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Abstract: Emotion plays a vital role in understanding the affective state of mind of an individual.
In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key
element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED,
containing EEG signals captured by the elicitation of emotion using audio–visual stimuli, and many
studies have been conducted to classify emotions using these datasets. However, baseline power
removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most
common technique that prevails is subtracting the baseline power from the trial EEG power. In
this paper, a novel method called InvBase method is proposed for removing baseline power before
extracting features that remain invariant irrespective of the subject. The features extracted from the
baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and
arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In
terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and
arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29%
over the no-baseline-correction method and 15% over the subtractive method.

Keywords: EEG; inverse filtering; baseline removal; emotion classification

1. Introduction

Emotions have the potential to improve the effectiveness of human interaction, whether
it is human-to-human or human-to-machine. Emotions have a profound impact on human
cognition, including logical decision making, perception, human interaction, and intel-
ligence [1,2]. However, modeling human emotion based on the mechanism behind the
emotional function of the brain is a challenging task [3]. In the last decade, human–machine
interaction (HMI) has received much attention. However, while interacting with a machine,
emotional communication is almost nonexistent compared with that between humans. As
we are strongly associated with machines (especially computers), it has become essential to
involve emotion in HMI. According to Rani et al., HMI may be more intuitive, smoother,
and effective in creating a new approach in the affective, cognitive, and developmental
systems if machines can grasp a person’s affective state [4]. At the core of such systems
lies the problem of emotion recognition, which is to identify human emotional states from
their behavioral and physiological signals [5]. These human emotions can be vital informa-
tion for HMI, biomedical research, and others. EEG-based emotion recognition can help
improve patient treatment, especially those with expression problems and depression, as it
will help the doctor with identifying the real emotional state of the patients [6].
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Emotion classification, in general, is the process of classifying an individual’s emo-
tional state. There are several ways to record brain activity, but EEG has gained enormous
popularity because it is noninvasive, portable, affordable, and applicable to practically
all settings [7]. However, EEG signals are very complex, and human emotions are very
ambiguous, making the high-accuracy classification of emotion a challenging task. There
are various preprocessing techniques for EEG data, such as downsampling and denoising.
Some of the standard denoising techniques in EEG are bandpass filtering for removing
external noise, eye-blink artifact removal, and baseline removal. A baseline is the EEG
signal generated from the brain during the relaxed state of an individual. The baseline blurs
the intended EEG signal corresponding to a stimulus; thus, baseline removal is an essential
preprocessing step for denoising EEG signals. The main motivation in performing baseline
removal is to refine the EEG signals before extracting features. The baseline-removed EEG
signals does not carry the subject-specific noise, thus resulting in subject-independent
features.

This paper proposes a novel method called the InvBase method for extracting subject-
independent features for emotion classification. The method employs the concept of inverse
filtering for baseline removal. However, inverse filtering is a common method in stationary
signals such as images. Its application for baseline removal in nonstationary signals, such
as EEG, is considered a significant contribution of this study. This method exploits the
baseline recording of the benchmark DEAP dataset captured during the relaxed state of
an individual, where DEAP stands for database for emotion analysis using physiological
signals [8]. The power spectrum of the baseline is used to eliminate the excess power in the
trial EEG power captured during an emotional event. The proposed method for baseline
removal utilizes the idea of inverse filtering, which is commonly used in denoising blurred
images [9,10]. In the proposed method for baseline removal, an EEG signal is first split into
fixed-size time slots. The time-domain EEG signals corresponding to each time slot are
then converted to frequency-domain signals. The frequency-domain signals are baseline
removed using inverse filtering. These baseline signals are grouped in nonoverlapping
time windows and averaged. For each window, the trend and harmonic are simultaneously
fit to segments in order to estimate the power of the residual segments [11]. Necessarily, the
window size is greater than the slot size. After that, the frequency spectrum in each window
is subdivided into four frequency sub-bands for each channel, and statistical features, such
as mean and variance, are extracted as features. These features are considered to be subject-
independent as the individual’s EEG data are filtered with the removal of baseline data of
the individual, thus retaining only the EEG characteristics corresponding to the particular
emotion. Following that, these features are used to train three different classifiers: k-nearest
neighbour (kNN), support vector machine (SVM), and multilayer perceptron (MLP). In this
study, two classification problems were taken into consideration, (1) high arousal vs. low
arousal and (2) high valence vs. low valence.

The baseline removal technique, which subtracts the frequency spectrum of the base-
line from the frequency spectrum of the EEG signal, was also implemented in this study
and is termed the subtractive method. The InvBase method was compared with the sub-
tractive method and the no-baseline-correction (NBC) method. The NBC method does not
remove the baseline from the EEG data. Various validation analyses were performed on all
the methods.

The novel InvBase method, used to extract subject-independent features, can be
further implemented for other EEG-based classification problems, such as cognitive load
estimation and motor imagery. However, the technique was employed in this study
to remove the baseline from EEG data in order to classify emotions. It is evident after
observing the DEAP dataset [8] that EEG signals vary from subject to subject for the
same elicited emotion. Furthermore, performing feature extraction in such data generates
subject-dependent features that hamper the classification accuracy. Emotion-related EEG
features are highly subject-dependent due to the presence of a baseline. In order to obtain
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subject-independent features for EEG-based emotion classification, the InvBase method
shows considerable potential.

The remainder of the paper is organized as follows: In Section 2, a detailed review
of the studies in the field of emotion classification is presented. The background of the
current study is elaborated in Section 3. In Section 4, the proposed InvBase method for
baseline removal and feature extraction process is discussed in detail, and the classification
problem is also elaborated. The experimental results are provided in Section 5. Finally, the
discussion and conclusions are presented in Sections 6 and 7, respectively.

2. Literature Survey

In this section, we discuss the different aspects of EEG-based emotion classification re-
search. EEG-based emotion classification requires the following actions: emotion elicitation
and signal acquisition, preprocessing, feature extraction, and classification.

The two major techniques used for emotion elicitation are using external stimuli,
such as audio–visual [8,12,13] or memory recall [14]. For signal acquisition, BiosemiActive
Two, Emotiv wireless headset, EEG module from Neuroscan Inc., and g.MOBIlab are
the most used devices [15]. The preprocessing step comprises downsampling, eye-blink
artifact removal [16], electromyogram artifact removal [17], baseline removal [8,18,19],
bandpass filtering for noise removal, and others. Various researchers have also used
wavelet-transform-based denoising techniques for EEG signals [20].

After preprocessing the EEG signals, the next important step is feature extraction.
Features are frequently derived from the delta, theta, alpha, beta, and gamma frequency
regions for emotion classification. The following feature extraction techniques are usually
used for emotion classification: asymmetry measure (ASM) [21], power spectral density
(PSD) [13], differential entropy (DE) [21], wavelet transform (WT) [22], higher-order cross-
ings (HOC) [23], common spatial patterns (CSP) [17], asymmetry index (AI) [24], and
AsMap [25]. Furthermore, in the least-squares wavelet analysis, features are extracted from
time series data without the need for editing or preprocessing of the original series [26].

In this study, frequency sub-bands features were extracted as they are the most widely
used features in EEG research. Emotion classification is the final step in which the extracted
features are used to train a classifier. Classification tools, such as SVM [13,17,21,27,28], linear
discriminant analysis [29,30], quadratic discriminant analysis [23], k-NN [21–23,31], naïve
Bayes [30], feed-forward neural network [32], deep belief network [1], multilayer perceptron
neural network (MLPNN) [22], convolution neural network (CNN), and recurrent neural
network (RNN) [19] are frequently used in EEG-based emotion classification. Fraiwan et al.
in [33] proposed an ANN-based machine learning model for classifying enjoyment levels of
individuals. Their model uses multiscale entropy (MSE) to calculate features, such as mean
MSE, slope of the MSE, and complexity index for emotion classification. However, these
researchers did not consider any baseline removal technique for eliminating unwanted
noise in the EEG signals.

Later in this section, the preprocessing technique that involves baseline removal before
extracting features for emotion classification is discussed. Fewer studies have been reported
in this area, as baseline removal is considered trivial preprocessing. A dataset, namely
DEAP, was created by Koelstra et al., which contains EEG and physiological information
from subjects exposed to audio–visual stimuli [8]. In their study, they recorded a 5 s baseline
EEG in a relaxed state, and a 60 s music video was played during which EEG data were
recorded. The baseline frequency power was subtracted from each trial’s frequency power.
The frequency power was calculated between 3 and 47 Hz. The subtractive method in this
study calculates the change in power compared with the prestimulus time. Theta (3–7 Hz),
alpha (8–13 Hz), beta (14–29 Hz), and gamma (30–47 Hz) frequency bands were summed to
provide these variations in power, which were then deployed as features to train a Gaussian
naïve Bayes classifier for low/high arousal, valence, or liking. Lastly, the accuracies of the
EEG-based classification for arousal, valence, and liking were 62.0%, 57.6%, and 55.4%,
respectively.
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Xu et al. [18] suggested a fundamental method for deriving emotional traits from EEG.
The strategy’s core element is to rectify the emotional data by filtering the baseline data. To
verify their method, they employed the DEAP dataset. The baseline data are first converted
into a frequency spectrum, and correlation coefficients are calculated for the baselines of a
subject. Highly correlated baselines are retained, and those weakly correlated are replaced
by the mean of the highly correlated baselines. After that, each trial’s power spectral density
(PSD) is corrected based on the PSD of the original high-correlation baseline and the new
baseline. However, Xu et al. did not directly mention the baseline removal method. In
order to determine the PSD’s mean, maximum, minimum, standard deviation, skewness,
kurtosis, and fractal dimension, the frequency spectrum was divided into five segments:
theta (4–7 Hz), alpha (8–12 Hz), lower beta (13–21 Hz), upper beta (22–30 Hz), and gamma
(31–45 Hz). From each channel, 35 characteristics, or 1120 features in total, were obtained
by the aforementioned methods. The SVM with a radial basis kernel function was then
used as the classifier. Additionally, the PSD features were used to train a CNN. The arousal
classification accuracies obtained using the baseline strategy on SVM and CNN were 79.54%
and 77.69%, respectively. Furthermore, using the baseline strategy, the valence classification
accuracies obtained on SVM and CNN were 75.62% and 81.14%, respectively.

Yang et al. [19] put forward a preprocessing method based on baseline signals. In
their study, they built a hybrid network that combines CNN and RNN to classify emotions.
In addition to the preprocessing conducted in the DEAP dataset, they further processed the
EEG signal. From the baseline signal, the baseMean is calculated by segmenting the signal
into N segments of L length for each C channel. Each segment is a C × L matrix. All the
C × L matrices are added lengthwise, and mean values are calculated, which is termed as
baseMean. The baseMean is then subtracted from the raw EEG signal segmented likewise.
The 1D EEG vector is then transformed into a 2D vector or an EEG frame in a subsequent
step that preserves spatial information between many neighboring channels. After that,
each data frame is normalized across the nonzero element using Z-score normalization.
The 2D EEG frames are fed in parallel to CNN and RNN to obtain the spatial feature vector
(SFV) and temporal feature vector (TFV), respectively. The SFV and TFV are concatenated
and fed into a SoftMax function to classify valence and arousal. The highest classification
accuracies achieved for valence and arousal were 90.80% and 91.03%, respectively.

3. Background

In this section, the DEAP dataset is discussed again as it was used as the benchmark
dataset in this study to evaluate the proposed method. Additionally, the inverse filtering
technique is discussed in detail as it is exploited in the proposed method to eliminate
baseline power.

3.1. DEAP Dataset

A multimodal dataset termed DEAP that includes EEG and physiological signals was
created by Koelstra et al. [8]. The dataset, which has a balanced women-to-men ratio, was
created from the recordings of 32 individuals, who ranged in age from 19 to 37 years. An
emotional response was obtained from each participant using 40 videos. Out of 120 music
videos collected from the website last.fm using effective tags, 40 videos were manually
chosen. A web-based subjective emotion assessment interface was used during the video
selection process. All of the videos contained music videos and were one minute long. A
sampling rate of 512 Hz was used while capturing the EEG using 32 electrodes (placed
according to the international 10–20 system). A total of 13 peripheral physiological data,
including the electromyograms of the zygomaticus and trapezius muscles, the respiration
amplitude, the skin temperature, GSR, and the electrooculogram (EOG), were also recorded.
In the method, the videos were trialed with each participant:

• First, the current trial number was displayed for 2 s.
• A 5 s baseline recording was taken in a relaxed state.
• Then, a 1 min music video was displayed.
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• Finally, the participants gave their ratings on a discrete nine-point scale for valence,
arousal, and dominance. To rate their liking, thumbs down/thumbs up symbols
were used.

The DEAP dataset includes the eye blink artifact free, preprocessed EEG recordings
that were further downsampled to 128 Hz. Additionally, a 4.0–45.0 Hz bandpass filter
was used. The data were split into 60 s trials and a 3 s pretrial baseline. Furthermore, the
participant ratings for valence, arousal, and dominance are provided along with the dataset.

3.2. Inverse Filtering

In engineering, inverse filtering is a frequently used method for reconstructing the
original scene from damaged observations [34]. Using inverse filtering, the estimated
signal, f̂ (x, y) is obtained from an observed signal g(x, y) so that f̂ (x, y) ≈ f (x, y). Here,
f (x, y) is the original undistorted signal. The degradation/distortion of the signal f (x, y) is
illustrated in Figure 1, where

g(x, y) = f (x, y) ∗ h(x, y) + n(x, y) (1)

*f (x, y)

h(x, y)

+

n(x, y)

g(x, y)

Figure 1. Modeling the distortion/degradation of a signal.

Here, h(x, y) is the distortion/degradation function, and n(x, y) is the noise introduced
to the signal due to external factors (in ideal situation n(x, y) can be considered to be zero).
The point-spread function, h

′
(x, y) is an inverse filter that is the inverse of the degradation

function, h(x, y), in the sense that

h(x, y) ∗ h
′
(x, y) = δ(x, y) (2)

According to the convolution theorem, under suitable conditions, the Fourier trans-
form of a convolution of two signals is the point-wise product of their Fourier transforms.
The spectral counterpart of Equation (2) can be given as

H(u, v)H
′
(u, v) = 1

=⇒ H
′
(u, v) = (H(u, v))−1 =

1
H(u, v)

(3)

In inverse filtering, the spectral counterpart of g(x, y), given as G(u, v) when multi-
plied with H

′
(u, v), results in F̂(u, v) (spectral counterpart of f̂ (x, y)). Mathematically,

F̂(u, v) = H
′
(u, v)G(u, v) (4)

In Equation (4), F̂(u, v), the spectral representation of f̂ (x, y), is obtained. The inverse
filter has the advantage of only requiring prior knowledge of the blur point-spread function,
enabling flawless restoration in the absence of noise.



Bioengineering 2023, 10, 54 6 of 21

4. Proposed Method

In this section, we discuss the proposed InvBase method of baseline removal from EEG
recordings. Different subjects have different baseline powers, which leads to the generation
of different features for different subjects but for the same stimulus. This, in turn, leads to
poor classification accuracy in EEG-based classification of emotions. Therefore, removing
the baseline power from each subject can lead to the generation of subject-independent
features. The steps involved with InvBase method are given below:

• Baseline removal;
• Windowing;
• Feature extraction.

4.1. Baseline Removal

As EEG signals are recorded from different individuals, the features extracted from
nonbaseline removed EEG signals can lead to the generation of features that are specific
to the individual. Thus, the features remain subject-dependent. We hypothesized that by
performing baseline removal, subject-independent features can be obtained. We used the
benchmark DEAP dataset to explore the baseline removal process. In the dataset, each EEG
recording comprises two parts: 60 s EEG data recorded during stimuli presentation and 5 s
EEG data recorded when in a relaxed state. The relaxed-state EEG is considered the baseline
of the subject. Although the authors of the DEAP dataset mentioned a baseline recording of
5 s in [8], only 3 s baseline data were included in the publicly available dataset. Therefore,
the proposed method considered the 3 s baseline EEG data during the experimentation.

The proposed baseline removal method from EEG signals, termed InvBase, is a process
of point-wise division of the frequency power of the contaminated EEG signal over the
entire spectrum by the frequency power of the relaxed-state EEG signal. EEG signals
recorded in the relaxed state do not contain emotion information; they should contain only
baseline information. In the signal degradation model depicted in Figure 1, if f (x, y) is
considered as the relaxed/resting-state EEG signal, then g(x, y) should be δ(x, y), which
implies that the output signal has no emotion information. With the assumption of zero
noise and no emotion information in the output EEG signal, we can rewrite Equation (1)
with n(x, y) = 0 and g(x, y) = δ(x, y) as

f (x, y) ∗ h(x, y) = δ(x, y) (5)

From Equations (3) and (5), we can further be conclude that f (x, y) = h
′
(x, y). There-

fore, the frequency power of resting-state EEG signals can be considered as the H
′

of inverse
filtering. The proposed InvBase method uses inverse filtering for baseline power removal
from each channel. The 60 s EEG recording of a channel, x(t), is split into N equal-sized
nonoverlapping time slots, x(ti), such that x(t) =

[
x(t1), x(t2), x(t3), · · · , x(tN)

]
.

The frequency spectrum corresponding to each slot, x(ti), is obtained using fast Fourier
transform (FFT). Let FFTi(v) be the frequency spectrum for the ith time slot. The resting-
state EEG signal containing baseline data for a particular channel are considered as h

′
in

Equation (2). Furthermore, FFT is applied on h
′

to obtain the baseline frequency spectrum,
FFTbase(v), which is analogous to H

′
. Then ,using the concept of inverse filtering, the

baseline-free frequency spectrum is obtained by dividing the frequency spectrum of each
slot by the frequency spectrum of the baseline signal. Here, the external noise is assumed
to be zero, as preprocessing was performed during the construction of the DEAP dataset.
Equation (6) depicts the baseline-eliminated spectrum achieved through inverse filtering.

FFTbaseRem(v) =
FFTi(v)

FFTbase(v)
(6)

The InvBase method of baseline removal from a 3 s EEG time slot is depicted in
Figure 2. The time-domain EEG signal in a 3 s time slot on a particular channel in Figure 2a
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and its corresponding baseline signal on that channel in Figure 2b are transformed into their
respective frequency domain using FFT. The frequency spectra of the raw EEG signal and
baseline signal are shown in Figure 2c,d, respectively. The frequency spectra of both signals
are fed into the baseline removal process. The output of the process shown in Figure 2e is
the baseline-removed frequency spectrum for the particular time slot.

Figure 2. An example of baseline EEG removal results: (a) raw EEG signal in a 3 s time slot,
(b) baseline EEG signal captured for 3 s, (c) frequency spectrum of the raw EEG signal, (d) frequency
spectrum of the baseline EEG signal, and (e) the baseline removal in a 3 s time slot from a channel
using the InvBase method.

4.2. Windowing

After baseline removal, the next action is to group the consecutive baseline-removed
frequency spectra from each slot in fixed-size windows and average the frequency spec-
trum. Previous studies have demonstrated that emotions have a short-term memory, which
means that they last for sometime until the next emotional stimulation [32,35]. Most re-
searchers employed 1 to 4 s EEG signals to determine emotional states because short-term
EEG signals are typically thought to be stable [35]. In this step, we mainly concentrated on
temporal memory features connected to emotions and investigated the effects of various
time windows on EEG characteristics. The characteristics of emotion EEG in consecu-
tive time slots are considered to have similar behavior; thus, the slots are grouped into
fixed windows. This operation of grouping slots and averaging generalizes the frequency
spectrum over a period of time equal to the window size. Figure 3 demonstrates the
windowing process in the InvBase method. The averaged data obtained in each window
for all the channels are considered a data point for the same class to which the original EEG
dataset belongs.
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1

slotslotslot slot slot slot

2 3 4 N-1 N

1

slotslotslot slot slot slot

2 3 4 N-1 N

Windowing

Averaging

Window Window Window
1 2 M

Figure 3. The windowing process.

4.3. Feature Extraction

The baseline-removed frequency spectrum in a time window is subdivided into four
frequency sub-bands. Frequencies from 3 to 7 Hz correspond to the theta band, 8 to 13 Hz
to the alpha band, 14 to 29 Hz to the beta band, and from 30 to 47 Hz to the gamma band.
Two statistical features, mean and variance, are calculated on each frequency band in each
time window to obtain the spectral features. A total of 8 features are extracted from each
time window. The extraction process is performed on all the 32 channels in the same time
window, and the features are concatenated to form the feature vector containing 256 features.
Each feature vector contains the mean and variance on each sub-band corresponding to
each channel.

Two dimensions of emotion, valence and arousal, from the dimensional model, were
used for emotion classification. Valence relates to feelings that range from unpleasant or
depressed to joyful. Arousal also relates to feelings that range from boredom to enthusiasm.
Each EEG recording in the DEAP dataset has a corresponding subjective rating for valence
and arousal. The resulting spectral features are divided into two binary classes for both
valence and arousal based on the distribution of the participants’ subjective assessments [8].
Ratings from 1 to 5.5 in valence are classified as low-valence (LV) values, whereas valence
ratings from 5.5 to 9 are classified as high-valence (HV) ratings. Similarly, the participant’s
ratings between 1 and 5.5 in arousal are classified as low-arousal (LA) ratings, whereas
those between 5.5 and 9 in arousal are classified as high-arousal (HA). To give an indication
of the chance level of the classifiers, the sample size of each class is reported in Table 1. The
spectral features were then used to train three different classifiers, SVM, kNN, and MLP,
and their classification accuracies and F1 scores were calculated.

Table 1. Sample size of different valence and arousal binary classes (total number of samples = 1280).

Class No. of Samples

High Valence 587
Low Valence 693

High Arousal 620
Low Arousal 660
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5. Results

In this section, the setup used in the experiment is discussed. Furthermore, the results
obtained in terms of classification accuracy and F1 score are presented. The InvBase method
was compared with the subtractive and NBC methods in two stages for both arousal and
valence classification.

5.1. Experimental Setup

An Acer desktop computer with an Intel Core i3 seventh-generation processor with
4 GB RAM was used for the experiment. Scientific computing was carried out using Ana-
conda 3, which is an open-source distribution of the Python and R programming languages.
Some of the crucial Python modules used for data handling during the experiment were
Numpy, Pandas, and Scikit-Learn. The EEG recordings of the DEAP dataset, except for the
physiological signals of the 32 subjects who saw the 40 videos, were used in the experiment.
Two other methods, the subtractive and NBC methods, were also implemented for com-
parison of their performance with that of the InvBase method. In the subtractive method,
the frequency spectrum ofthe baseline is subtracted from the frequency spectrum of each
slot [8]. In the NBC method, the features are directly extracted from the frequency spectrum
of each slot without baseline removal. The InvBase method was compared with both meth-
ods. Slot size and window size are two important parameters that were evaluated. Slot
size and window size were varied to explore the classification accuracy of all the methods.
Three classifiers, MLP, SVM, and kNN, were separately trained on the InvBase, subtractive,
and without-baseline-correction methods. Throughout the experiment, the MLP contained
two hidden layers: one with 64 and the other with 32 neurons. The radial basis function
served as the kernel for the SVM in this experiment. The algorithm used in kNN was
kd-tree, and the number of neighbors was set to five. Each model was validated using
10-fold cross-validation. The arousal and valence classifications were separately performed
on the different models. Classification accuracy and F1 score were used as performance
measure. The classification accuracy was determined by dividing the number of correct
predictions by the total number of predictions. The harmonic mean of recall and precision
was used to calculate the F1 score (e.g., see [36] for their mathematical definitions).

5.2. Classification Accuracy with Varying Slot Size

The arousal classification accuracies and F1 scores of the InvBase, subtractive, and
NBC methods with SVM, kNN, and MLP as classifiers for slot sizes 1, 3, 6, 12, 15, and
30 s are presented in Tables 2–4, respectively. The window size was fixed at 12 s for 1 s,
3 s, 6 s, and 12 s slot sizes. For slot sizes above 12 s, the window size was same as the
slot size. Therefore, the window sizes for slot sizes 15 s and 30 s were set to 15 s and
30 s, respectively. From Figure 4, it is observed that the 6 s slot had the highest arousal
classification accuracy with the InvBase method using MLP. The arousal classification
accuracies of the InvBase, subtractive, and NBC methods using the MLP classifier on the
6 s slot size were 86.9%, 72.1%, and 63%, respectively. The InvBase method+MLP showed
an improvement of 24% over the NBC method and 15% over the subtractive method. The
arousal classification accuracies of the InvBase, subtractive, and NBC methods using the
SVM classifier on the 6 s slot size were 86%, 66.4%, and 62.9%, respectively. The InvBase
method+SVM showed an improvement of 23% over the NBC method and 20% over the
subtractive method. The arousal classification accuracies of the InvBase, subtractive, and
NBC methods using the kNN classifier on the 6 s slot size were 76.9%, 67.8%, and 63.5%,
respectively. The InvBase method+kNN showed an improvement of 9% over the NBC
method and 13% over the subtractive method. For all the classifiers, the InvBase method
outperformed the other methods. From Figure 4, it is also evident that the slot size had
an impact on arousal classification accuracy. As the slot size increased beyond 12 s, the
arousal classification accuracy deteriorated because the increase in slot size impacted the
variability in the features in the frequency domain. It is also observed that the InvBase
method produced superior arousal classification accuracy with MLP and SVM than with
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kNN. Additionally, the F1 score for the InvBase method+MLP with the 6 s slot was the
highest and validated the arousal classification accuracy.

Table 2. Arousal classification accuracies and F1 scores of InvBase, subtractive, and NBC methods
using MLP for various slot sizes.

Slot Size InvBase Method Subtractive Method NBC Method

(s) Acc (%) F1 Acc (%) F1 Acc (%) F1

1 81.9 0.816 77.2 0.754 61.42 0.591
3 84.3 0.836 80.4 0.798 63.2 0.614
6 86.9 0.865 72.1 0.713 63.0 0.619
12 85.1 0.848 68.2 0.668 62.6 0.604
15 76.6 0.763 67.4 0.666 63.2 0.610
30 68.4 0.675 61.1 0.603 57.6 0.542

Table 3. Arousal classification accuracies and F1 scores of InvBase, subtractive, and NBC methods
using SVM for various slot sizes.

Slot Size InvBase Method Subtractive Method NBC Method

(s) Acc (%) F1 Acc (%) F1 Acc (%) F1

1 79.7 0.790 68.4 0.628 63.6 0.592
3 83.1 0.820 70 0.653 62.6 0.579
6 86.0 0.854 66.4 0.642 62.9 0.582
12 84.0 0.835 64.3 0.612 63.2 0.587
15 72.4 0.707 63.3 0.586 63 0.581
30 64.0 0.611 61.9 0.544 61.3 0.556
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Figure 4. Arousal classification accuracies obtained using different slot sizes in InvBase, subtractive,
and NBC methods.
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Table 4. Arousal classification accuracies and F1 scores of InvBase, subtractive, and NBC methods
using kNN for various slot sizes.

Slot Size InvBase Method Subtractive Method NBC Method

(s) Acc (%) F1 Acc (%) F1 Acc (%) F1

1 74.4 0.694 71.2 0.687 63.7 0.579
3 78.2 0.755 72.1 0.695 63.6 0.595
6 76.9 0.751 67.8 0.645 63.5 0.594
12 76.4 0.747 65.4 0.620 63.7 0.597
15 69.7 0.646 64.2 0.600 63.3 0.591
30 58.3 0.477 61.4 0.564 60.5 0.552

Tables 5–7, respectively, present the valence classification accuracies of MLP, SVM,
and kNN with the InvBase, subtractive, and NBC methods for various slot sizes (keeping
the window size fixed for slot size up to 12 s). For slot sizes above 12 s, the window size
was same as the slot size. Therefore, the window sizes for slot sizes 15 s and 30 s were
set to 15 s and 30 s, respectively. Figure 5 presents the valence classification accuracies
obtained using different slot sizes in the InvBase, subtractive, and NBC methods. The figure
captures the classification accuracies obtained by using the MLP, SVM, and kNN classifiers.
It shows results similar to the arousal classification. The highest valence classification
accuracy was 87.2% with the InvBase method+MLP with a 6 s slot. With a 6 s slot, the
subtractive method+MLP had 70.3% accuracy and NBC+MLP had 58.7% classification
accuracy. The improvement in valence classification accuracy using the InvBase method
was 17% and 29% over the subtractive and NBC methods, respectively. The valence and
arousal classification accuracies with the InvBase method for a 6 s slot were close. However,
the valence classification accuracy for NBC dropped by 4.3% compared with the arousal
classification accuracy.

Table 5. Valence classification accuracies and F1 scores of InvBase, subtractive, and NBC methods
using MLP with various slot sizes.

Slot Size InvBase Method Subtractive Method NBC Method

(s) Acc (%) F1 Acc (%) F1 Acc (%) F1

1 82.4 0.807 77.9 0.755 57.9 0.505
3 84.2 0.831 79.4 0.773 57.3 0.508
6 87.2 0.861 70.3 0.673 58.7 0.544
12 85.8 0.845 65.3 0.611 58.6 0.539
15 74.9 0.727 64.2 0.599 57.4 0.544
30 67.5 0.675 59.6 0.542 55.2 0.498

Table 6. Valence classification accuracies and F1 scores of InvBase, subtractive, and NBC methods
using SVM with various slot sizes.

Slot Size InvBase Method Subtractive Method NBC Method

(s) Acc (%) F1 Acc (%) F1 Acc (%) F1

1 79.9 0.766 67 0.555 58.6 0.432
3 82.2 0.798 68.4 0.590 58.4 0.426
6 84.5 0.821 62.2 0.492 57.8 0.418
12 82.5 0.794 60.3 0.455 57 0.413
15 71.0 0.659 58.8 0.453 57.6 0.411
30 62.3 0.545 55.6 0.384 56.3 0.406
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Table 7. Valence classification accuracies and F1 scores of InvBase, subtractive, and NBC methods
using kNN with various slot sizes.

Slot Size InvBase Method Subtractive Method NBC Method

(s) Acc (%) F1 Acc (%) F1 Acc (%) F1

1 73.9 0.649 69.5 0.629 59.1 0.485
3 77 0.728 70.4 0.636 58.5 0.479
6 75.4 0.696 64.7 0.562 59.2 0.489
12 74.7 0.695 61.6 0.516 58.2 0.478
15 69.0 0.611 60.6 0.503 57.4 0.460
30 59.3 0.431 57.8 0.468 54.4 0.429
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Figure 5. Valence classification accuracies obtained using different slot sizes in InvBase, subtractive,
and NBC methods.

5.3. Classification Accuracy for Various Window Sizes

The impact of varying the window size on classification accuracy was investigated.
Figure 6 shows the arousal classification accuracy of the InvBase method+MLP for various
window sizes. It was observed that in all the window sizes, the classification accuracy
remained above 70% for the 1, 3, and 6 s slot sizes. Using the 6 s window produced a higher
classification accuracy for 1 s, 3 s, and 6 s slot sizes than other window sizes. The arousal
classification accuracy using the InvBase method+MLP was 92.1% for a 6 s slot size and 6 s
window size, which was the highest. Figure 7 shows the arousal classification accuracy of
the subtractive method+MLP with varying the window size. It was observed that for all
the window sizes, the classification accuracy remained above 65% for the 1 s, 3 s, and 6 s
slot sizes. Using the 6 s window size produced higher classification accuracy for 1 s, 3 s,
and 6 s slot sizes than the other window sizes. The arousal classification accuracy using
the subtractive method+MLP was 83.3% for the 3 s slot size and 6 s window size, which
was lower than that of the InvBase+MLP method. Figure 8 shows the arousal classification
accuracy of NBC+MLP with varying window size. We is observed that window size had a
negative impact on arousal classification accuracy in the NBC+MLP method.

Figure 9 shows the valence classification accuracy of the InvBase method+MLP for
various window sizes. It was observed that for all the window sizes, the classification
accuracy remained above 70% for 1 s, 3 s, and 6 s slot sizes. The 6 s window size produced
higher classification accuracy for 1 s, 3 s, and 6 s slot sizes than the other window sizes. The
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valence classification accuracy was 91.5% for the 6 s slot size and 6 s window size. Figure 10
shows the valence classification accuracy of the subtractive method+MLP with varying
window size. It was observed that for all the window sizes, the classification accuracy
remained above 64% for the 1 s, 3 s, and 6 s slot sizes. Using the 6 s window size produced
higher classification accuracy for 1 s, 3 s, and 6 s slot sizes than the other window sizes. The
valence classification accuracy was 80.7% for the 3 s slot size and 6 s window size. Figure 11
shows the valence classification accuracy of the NBC+MLP method with varying window
size. It was observed that window size had a negative impact on the valence classification
accuracy in the NBC+MLP method.

Figure 6. Arousal classification accuracy of the InvBase+MLP method for various window sizes.

Figure 7. Arousal classification accuracy of the subtractive+MLP method for various window sizes.
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Figure 8. Arousal classification accuracy of NBC+MLP method for various window sizes.

Figure 9. Valence classification accuracy of InvBase+MLP method for various window sizes.

Figure 10. Valence classification accuracy of the subtractive+MLP method for various window sizes.
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Figure 11. Valence classification accuracy of NBC+MLP method for variouswindow sizes.

5.4. Leave-One-Out Cross-Validation

In order to further evaluate the subject independence property of the InvBase method,
leave-one-out cross-validation was performed on the DEAP dataset. The feature vectors
extracted from one participant out of N subjects in the experiment were left out as the test
set. The remaining feature vectors of N–1 participants were used to train the classifier.
Furthermore, the MLP classifier was used, and slot and window sizes were set to 6 s, as
the results in Section 5.3 indicated that the InvBase+MLP approach produced the highest
classification accuracy with a 6 s slot and window size. The arousal classification accuracy
obtained for each participant using the InvBase method and NBC approach is presented in
Figure 12. The average arousal classification accuracies obtained by the classifier using the
InvBase method and NBC were 66.40% and 51.13%, respectively. The valence classification
accuracy obtained for each participant using the InvBase method and the NBC approach
is presented in Figure 13. The average valence classification accuracies obtained by the
classifier using the InvBase method and NBC were 62.59% and 50.72%, respectively. It was
observed that the classification accuracy obtained on features extracted using the InvBase
method was higher than that using the NBC approach for most of the participants. As
the classifier was tested on an entirely different participant who was not presented during
training, the improved classification accuracy validated the subject-independence property
of the features extracted using the InvBase method.

5.5. Validation on Other Dataset

To verify the robustness and effectiveness of the proposed InvBase method, experi-
ments were conducted on the SEED dataset in a similar fashion, where SEED stands for
Shanghai Jiao Tong University (SJTU) emotion EEG dataset [37]. The SEED dataset consists
of EEG recording of subjects obtained while they watched 15 different clips from Chinese
films. Each video clip was used to elicit any one of the three types of emotion: positive,
negative, or neutral. The EEG data of a subject contain recordings from 62 EEG channels,
and they are categorized into three classes based on the type of emotional content. A
multiclass classification problem was formulated in the context of the SEED dataset, and
the observations were drawn, keeping the experimental setup similar to that used for the
DEAP dataset.

The InvBase method showed a clear improvement in classification accuracies over the
other methods. Similar to the results on the DEAP dataset, the MLP classifier provided
superior classification accuracy on the SEED dataset. Using the MLP classifier, the highest
improvement of 13.84% was recorded with a 1 s slot size and 12-window size for the
InvBase method. Additionally, more than 8.5% improvement in classification accuracy
using InvBase+MLP was observed with a 12 s window size for slot sizes of 1, 3, and 6 s. One



Bioengineering 2023, 10, 54 16 of 21

important observation is that the 1 s slot size produced better classification on the SEED
dataset, whereas, in the DEAP dataset, the highest classification accuracy was obtained for
the 6 s slot size. The difference can be justified by the differences in the number of EEG
channels and sampling frequency and by the different types of stimuli used. The EEG
recordings of the SEED dataset have 62 channels compared with the 32 channels in the
DEAP dataset. Additionally, the sampling frequency in the SEED dataset is 200 Hz, which
is higher than that in the DEAP dataset. The higher sampling frequency and larger number
of EEG channels may increase the resolution of emotion content in the EEG recording. Thus,
in the SEED dataset, a higher classification accuracy using a smaller slot size was observed
than in the DEAP dataset. For brevity, extensive experimental results are not included here.
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Figure 12. Comparison of arousal classification accuracy using InvBase method and NBC in leave
one out cross validation.
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Figure 13. Comparison of valence classification accuracy using InvBase method and NBC in leave-
one-out cross-validation.

5.6. Time Complexity Analysis

In this section, the time complexity analysis of the InvBase, subtractive, and NBC
methods for baseline removal is discussed. In each baseline-removal method, three are three
major steps: (1) FFT of the EEG signal, (2) point-wise removal operation, and (3) calculation
of frequency band power. Let tA be the time required for calculating the FFT of an EEG
signal with n sample points, tB be the time required for point-wise removal operation in a
frequency spectrum having f frequency points, and tC be the time required for calculating
the frequency band power. The total running time required for each baseline removal
method in c EEG channels, TR, is given in Equation (7).

TR = c ∗ (TA + TB + TC) (7)

From Equation (7), the worst-case time complexity of the baseline-removal process
can be represented as

O(TR) = O(c ∗ TA + c ∗ TBc ∗ TC)

O(TR) = O(c ∗ TA) + O(c ∗ TB) + O(c ∗ TC)) (8)

As the worst-case time complexity of the FFT operation is O(n ∗ log2(n)), we can
represent O(c ∗TA) = O(c ∗ n ∗ log2(n)). Considering subtraction in the subtractive method
and division in the InvBase method to be the unit operation in each frequency point, we can
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substitute O(c ∗ TB) wih O(c ∗ f ). However, in the NBC method, O(c ∗ TB) = 0, as there is
no point-wise baseline-removal operation. Lastly, the calculation of frequency-band power
involves finding the mean power in five frequency bands over the frequency spectrum;
therefore, we can substitute O(c ∗ TC) with O(c ∗ f ). Substituting O(c ∗ TA), O(c ∗ TB),
and O(c ∗ TC) in Equation (8), the worst-case time complexity for the InvBase, TI , and
subtractive, TS, methods can be written as:

O(TInv) = O(TSub) = O(c ∗ n ∗ log2(n)) + O(c ∗ f ) + O(c ∗ f )

O(TInv) = O(TSub) = O(c ∗ n ∗ log2(n)) + O(c ∗ f ) (9)

Similarly , substituting O(c ∗ TA), O(c ∗ TB), and O(c ∗ TC) in Equation (8), the worst-
case time complexity for the NBC method can written as:

O(TNBC) = O(c ∗ n ∗ log2(n)) + O(c ∗ f ) (10)

From Equations (9) and (10), we concluded that all the three methods for baseline
removal have a similar time complexity, i.e., O(TInv) = O(TSub) = O(TNBC).

6. Discussion

The results presented here indicate that the proposed baseline-removal technique pro-
vides significant improvement in classification accuracy compared with the subtractive and
no-baseline-correction methods. Using multilayer perceptron, the classification accuracy
improved by 29% over the no-baseline-correction method and 15% over the subtractive
method. Experiments were conducted on various slot sizes, and we found that the 6 s slot
size provided the highest classification accuracy and F1 score for both valence and arousal.
Furthermore, varying the window size, classifications were performed, and the results
indicated that increases in the window size result in decreases in classification accuracy.
This is due to the fact that calculating the features over a large window size results in lower
frequency resolution.

There are few studies that considered a baseline removal strategy. When compared
with the existing studies, the proposed method outperforms other methods [8,18,19] in
terms of classification accuracy. Another advantage of the proposed method compared
with other existing methods is that it uses traditional machine learning models, which
are relatively less complex. One of the limitations of this study is that we used fixed-size
time windows while calculating the features. Furthermore, we did not use advanced
machine learning techniques, such as CNN, for enhancing the classification accuracy. This
study highlights the importance of baseline removal, as the accuracy of the classifier
directly depends on the quality of the input data. The results showed that the InvBase
method of baseline elimination outperforms existing state-of-the-art baseline-removal
methods in EEG-based emotion recognition systems. The ability of the proposed method to
remove baseline noise from EEG signals provides room for progress in EEG-based emotion
detection. Many researchers have reported improved classification accuracy using deep
learning techniques [38,39]. The InvBase method with deep learning is a promising option
for further improving the classification accuracy.

7. Conclusions

In this study, a novel method called InvBase was developed for baseline removal,
and features were extracted for the classification of emotion. This method of baseline
elimination resulted in higher classification accuracy for valence and arousal classifications
in comparison with the subtractive method. The results suggested that the baseline removal
method increases the classification accuracy with very simplistic features such as the mean
and variance of EEG band powers. In comparison with the no-baseline-correction method,
the improvement in average classification accuracy obtained by using the InvBase method
established that the features extracted from baseline-removed EEG signals suppress the
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variation introduced by the subject’s baseline, thus resulting in close to subject-independent
features. Because the baseline power present in EEG signals introduces noise to the
extracted features, eliminating the baseline power using the InvBase method results in a
significant improvement in emotion classification accuracy. Furthermore, an important
conclusion in this study is that emotion features were dominant in time slots ranging from
1 s to 12 s. Additionally, we observed that the InvBase+MLP approach gave the highest
classification accuracy and F1 score with a 6 s slot size and window size. Fewer features
need to be extracted from EEG data with the InvBase method and subtractive method
compared with other methods. Thus, training a classifier requires less computation time
because the dimensionality of the features is decreased.
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CSP common spatial patterns
DE differential entropy
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EOG electrooculogram
GSR galvanic skin response
HA high-arousal
HMI human–machine interaction
HOC higher-order crossings
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kNN k-nearest neighbor
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MLP multilayer perceptron
NBC no baseline correction
PSD power spectral density
RNN recurrent neural network
SEED SJTU emotion EEG dataset
SFV spatial feature vector
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TFV temporal feature vector
WT wavelet transform
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