimensional (3D) architecture. Further, it
facilitates intercellular signaling and migration, thereby promoting angiogenic, chondrogenic, and
osteogenic activities. A-PRF with higher leukocyte inclusion possesses antimicrobial activity than the
first generations. Due to the presence of enormous amounts of growth factors and anti-inflammatory
cytokines that are released, A-PRF has the potential to replicate the various physiological and
immunological factors of wound healing. In addition, there are more neutrophils, monocytes, and
macrophages, all of which secrete essential chemotactic molecules. As a result, both L-PRF and A-PRF
are used in the management of musculoskeletal conditions, such as chondral injuries, tendinopathies,
tissue regeneration, and other sports-related injuries. In addition to this, its applications have been
expanded to include the fields of reconstructive cosmetic surgery, wound healing in diabetic patients,
and maxillofacial surgeries.

Keywords: platelet-rich fibrin; cytokines; intercellular signaling; growth factors

1. Introduction

Platelet concentrates are products that are obtained by centrifuging a blood sample
to separate the platelets from the plasma. They concentrate the platelets, fibrin, and
leukocytes, so transforming them into a clinically relevant and useful product (depending
on the technique that was utilized) [1,2]. Second-generation platelet concentrates (platelet-
rich fibrin, PRF) have protocols that are simpler, less expensive, and quicker than those of
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the first-generation (platelet-rich plasma) [3,4]. In France since 2001, autologous leucocyte-
and platelet-rich fibrin (L-PRF) has been utilized clinically as a biomaterial, which requires
neither anticoagulant nor bovine thrombin [2,3,5]. Without any additives, platelets are
activated within a few minutes after contacting the walls of the tube, which stimulates the
coagulation cascade [6–8]. The success of PRF isolation depends on the time taken from
the speed of blood collection to the transfer of tubes to the centrifugation machine [9–11].
Quick handling of PRF isolation is the best way to obtain a clinically and therapeutic usable
L-PRF clot [3,8].

The cellular composition and 3D organization of PRF are still debated. The cellular
composition, histomorphology of the fibers, and cytokine profile of various forms of PRF
have been extensively evaluated by various researchers [3]. L-PRF promotes the process of
healing and regeneration at the location of the damage by allowing for the controlled release
of molecules (vascular endothelial growth factor (VEGF), platelet-derived growth factor
(PDGF), transforming growth factor-β (TGF-β), and anti-inflammatory cytokines) over a
prolonged period, and also stimulates healing [12]. These factors stimulate neoangiogenesis
and the proliferation and differentiation of osteogenic and chondrogenic cells [12]. In the
modern era, the usage of newer autologous platelet concentrates is not only confined to
dentistry [13–15] but also to other diseases such as ulcers and necrosis of skin in the field of
plastic and reconstructive surgery [16–19], and also musculoskeletal lesions [20].

2. Evolution of Platelet Concentrates
2.1. Fibrin Glue

More than 40 years ago, several compounds produced from blood were used as a
channel to accelerate the body’s natural capability to heal on its own. In the beginning,
the only time platelet concentrates were utilized was to treat severe cases of thrombopenia
to stop bleeding. The upbringing of platelet concentrates to encourage the repair of
tissues began with the recognition of adhesive characteristics of the fibrin matrix and the
availability of biological growth factors of interest [21]. The production of autologous
fibrin glue begins with the utilization of donor plasma, followed by the incorporation
of thrombin as well as calcium to kickstart the process of polymerization. The addition
of thrombin, as well as calcium, to the processed plasma triggers the polymerization
process, generating the bioactive fibrin adhesives of clinical utility, which are similar to
the final stages of the coagulation cascade [22]. The major drawback with the application
of commercially available fibrin adhesives in regenerative medicine is the possibility of
disease transmission (from pooled or single-donor plasma), which can be minimized using
autologous plasma [23]. However, the expense of their fabrication, more processing time,
the various concentrations, and the tensile strength of fibrin is not adequately determined.

2.2. Platelet-Rich Plasma (PRP)

Platelet-rich plasma (PRP) is the first generation of platelet concentrate with the
amalgamation of various growth factors and the high qualities of fibrin glue, which in turn
results in increasing healing as well as the regeneration potential of tissues [24,25]. Even
though PRP preparation and administration protocols are not standardized, it has been
extensively employed in regenerative therapies [26]. Till now, more than 40 PRP preparatory
techniques from autologous whole blood have been adopted [13]. The major drawbacks
of PRP are (1) the quality and therapeutic efficacy of PRP rely on the concentration of
platelets in the final platelet concentrate of the individual, (2) the time interval between
the isolation to the administration of PRP as activated PRP release 95% growth factors
within the first 10 min, and (3) the addition of anticoagulants disrupts the coagulation
cascade and activates to form fibrin clots [27,28]. The process of the rapid outburst of
growth factors and the lack of homogeneity in the PRP isolation protocols contributed to
the development of a novel platelet concentrate with an ability to overcome the constraints
that were previously outlined.
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2.3. Platelet-Rich Fibrin (PRF)

PRF is a solid membrane of fibrin-containing platelets, leukocytes, and macrophages
that represents a big step forward in the field of regenerative medicine, as depicted in
Figure 1 [29]. Growth factors present in PRF enhance tissue regeneration, neovasculogene-
sis, and bacteriostasis, as depicted in Figure 2. PRF is an ideal 3D scaffold for the various
stages of the tissue healing process because it is simple to prepare, inexpensive, poses few
dangers to patients, and can even be used outside the hospital setting [29,30]. Miron et al. re-
ported a novel technique of harvesting concentrated PRF with a 10-fold increase in platelet
and leucocyte counts [31]. Dohan et al. reported no statistically significant difference in
the platelet counts and cytokines profile (TGF-β1, PDGF-BB, and IGF-1) in various parts of
PRF and supernatant exudate samples [32]. With the presence of leucocytes, Dohan et al.
reported PRF as a surgical additive for reducing postoperative infections. They analyzed
IL-1β, IL-6, and TNF-α (proinflammatory cytokines), IL-4 (anti-inflammatory cytokine),
and VEGF (growth promoter of angiogenesis) in a platelet-poor plasma (PPP) supernatant
and a PRF gel. The level of the cytokines and the growth factor correlated positively
with that obtained from the PPP and PRF gels. They concluded that PRF gel possesses
immunoregulatory properties with retro control inflammation abilities [33]. O’Connell
described the safety precautions in the clinical use of PRF using a kit method in terms of
system architecture and material hazards in the kits [34].
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In a nutshell, a blood sample is obtained without the use of anticoagulant in tubes
made of glass-coated plastic with a capacity of 10 milliliters and is immediately cen-
trifuged between 2700 and 3000 revolutions per minute (about 400 g) for a period of 10
to 12 min [3,35]. When the centrifugation process is complete, the red blood cells (RBCs)
will be found at the bottom level of the centrifuge tube, and the platelet-poor plasma will
be seen at the top of the tube. In the middle portion of the tube, between the layer of PPP
and the layer of RBCs, a PRP clot develops [3,35]. This clot traps a significant number of
platelets, leukocytes, cytokines, and growth factors. When the top PPP layer is removed,
the PRF that has been obtained can be gathered with relative ease. Allowing platelet
activation and fibrin polymerization to occur in the same manner that they would in a
normal state is the essential principle. The platelets become immediately activated when it
contacts the side wall of the centrifuge tube, which ultimately results in the creation of a
thick fibrin network [36]. Because of this, the collection of blood and its subsequent trans-
fer into centrifuge tubes must be completed as quickly as humanly possible, specifically
within a maximum of two minutes and thirty seconds. If this interval is extended, fibrin
polymerization will occur in a dispersed manner, and the PRF that is created will not be
therapeutically useful. The PRF thus obtained does not contain any anticoagulants or any
other biochemical alterations that are produced artificially. Altering the methodology for
centrifugation of PRF can have an effect not only on the structure but also on the density
of PRF clots. Standardization of centrifugation methods is now essential to manage the
content of growth factors and fibrin architecture [35,37,38]. Additionally, the impacts of
alterations made to the initial manufacturing process need to be clarified to determine how
they affect PRF activity. The microdissection of a PRF sample under an electron microscope
is depicted in Figure 3.



Bioengineering 2023, 10, 58 5 of 15

Bioengineering 2023, 10, x FOR PEER REVIEW 5 of 16 
 

they affect PRF activity. The microdissection of a PRF sample under an electron micro-
scope is depicted in Figure 3. 

 
Figure 3. Electron microscopic images of PRF scaffold: (A) 2000× and (B) 10,000× magnification. The 
spherical structure indicates inactivated platelets. 

Kobayashi et al. collated the rate of release of growth factors over time for PRP, PRF, 
and advanced PRF (A-PRF). PRP demonstrated the rapid distribution of growth factors, 
whereas PRF and A-PRF are more appropriate for the sustained release of growth factors 
over a prolonged period [39]. In comparison to conventional PRF, A-PRF was capable of 
releasing a much greater quantity of growth factors. Qiao et al. quantified five key growth 
factors such as basic fibroblast growth factor (bFGF), PDGF-BB, TGF-β1, IGF-1, and VEGF 
using ELISA in activated platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) and 
found that the concentrations of bFGF in PRF were noticeably greater than those in the 
activated form of PRP whereas no significant differences were found with the number of 
other growth factors [40]. Miron et al. concluded that 700 g for 8 min provides a better 
concentration of platelets, leucocytes, and macrophages in PRF gel subjected to the pa-
tient’s hematocrit variability when compared with 24 different PRF preparation protocols 
[9]. 

PRF, the second generation of platelet concentrate, was brought forward by Chouk-
roun et al. in 2001 [41], which has several advantages over PRP, which are as follows: (1) 
As the PRF preparation technique does not involve any additives (anticoagulants, throm-
bin, or calcium chloride), the cascade of wound healing is preserved and further elimi-
nates the risks involved in the utilization of bovine thrombin. (2) PRF possesses an immu-
noregulatory and antimicrobial response, which aids in the process of healing wounds. 
(3) PRF gel develops a thick fibrin meshwork spontaneously, which will allow for a slower 
degradation rate and provide a pulsatile burst of growth factors constantly at the desired 
site. (4) PRF gel possesses a high degree of flexibility and elasticity. (5) In addition, the 
production and standardization of PRF are more reliable and economical when compared 
with PRP production [8]. The shortcomings of PRF are (1) the success of PRF isolation 
depends on the speed of blood handling, (2) PRF gel must be used immediately, as it loses 
structural integrity and modulus of elasticity over some time, and (3) the storage of PRF 
gel is not possible due to dehydration and potential bacterial contamination [8]. 

3. Other PRF Formulations 
3.1. Advanced PRF (A-PRF) 

Advanced PRF (A-PRF) is generated by increasing the centrifugation time while de-
creasing the rpm (1500 rpm for 14 min), as depicted in Figure 4, causing leucocytes to shift 
to the bottom of the tube. The rise in neutrophilic granulocytes at the bottom of the clot 

Figure 3. Electron microscopic images of PRF scaffold: (A) 2000× and (B) 10,000× magnification.
The spherical structure indicates inactivated platelets.

Kobayashi et al. collated the rate of release of growth factors over time for PRP, PRF,
and advanced PRF (A-PRF). PRP demonstrated the rapid distribution of growth factors,
whereas PRF and A-PRF are more appropriate for the sustained release of growth factors
over a prolonged period [39]. In comparison to conventional PRF, A-PRF was capable
of releasing a much greater quantity of growth factors. Qiao et al. quantified five key
growth factors such as basic fibroblast growth factor (bFGF), PDGF-BB, TGF-β1, IGF-1, and
VEGF using ELISA in activated platelet-rich plasma (PRP) and platelet-rich fibrin (PRF)
and found that the concentrations of bFGF in PRF were noticeably greater than those in
the activated form of PRP whereas no significant differences were found with the number
of other growth factors [40]. Miron et al. concluded that 700 g for 8 min provides a better
concentration of platelets, leucocytes, and macrophages in PRF gel subjected to the patient’s
hematocrit variability when compared with 24 different PRF preparation protocols [9].

PRF, the second generation of platelet concentrate, was brought forward by Choukroun
et al. in 2001 [41], which has several advantages over PRP, which are as follows: (1) As the
PRF preparation technique does not involve any additives (anticoagulants, thrombin, or
calcium chloride), the cascade of wound healing is preserved and further eliminates the
risks involved in the utilization of bovine thrombin. (2) PRF possesses an immunoregulatory
and antimicrobial response, which aids in the process of healing wounds. (3) PRF gel
develops a thick fibrin meshwork spontaneously, which will allow for a slower degradation
rate and provide a pulsatile burst of growth factors constantly at the desired site. (4) PRF
gel possesses a high degree of flexibility and elasticity. (5) In addition, the production
and standardization of PRF are more reliable and economical when compared with PRP
production [8]. The shortcomings of PRF are (1) the success of PRF isolation depends on
the speed of blood handling, (2) PRF gel must be used immediately, as it loses structural
integrity and modulus of elasticity over some time, and (3) the storage of PRF gel is not
possible due to dehydration and potential bacterial contamination [8].

3. Other PRF Formulations
3.1. Advanced PRF (A-PRF)

Advanced PRF (A-PRF) is generated by increasing the centrifugation time while
decreasing the rpm (1500 rpm for 14 min), as depicted in Figure 4, causing leucocytes
to shift to the bottom of the tube. The rise in neutrophilic granulocytes at the bottom
of the clot facilitates the differentiation of naïve monocytes/macrophages into activated
form. When compared with the standard (S-PRF 2700 rpm for 12 min) and leucocyte-rich,
platelet-rich fibrin (L-PRF), the resultant A-PRF contains a superior total amount of viable
neutrophils, lymphocytes, various growth factors (TGF-β1, VEGF, PDGF, EGF, and IGF-1),
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and mediators such as osteocalcin, osteonectin, fibrinogen, vitronectin, fibronectin, and
thrombospondin [12]. The presence of immune cells and growth factors improves the
regenerative potential by enhancing intercellular signaling and tissue-specific macrophage
differentiation [12]. The morphology of A-PRF shows a looser structure with more interfi-
brous space plugged with an enhanced number of cells in the gel. The whole A-PRF clot
contains CD61+ (platelets) cells, and about two-thirds of the A-PRF gel contains CD15+

(neutrophilic granulocytes) cells [12]. With the presence of profound TGF-β1 and PDGF-AB
levels in A-PRF gel, the concept of “guided smart tissue engineering” came into existence.
However, despite the extensive research that has been conducted, only a small amount
of research data is currently available; therefore, new studies are required to evaluate the
advantages of A-PRF and L-PRF, as well as their respective limitations.
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3.2. Advanced PRF plus (A-PRF+)

The A-PRF technique was altered further, which led to the creation of a new formu-
lation called advanced platelet-rich fibrin plus (A-PRF+). Because the amount of force
applied during centrifugation has a direct influence on the total number of cells that become
entangled within the PRF matrix, researchers shortened the centrifugation force, which
decreased the cell count. The mechanical properties of various forms of PRF differ by re-
leasing growth factors at a constant rate [42–44]. A-PRF+ gel released higher concentrations
of PDGF and TGF-β1 on days 7 and 10 of scaffold implantation, whereas EGF was released
within 24 h, and the delayed release of VEGF was observed, as they are plugged within the
fibrin and fibrinogen meshwork [8].

The concept of the “low-speed centrifugation concept” (LSCC) used in isolation of
A-PRF and A-PRF+ creates higher diameter pores in the fibrin meshwork, which allow
neoangiogenesis to perfuse the peripheral edges of the scaffold [45]. The fibers of A-
PRF+ are thin and elongated, followed by a preferential and oriented direction where
platelets, leucocytes, and macrophages are plugged-in [46]. A-PRF+ possesses maximum
tensile strength, resistance to traction, and modulus of elasticity compared with A-PRF.
The porosity of A-PRF+ appears as porous tangled spaced fibers of high density directed
longitudinally and laterally. The morphology appears as thin biofibers with higher poly-
merization maturity. The biological signature of A-PRF+ is high when compared with
A-PRF due to enhanced porosity with strong fibrin architecture, which helps in biological
augmentation in the clinical setting [45,47].
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Fujioka-Kobayashi et al. developed the A-PRF+ preparation routine, which consists of
reducing the centrifugal speed while increasing the time (1300 rpm for 8 min), as depicted
in Figure 4 [48]. In comparison with A-PRF and L-PRF, A-PRF+ showed a considerable
increase in the number of released growth factors. Further, A-PRF+ showed increased
migration and proliferation potential in the cellular medium [8]. This improved outcome
may be connected to a higher concentration of neutrophilic granulocytes and lymphocytes
entrapped in the fibrin mesh. Additionally, after 3 and 7 days of cultivation, higher amounts
of collagen1 mRNA were seen in gingival fibroblasts that had been grown and exposed to A-
PRF+ [8]. The results obtained indicate that the regenerative potential in PRF formulations
was generated with reduced centrifugation speed and time [45].

3.3. Injectable PRF (i-PRF)

One of the primary disadvantages of PRF in comparison to PRP is that it can only be
obtained in the form of a gel, which makes it unsuitable for injection. Since PRP may be
administered in liquid form, it is versatile enough to be employed by itself or in conjunction
with biomaterials across regenerative medicine’s subspecialties. This injectable version of
PRF (i-PRF) is synthesized from the blood sample spun at 700 rpm for 3 min in a centrifuge
tube (as depicted in Figure 4) without any anticoagulants [9,49–51]. Due to the hydrophobic
surface of the plastic tubes used in this procedure, the coagulation process is not activated
as effectively. This method forms a platelet-rich yellow layer at the top; it can be aspirated
with ease and is readily available to be used in an injectable form.

i-PRF possesses a finer pore size of 10 µm, which makes the scaffold plug in more cells
and growth factors [52]. Microdissection of i-PRF revealed the adherence of platelets and
leucocytes in the pore wall and the edge of the fibrin scaffold. The fibrils appear as sparse
fibrous reticular structures [52]. The sustained release of growth factors (PDGF, VEGF,
TGF-β, IGF, FGF, and EGF) was observed with i-PRF gel over 15 days. i-PRF enhances the
proliferation of bone-marrow-derived mesenchymal stromal cells (MSCs) when cocultured
with bone marrow. i-PRF downregulates the expression of MMP-1 and -9 and upregulates
the expression of TIMP-1 and -2 [52].

i-PRF facilitates re-epithelialization and neovasculogenesis in a full-thickness skin
defect mouse model [52]. Since i-PRF is an uncrosslinked liquid scaffold in a conducive
form, it secretes high concentrations of growth factors for 2 weeks and accelerates the
wound healing process [53]. i-PRF increases collagen type 1 and 3 in wound beds and
helps in the deposition of ECM in the skin defect area. i-PRF initiates neovasculogenesis,
recruits MSCs, and helps in tissue regeneration [53]. In addition, in comparison to PRP,
i-PRF demonstrated higher levels of mRNA expression of PDGF after 72 h, TGF- after a
week, and collagen 1 expression within a week [8,49,53]. The findings may suggest that
PRF has a more intense biological effect than PRP does; however, this theory needs to be
investigated further before being accepted.

3.4. Titanium-PRF (T-PRF)

Titanium is biocompatible, hemocompatible, and noncorrosive. Since it displays excel-
lent osseointegration, titanium has become a promising material in orthopedics. Titanium-
PRF (T-PRF) is produced by using a sample of blood spun at 2800 rpm for about 12 min, as
depicted in Figure 4 [54], which uses titanium tubes made from medical-grade titanium.
T-PRF’s fibrin meshwork exhibits more firm, thicker, and more woven consistency and in-
tegrity. T-PRF alleviates the issues of cross-contamination with silica and glass tubes [54,55].
Similarly, authors also showed that the fibrin network formed by T-PRF covers a statistically
larger area and is thicker than the fibrin network formed by L-PRF. This indicates that
T-PRF may be active in the tissues for a longer time than L-PRF [42].

With H and E staining, T-PRF exhibits a highly and densely organized meshwork of
fibrin with continuous integrity [56]. In immunofluorescent staining, T-PRF appears more
mature and denser than L-PRF. In SEM analysis, the T-PRF clot appears as a well-organized
fen-like matrix containing slender fibrin fibrils along with plugged-in platelets [56]. Though
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it possesses better hemocompatibility, T-PRF clot displays more polymerized fibrin mesh-
work [54,57]. Ravi et al. reported high tensile strength and modulus of elasticity for T-PRF
when compared with L-PRF and A-PRF [42]. In the degradation test, they observed a
delayed degradation of T-PRF (82.27%) clot than A-PRF (84.18%) and L-PRF (85.75%) [42].

Preclinical studies reported increased duration and speed of centrifugation help in the
recovery of clinically mature T-PRF, which shows superior osseous regeneration than L-PRF.
Due to a longer resorption rate and stronger fibrin meshwork, T-PRF displays prolonged
release of growth factors. When T-PRF is combined with bone grafts, it offers excellent
osteointegration, bony growth, and hemostasis when compared with L-PRF [58].

3.5. Growth-Factor-Impregnated PRF (gf-PRF)

Growth-factor-impregnated PRF is a modified form of i-PRF. It is manufactured by
centrifuging the blood sample at a varying speed of 2400 to 3300 rpm for a specific period
(oscillating tubes) without anticoagulants, as depicted in Figure 4 [9,20]. Finally, the aspirate
rich in platelets is separated and used in an injectable form. However, there are restrictions
placed on the reference data for the PRF protocol alterations that are named.

4. Clinical Applications of PEF in Musculoskeletal Conditions
4.1. Cartilage Regeneration

With an inferior intrinsic potential of cartilage regeneration, the augmentation of
regenerative medicine products, such as PRP, PRF, MSCs, and MSC-derived EVs, plays
a significant role in the management of cartilage disorders [59]. Chien et al. reported
the amalgamation of PRF within a biodegradable fibrin scaffold for enhancing the prolif-
eration and differentiation of chondrocytes, enhanced cell growth rate significantly, and
upregulated mRNA expression of type-II collagen and GAG synthesis [60]. El Raouf et al.
compared iPRF and PRP from rabbit blood and reported that iPRF was found to be supe-
rior in regulating chondrogenesis genes and counteracting IL-1β effects in osteoarthritis
(OA)-like environment [61]. In full-thickness critical-sized osteochondral defects of rab-
bits, iPRF filled the defects with osteochondral regeneration. Histological examination
revealed hyaline cartilage within 4 weeks postoperatively, which is because iPRF pro-
motes chondrocyte proliferation and mRNA levels of SOX-9, collagen type-2, and aggrecan
when compared with PRP or control groups. iPRF, with the low-speed centrifugation
concept, poses an improved cartilage regeneration compared with PRP [61]. Wong et al.
demonstrated a single-stage culture-free method for repairing articular chondral defects by
combining PRF and autologous cartilage transplantation. PRF facilitates the proliferation,
migration, and differentiation of chondrocytes [62]. Souza et al. demonstrated the prolif-
eration and differentiation of adipose tissue-derived stem cells when combined with PRF
membrane [63].

In a rat osteochondral defect model, Metineren et al. demonstrated the regenerative
potential of cartilage with PRF [64]. Histologically, the osteochondral regenerated tissue
demonstrated the presence of hyaline cartilage at the end of 1-year follow-up [64]. Wang
et al. demonstrated superior results with the combination of PRP and PRF gels along with
microfracture through an arthroscope on knee cartilage defects in 28 cases [65]. Kazemi et al.
reported both macroscopic and histological significant differences between PRF-treated
and PRF-nontreated experimentally induced knee cartilage defects in animal models [66].
Wu et al. demonstrated the histological evidence of hyaline cartilage formation with
intra-articular injection of PRF combined with bone-marrow-derived MSCs for surgically
induced chondral defects in rabbit femoral condyle [67]. With the latest cutting-edge
technologies, researchers have regenerated cartilage with PRF techniques.

4.2. Tendon Repair, Augmentation, and Regeneration

Autologous PRF improves the cellular and biomechanical response in tendon injury
and enhances the quality of the repair. Dietrich et al. proved the superior healing effects of
Achilles tendon in rat model tendinopathy with autologous PRF than PRP. The PRF-treated
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group showed a delayed release of growth factors over 14 days when compared with the
PRP group. H and E staining analysis showed that the PRF-treated group demonstrated
enhanced healing rates at both assessment timelines than the PRP and control groups [68].
Anitua et al. reported that the presence of platelets within fibrin matrices enhances the
proliferation of tendon cells significantly in sheep Achilles tendon and exhibits higher
synthesis of COL1 and growth factors, such as VEGF and HGF [69]. Visser et al. reported a
higher concentration of TGD-β1 elution and enhanced tendon cell proliferation through
PRF constructs than whole blood clots in a canine tendon cell in vitro [70].

Beitzel et al. studied the cellular response of MSCs to scaffolds (fresh–frozen rotator
cuff tendon allograft, human highly cross-linked collagen membrane, and porcine noncross-
linked collagen membrane) in comparison with PRF- and fibrin-matrix-based PRP. They
observed a significant number of MSCs adhered to both the noncross-linked porcine
collagen scaffold and PRF than the fresh–frozen rotator cuff tendon allograft [71]. Zumstein
et al. reported the long-term elution of growth factors from L-PRF in rotator cuff repair.
They emphasized (a) the highest concentration of platelets and leucocytes were observed
with 400× g, (b) sustained release of growth factors, such as TGF-β1, VEGF, and MPO,
in the first 7 days of L-PRF clot cultured in the medium, and (c) enhanced growth factor
release (CXCL4, IGF-1, PDGF-AB, and VEGF) in the gelatinous group when compared with
the dry group, and concluded that the gelatinous type of L-PRF delivers growth factors for
up to 28 days and helps in augmenting rotator cuff repair [72].

Castricini et al. reported that PRF augmentation might be beneficial in small, medium,
large, and massive rotator cuff tears, given the heterogeneity of PRF preparation protocols
available in the market [73]. PRF does not improve the retear rates and postoperative func-
tional outcome scores in cases of full-thickness rotator cuff tears operated arthroscopically.
No difference in tendon thickness or size of the tendon footprint thickness was observed
with rotator cuff tears [74–77]. Alviti et al. reported that Achilles tendon repair, along with
PRF augmentation, displays a significant functional improvement in motion efficacy than
Achilles tendon repair alone [78]. The augmentation of PRF in gluteus medius tendon repair
help in improving the subjective outcomes of hip-specific physical functioning than in
terms of pain or clinical evidence of tendon retear rates [79]. With the available in vitro, pre-
clinical, and clinical evidence, the role of PRF in tendon augmentation and repair has to be
explored in a controlled randomized trial for clinical translation as a therapeutic modality.

4.3. Sports and Over-Use Related Injuries

With the increased popularity in the usage of platelet products in sports injuries, it
is hypothesized that platelet products accelerate tendon ligamentization, leading to early
return to daily activities. Theoretically, PRF possesses graft maturation and hemostatic
effects along with analgesic effects in the postoperative period. Beyzadeoglu et al. reported
superior graft integration and maturation in the proximal third of PRF-treated autologous
hamstring ACL reconstruction when compared with non-PRF-treated grafts in complete
ACL tear cases [80]. PRF-treated autologous hamstring grafts display lower MRI signal
intensity and less fluid in the graft tunnel interface when compared with controls for the
entire graft length [80]. Matsunaga et al. observed 78% of the ultimate failure load of PRF
repair tissue at 20 weeks in a bilateral central half-resected patellar tendon in a rabbit model
and hence proved that PRF tissue enhances ligament healing [81].

4.4. Meniscal Injuries

Meniscal injuries pose a greater challenge in management, as they pose a temporal
association between partial or total meniscectomy and the development of OA [82,83]. The
need for biological modality for meniscal repair warrants (a) a scaffold for adherence with
meniscal tissue, (b) intercellular signals for cellular proliferation and ECM synthesis, and
(c) an appropriate number of cells to promote tissue healing. Scanning electron microscopic
analysis of PRF demonstrates a honeycomb appearance with plugging-in of platelets along
with a fibrin skeleton [84]. PRF scaffolds provide anabolic cytokines to enrich the cells. PRF
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promotes neoangiogenesis as it possesses low thrombin levels for the migration of fibrob-
lasts and endothelial cells, which could help in meniscal healing [85]. Narayanaswamy et al.
reported the usage of iPRF in meniscal repair and augmentation [86]. iPRF application
holds better and produces significant functional outcomes in partial meniscectomy. Such
iPRF elutes growth factors over 4 weeks, which matches with the healing phase of menis-
cal tears [86]. Wong et al. demonstrated that rabbit’s PRF augments meniscal repair by
facilitating the proliferation and migration of meniscocytes and enhancing ECM synthesis.
PRF enhanced the synthesis and deposition of ECM by cultured meniscocytes, which were
evaluated both morphologically and histologically [87]. Kurnaz et al. concluded that PRP
and PRF matrix augmentation on vertical meniscal tears in a rabbit model resulted in early
recovery and enhanced repair of meniscus tissue [88]. The role of PRF in terms of healing
and regeneration of meniscus tissue needs to be explored.

5. Author’s Perspectives

In our clinical practice, we have utilized iPRF (700 rpm for 3 min) in the augmentation
of rotator cuff tears, meniscus repair, and chondral defects of the knee, as depicted in
Figure 5. All three cases were followed up for 2 years and showed an excellent functional
outcome without any retear or any residual defect in the operated site.
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6. Limitations

As PRF is a personalized technology and autologous in nature, there is a lack of
literature on isolation protocols and standardization in terms of the concentration of growth
factors in various PRF. No consensus has been published in terms of the elution of growth
factors from PRF gel into the surrounding medium. Regulations on the usage of allogenic
and xenogenic PRF must be optimized for the concentration and elution of growth factors as
an alternative to autologous PRF, which lacks standardization. Various basic research into
all these factors may address the need for clinicians to use PRF in various clinical settings.

7. Future Prospects

Various researchers have modified the forms of PRF by impregnating scaffolds or
freeze-drying for better mechanical stability and integrity, which are summarized below.

(a) PRF Lysate (PRF-Ly)

The exudate collected after PRF preparation, which is incubated at 37 ◦C, forms PRF
lysate. PRF-Ly contains various cytokines, glycoproteins, and glycans that can initiate
neovasculogenesis. PRF-Ly releases an enormous amount of growth factors that initiate the
proliferation and differentiation of fibroblasts and synthesize ECM, which can be quantified
by ELISA [89]. Dini et al. observed no statistical difference between PRF-Ly and A-PRF in
the proliferation of human dental pulp stem cells [90]. Further studies should validate the
usage of PRF-Ly in various musculoskeletal disorders for its safety and efficacy.

(b) Lyophilized PRF (Ly-PRF)
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Ngah et al. introduced the fabrication of Ly-PRF, which increases the stability of
PRF clots. Physically, Ly-PRF appears like a sponge and exhibits a dense, homogeneous
interconnected 3D fibrin meshwork with clusters of platelets, leucocytes, and macrophages.
Ly-PRF demonstrates relatively rugged and irregular surfaces and a compact texture. Such
irregular topography serves as an advantage for the facilitation of osteoblast adhesion and
differentiation [29,91]. Morphologically, more cells are situated between the PRF gel and
the RBC clot. Such PRF helps in cranial bone repair and regeneration both in vitro and
in vivo by providing a pulsatile and continuous release of growth factors. The pore size
of Ly-PRF plays an important role in cellular functions, such as cell adhesion, migration,
and proliferation. Ly-PRF acts as a reservoir for PDGF-AB, which is a potential growth
factor for tissue regeneration [92]. In a rat craniofacial defect model, Ly-PRF provided a
maximum defect coverage of about 97% in 6 weeks when compared with L-PRF (84%) [93].
The growth factors released by Ly-PRF enhance the proliferation of bone-marrow-derived
MSCs and osteogenic differentiation in vitro [94].

(c) Albumin PRF (Alb-PRF)

Albumin PRF (Alb-PRF) is a byproduct of blood without additives. It involves two
processes after centrifugation, namely, heating of the serum and low platelet plasma and
incorporation of cells. Such a new biomaterial has been extensively evaluated for its safety
and efficacy in tissue regeneration both in vitro and in vivo. Alb-PRF was obtained by
centrifuging whole blood at 700 g for 8 min and heating platelet-poor plasma for 10 min at
75 ◦C [95]. Histological evaluation revealed the complete dispersion of cells in Alb-PRF
formulation. The sluggish release of growth factors (TGF-β1 and PDGF-AA/AB) was
observed over 10 days in Alb-PRF formulation. Alb-PRF possesses high biocompatibility at
24 h, higher fibroblast proliferation at 5 days, and a substantial rise in TGF mRNA levels
and collagen mRNA levels at 1, 3, and 7 days [95]. On denaturing, albumin acquires a 3D
structure, leading to the improved stability of the gel [96]. In a preclinical study, Alb-PRF
was resorbed for up to 4–6 months when implanted into the subcutaneous area of an animal
model. Hence, Alb-PRF acts as a real barrier or biofiller in the defects [97].

8. Conclusions

The World Health Organization (WHO) stated that musculoskeletal injuries are the
primary reason for morbidity in young individuals worldwide. PRF has overtaken the use
of recombinant growth factors, not only for the sake of the treatment of injuries to muscles,
tendons, and ligaments but also in the treatment of bone and cartilage injuries. It has gained
popularity due to its cost-effectiveness, longer span of life, and more structured delivery
to the tissue being targeted. Applying the principles of interventional orthobiologics with
PRF reduces the surgical need while treating injuries of the musculoskeletal system, and it
augments the success rate of surgical techniques that are being performed nowadays. To
optimize PRF isolation and to study the biological features of PRF, newer experimental and
clinical research trials are to be conducted in the future. Therefore, the promise of PRF has
expanded its role as a therapeutic agent in the regeneration of bone and cartilage when
combined with techniques from tissue engineering and grafting.
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