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Abstract: Eyes open and eyes closed data is often used to validate novel human brain activity classifi-
cation methods. The cross-validation of models trained on minimally preprocessed data is frequently
utilized, regardless of electroencephalography data comprised of data resulting from muscle activity
and environmental noise, affecting classification accuracy. Moreover, electroencephalography data of
a single subject is often divided into smaller parts, due to limited availability of large datasets. The
most frequently used method for model validation is cross-validation, even though the results may
be affected by overfitting to the specifics of brain activity of limited subjects. To test the effects of
preprocessing and classifier validation on classification accuracy, we tested fourteen classification al-
gorithms implemented in WEKA and MATLAB, tested on comprehensively and simply preprocessed
electroencephalography data. Hold-out and cross-validation were used to compare the classification
accuracy of eyes open and closed data. The data of 50 subjects, with four minutes of data with eyes
closed and open each was used. The algorithms trained on simply preprocessed data were superior
to the ones trained on comprehensively preprocessed data in cross-validation testing. The reverse
was true when hold-out accuracy was examined. Significant increases in hold-out accuracy were
observed if the data of different subjects was not strictly separated between the test and training
datasets, showing the presence of overfitting. The results show that comprehensive data preprocess-
ing can be advantageous for subject invariant classification, while higher subject-specific accuracy
can be attained with simple preprocessing. Researchers should thus state the final intended use of
their classifier.

Keywords: electroencephalography (EEG); machine learning; model validation; eyes closed; eyes open

1. Introduction

In recent years, there have been many attempts to develop efficient classifiers of brain
activity detected by electroencephalography (EEG), as EEG shows great promise as a tool
for brain-computer interfaces (BCI) [1], the detection of emotion and epileptic disorder [2,3],
cognitive load, Alzheimer’s disease and mild cognitive impairment [4,5]. To validate and
verify the developed classifiers, the data acquired from subjects at rest with their eyes
closed (EC) and with their eyes opened (EO) is often used. This is because the difference in
the EEG signal in the two eye states is easily noticeable by visual inspection and therefore
presents a relatively easy classification problem [6–8]. The most important distinguishing
EEG characteristics of the EC and EO states are the presence (or absence) of eye-blinks and
the change in the so-called α frequency power (7–13 Hz) of the detected brain waves [9,10].

As the EEG detects changes in electrical fields, generated by populations of firing
neurons, it invariably detects the activity of motor nerve fibers as well. That is why the
movement and blinking of the eyes in EO is very distinct in EEG recordings, as the muscles
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responsible for these movements are located directly below the recording electrodes of an
EEG device [11]. In EEG research, such muscle activity in the recording is often considered
to be an unwanted artifact, as it does not represent actual brain activity, but motor activity
of facial muscles instead [12].

On the other hand, the increase in the α frequency band power during EC reflects the
deactivation of the visual information processing system of the brain and its transition into
a state of readiness [13–15]. The more chaotic, high frequency signal, with less regularities
while the eyes are open, is thought to represent the complex processing of the information
fed to the visual cortex via the optic nerves coming from the eyes and its integration into
meaningful information that can be further processed and ultimately understood by brain
areas involved in higher-order cognitive processes [15].

These two features illustrate a few fundamental characteristics of the EEG signals.
The first is that there are many artifacts in EEG data, which confound the detection and
interpretation of brain activity [11,12]. Next, certain conditions or actions can significantly
influence the brain activity and thus markedly change the EEG signals. Last, the EO and EC
conditions, for example, can be distinguished by either analyzing the artifacts (non-brain
activity), by analyzing brain activity (i.e., the change in α frequency power) or by a mixture
of both [12].

In previous research of EC and EO classification, studies developing the methods of
classification of EEG for use in disease detection and BCI have often employed EC and
EO EEG data as a form of validation of the developed classifiers. Contributing to the
methodology of EEG signal classification, these have reached high classification accuracies
of EC and EO data, and have thus been deemed efficient at solving at least simple classi-
fication problems pertaining to EEG data. However, while to the best of our knowledge
impeccable in the process of classifier development, authors often treated EEG data as
simple signals that require minimal preprocessing from their raw state, acquired from an
EEG device [8,16–25].

This is a problem because naive data preprocessing methods leave artifacts in the EEG
recording (or parts thereof) in the data [12], which can skew the results of classifier training,
development, and generalizability to other tasks requiring the classification of brain activity
that is not tied to the eyes being open or closed. The problem of contamination by artifacts
is widely recognized in the field of neuroscience, where several data cleaning methods
have been developed to allow for little signal loss and maximum removal of data artifact
features. However, because of the strong necessity for human decision-making in the
process, comprehensive cleaning of the data and building classifiers upon that is often
impractical. As a result, simpler methods of EEG data preprocessing are frequently utilized.

We explored the effects of simple and comprehensive data preprocessing on classifier
performance in EEG data and show:

• that interpersonal variability significantly affects the classification accuracy;
• data preprocessing methods significantly affect the classification accuracy;
• the resulting frequency-power feature dataset is significantly affected by interpersonal

variability and data preprocessing.

2. Materials and Methods
2.1. Data Collection, Preprocessing, Feature Extraction and Dataset Generation
2.1.1. Data Collection

The EEG data was collected using a 24-channel wireless EEG amplifier (Smarting Mobi,
mBrainTrain LLC, Belgrade, Serbia) and saline-sponge caps (GT Gelfree-S3, Greentek Ltd.,
Wuhan, China). Electrode positions corresponded to the 10/20 system, placed on the Fp1,
Fp2, AFz, F7, F3, Fz, F4, F8, C3, Cz, C4, CPz, T7, T8, TP9, TP10, P7, P3, Pz, P4, P8, POz, O1
and O2 positions. The ground electrode was placed at the AFz and the physical reference at
the FCz position. The EEG was sampled at 512 Hz with a custom-created software package
that allows for online quantitative EEG quality monitoring (BDI recorder, BrainTrip Ltd.,
Naxxar, Malta). A total of 50 participants were recruited for the experiment (9 of those
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males, average age 81.5 ± 8.9 SD years, 3 were left-handed). The recording session was
divided into four 2-min segments. Two segments were recorded with eyes open and two
with eyes closed, for a total of 8 min of EEG. There were breaks between each segment.
During the recording, the subjects were seated and were instructed to simply relax and be
mindful of their breathing. The study was approved by the Institutional review board for
scientific investigations on human subjects of Science and Research Centre, Koper, Slovenia,
approval number 0624-40/22.

2.1.2. Data Preprocessing

In order to explore the effects of EEG preprocessing on classification results, we
produced 11 datasets, which can be roughly divided into two groups, the comprehensively
preprocessed datasets and the simply preprocessed datasets. All datasets were derived
from the 50 EEG recordings provided by the partner company BrainTrip.

EEG data preprocessing for producing the comprehensively preprocessed datasets was
done using several methods of EEG data preprocessing, to ensure that as little muscular
activity as possible remains in the data. The procedure for data preprocessing was as
follows:

1. Visual inspection and rejection of obvious electrode detachment/malfunction and
other similar types of artifacts

2. Filtering (1–50 Hz)
3. Independent component analysis (ICA) decomposition
4. Rejection of artifact independent components
5. Channel automatic rejection by spectrum, ±3 SD outlier channels removed
6. Visual inspection and rejection of any remaining artifact data
7. Re-referencing to average
8. Blind source separation (BSS) correction of muscle artifacts
9. Interpolation of missing channels
10. Epoching of the data into 2 s long epochs

To produce the simply cleaned datasets, the following steps were taken, adapted and
modified from [14], chosen because they represent a realistic pipeline for data preprocessing
observed in previous work;

1. Visual inspection of the dataset to determine the extent of saturation with artifacts by
inspecting the data for obvious electrode detachment/malfunction and other similar
types of artifacts

2. Filtering (1–50 Hz)
3. Epoching of the data into 2 s long epochs
4. Removal of any epochs where the voltage observed exceeds ±100 µV

2.1.3. Feature Extraction

After the preprocessing was carried out, all the datasets underwent feature extraction.
Features of interest were limited to simple power-spectrum analysis using a Welch method
Fast Fourier-Transform (FFT) on the 2 s long epochs of the data. The parameters of
the Welch’s FFT were a Hann window 0.5 s in length, with 50% overlap of windows.
The frequency bin powers encompassing the ranges of 4–7 Hz, 8–13 Hz, 13–30 Hz and
30–50 Hz were averaged to obtain the powers of the Θ, α, β and È frequency bands. This
was performed for the data obtained from each of the 24 electrodes that comprised the EEG
datasets, resulting in 96 features and 1 binary nominal target variable.

In order to enable the comparison of our results with previous work, the features
were selected based on previous studies, who frequently used them to classify EC and
EO data [8,16–25]. Moreover, the frequency-power spectrum measures represent rela-
tively simple, less computationally-intensive measures, whose generation can be imple-
mented in real time and as such present salient features for classification of EEG data in
various applications.



Bioengineering 2023, 10, 42 4 of 21

2.1.4. Generated Datasets

The purpose of creating these datasets (Figure 1) was to test the effects of sample size,
interpersonal variability and preprocessing methods on the data produced for classification.
Datasets CP40-M and CP10-M were matched to the size of the SP40-M and SP10 datasets,
respectively, in order to eliminate possible effects of sample size and class distribution
on the classification accuracies. The data samples of the comprehensively preprocessed
datasets were randomly selected (random sampling) using the MATLAB random sampling
function data sample without replacement. Detailed information about datasets is shown
in Table 1.
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Figure 1. A schematic of the dataset generation process and the dataset naming scheme.

Table 1. Detailed information about the generated datasets.

Name Number of Data
Instances

Subjects Contributing to
the Data

Number of
Features

Class Distribution

EO EC

CP50 9481 All 50 96 4711 4770

SP50 6603 All 50 96 3031 3572

CP40-M, SP40-M 5328 * Subjects 11–50, 40 in total 96 2216 3112

CP10 1884 Subjects 1–10, 10 in total 96 940 944

SP10, CP10-M 1275 * Subjects 1–10, 10 in total 96 460 815

CPR40-TR,
SPR-40TR 5328 * Various, randomly selected 96 2216 3112

CPR10-TE, SPR10-TE 1275 * Various, randomly selected 96 460 815

Abbreviations; CP—comprehensively preprocessed, SP—simply preprocessed, 50, 40 or 10, the size of the datasets
(same number of instances as the datasets derived from 50, 40 or 10 subjects), M—matched to simply preprocessed
data of the same size, TR—training data, TE—test data. * Instance numbers marked with the * symbol; instances
are selected separately for each dataset, although the sizes of the datasets are the same.
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2.2. Classification Models

In the present paper, several well-known models were used, that belong to different
groups of methods for data classification, namely tree-based, rule-based, neural networks
and linear models. The models were chosen, as they are commonly used to compare the
effectiveness of newly developed models with established machine learning methods and
can work with numeric features. More precisely, we evaluate the performance of following
classification algorithms:

• Rule-based: JRip [26], this classifier implements a propositional rule learner, Repeated
Incremental Pruning to Produce Error Reduction (also called RIPPER); PART [27],
which unifies the two primary paradigms for rule generating: creating rules from
decision trees and the separate-and-conquer rule learning technique by presenting an
algorithm for inferring rules through iterative generation of partial decision trees.

• Tree-based: LMT (Logistic Model Trees) [28] classifier for building “logistic model
trees”, which are classification trees with logistic regression functions at the leaves;
J48 [29] classifier generates a pruned or unpruned decision tree and extract the rules
for each path from root to the leave; Random Forest [30], which functions by building
a large number of decision trees during the training phase and is an ensemble learning
approach for classification, regression, and other tasks. The class that the majority of
trees choose in a classification task is the random forest’s output.

• CNN-based models: The Temporal Convolutional Neural network (TCN) follows the
work of Bai et al. [31] and consists of two convolutional blocks with 16 convolutional
filters of size five each and dilation factors one and two, respectively. Each block
contains two sets of dilated causal convolution layers with the same dilation factor,
followed by normalization, leackyReLU activation, and spatial dropout layers.

• The Deep Neural Network (DNN) is a simple neural network consisting of three layers:
the first layer is a dense layer with 12 units, and “relu” activation; the second layer is
8-unit dense layer (also with “relu” activation); the third layer is 1-unit dense layer
with “sigmod” activation.

• Lazy: K-NN (K-Nearest Neighbor) [32], is an instance-based algorithm which selects
k (K-NN can select the optimal k based on cross-validation) nearest neighbor and
makes a prediction based on their class labels; KStar (instance-based model) [33], is
an instance-based classifier, meaning that a test instance’s classification is based on
the classification of training instances that are comparable to it as defined by some
similarity function (entropy-based distance function).

• Linear models: ANN (Artificial Neural Network) [34], is an adaptable system that
picks up new information by using interconnected nodes or neurons in a layered
structure that attempts to simulate the structural organization of the human brain. A
neural network may be trained to recognize patterns, classify data, and predict future
occurrences since it can learn from data; SVM (Support Vector Machine) [34], Logis-
tic Regression [35], classifiers for constructing and applying a multinomial logistic
regression model with a ridge estimator.

• Ensemble classifiers: bagged trees and optimized ensemble classifier [32], ensemble
classifiers meld results from many weak learners into one high-quality ensemble
model.

We used the WEKA workbench [36] implementation of KStar, JRip, PART, Logistic
Regression, LMT, J48 and Random Forest algorithms with the default parameters, as this
enabled us to rapidly and simply train and test our classifiers. The main parameters of
WEKA models are listed below:

1. Kstar: the global blending parameter was set to 20, and missing values were replaced
with average column entropy curves.

2. Jrip: the “Pruning” method was applied, the minimum total weight of the instances
in a rule was set to 2 and two optimization runs were used;
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3. PART: the minimum number of instances per rule was 2, a common confidence factor
0.25 was used for pruning and the number of folds to determine the amount of data
used for reduced-error pruning was set to 3;

4. Logistic Regression: The Ridge value (1 × 10−8) in the log-likelihood was applied as
default;

5. LMT: the minimum number of instances at which a node is considered for splitting)
was set to 15 and fast regression for using heuristic that avoids cross-validating the
number of Logit-Boost iterations at every node was utilized;

6. J48: the default confidence factor (0.25) was used for pruning (smaller values incur
more pruning. The subtree raising operation was utilized to improve the accuracy
when pruning and the minimal number of instances per leaf was put to 2;

7. Random Forest: the number of trees in the random forest was set to 100 while the
maximum depth of each tree was not limited.

For optimized classifiers, namely the Optimized Ensemble, Bagged Trees, K-NN, SVM
and ANN, the MATLAB [34,37] software was employed. The parameters of optimized
models were tuned automatically by Bayesian optimization procedures implemented in the
MATLAB Statistics and Machine Learning Toolbox [34] (detailed information on parameter
settings are provided in the Appendix A). The main parameters of WEKA models are as
follows:

1. Optimized Ensemble: the optimized ensemble method of the most successful iteration
was AdaBoost, with a maximum of 20 splits, 30 learners and 0.1 learning rate.

2. Bagged Trees: the learner type of the model was Decision Tree and the optimal number
of split was 6602 with 100 learners;

3. K-NN: one neighbor was selected to make a decision and Euclidean metric was used
to find the distance;

4. SVM: linear function was utilized in kernel mode and “One-vs-One” multiclass
method was applied with 1 level of box constraint;

5. ANN: the number of fully connected layers (the size of each layer was 10) was set to 3
and “Relu” activation mode was used with 1000 iteration limit.

2.3. Statistics

Statistical testing was carried out in MATLAB 2022a (MathWorks, Natick, MA, USA)
with a mixture of code available from the Statistics and Machine Learning Toolbox, MAT-
LAB add-on EEGLAB and in-house developed code. For the comparison of EEG datasets,
serial permutation t-tests were used with 10,000 permutations for the data derived from
10 subjects and 5000 permutations for the data derived from 50 subjects, due to computing
intensity and hardware limitations. Testing was carried out in blocks, with each frequency
band, data cleaning procedure and dataset size combination representing one block. For
example, a comparison of the simply preprocessed and comprehensively preprocessed data
in the Θ band would be comprised of a block of 24 comparisons, one for each electrode
of the EEG recording. The obtained p-values would then be false discovery rate (FDR)
corrected within this block, via the Benjamini-Yekutieli procedure. Next, the Bonferroni
correction was applied to the FDR corrected p-values of each block, with the number of
blocks serving as the number of comparisons to be corrected for. Altogether, 32 block com-
parisons were made. Post-correction two-sided threshold α = 0.05 was adopted throughout
the analysis.

The statistical comparisons of the classifier hold-out accuracy and number of extracted
data snippets was carried out with the use of chi-squared tests of independence, with the
Bonferroni correction for multiple comparisons (the number of chi-squared tests carried
out) applied. All p-values reported are post-correction p-values. The data fulfilled all the
assumptions of the statistical tests used (namely the assumption of exchangeability in the
case of permutation statistics and independence in the case of the chi-squared test).

The comparison of 10-fold cross-validation accuracies of the used classifiers was
carried out in Microsoft Excel 2013 (The Microsoft Corporation, Redmond, WA, USA),
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by the use of two-tailed t-tests for independent samples. All p-values were Bonferroni-
corrected and reported as such.

3. Results

First, the number of 2 s long data instances obtained from the simply and comprehen-
sively preprocessed datasets was compared, to evaluate whether the two preprocessing
methods are equivalent in the extraction of information from the raw EEG data. Of the
possible 12,167 two-second-long data snippets that could have been extracted from the raw
EEG data, 9481 were extracted using careful data cleaning procedures and 6603 were ex-
tracted with simple preprocessing procedures. In other words, comprehensive preprocessing
resulted in 77.92% of the data being extracted, while simple preprocessing extracted only
54.27% of the data. This difference was statistically significant (chi-squared = 1519, p = 0).

Next, we evaluated the performance of 14 state-of-the-art classification models de-
scribed in Section 2.2 on comprehensively and simply preprocessed EEG data based on
the 10-fold cross-validation accuracies and the evaluation metrics of precision, recall and
the F-measure [38]. Table 2 illustrates the experimental results of classification models on
Dataset CP50 and Dataset SP50.

Table 2. The performance of the classifiers on CP50 and SP50 datasets.

Models

Accuracy
(%)

Precision (%) Recall (%) F-Measure (%)

EO EC EO EC EO EC

CP50 SP50 CP50 SP50 CP50 SP50 CP50 SP50 CP50 SP50 CP50 SP50 CP50 SP50

Optimized
Ensemble 98.3 99.0 98.4 94.9 98.2 98.5 98.1 98.2 98.4 95.8 98.2 96.5 98.3 97.1

Optimized SVM 97.4 96.9 98.0 96.4 96.8 97.3 96.8 96.9 98.0 97.0 97.4 96.6 97.4 97.1

Optimized ANN 97.1 97.1 95.6 95.0 98.6 98.9 98.6 98.6 95.7 95.9 97.1 96.8 97.1 97.4

Random Forest 96.9 97.0 97.6 96.7 96.2 97.4 96.1 97.8 97.6 96.0 96.8 97.2 96.9 96.7

Optimized K-NN 96.8 96.1 95.1 93.5 98.4 98.3 98.3 97.9 95.3 94.7 96.7 95.6 96.8 96.5

KStar 95.8 95.3 97.9 94.1 93.9 96.9 93.5 97.5 98 92.8 95.7 95.8 95.9 94.8

Bagged Trees 95 96.9 93.2 94.9 96.7 98.5 96.5 98.2 93.6 95.8 94.8 96.5 95.1 97.1

LMT 92.6 93.6 95.4 92.0 90.1 95.7 89.4 96.6 95.7 90.1 92.3 94.2 92.8 92.8

PART 90.5 90.9 92.9 90.2 88.4 92.0 87.5 93.5 93.4 88.0 90.2 91.8 90.8 89.9

J48 88.4 88.4 90.7 86.4 86.4 90.7 85.5 91.3 91.3 85.5 88 88.8 88.8 88.0

DNN 86.8 86.3 90.0 91.2 84.1 82.8 79.7 78.4 92.1 91.1 84.5 84.3 87.9 86.8

TCN 84.7 83.2 89.6 88.0 81.0 79.4 78.5 76.5 91.0 89.7 83.7 81.8 85.7 84.2

JRip 85.9 87.5 87.4 87.2 84.6 87.9 83.8 90.1 88.1 84.4 85.5 86.6 86.3 88.1

Logistic
Regression 79.4 75.9 77.4 65.4 81.6 84.9 79.9 78.5 76.2 74.3 79.9 71.4 78.8 79.2

Abbreviations; SVM—support vector machine, ANN—artificial neural network, K-NN—K-nearest neighbors,
LMT—logistic model tree, PART—partial decision tree, EO—eyes open, EC—Eyes closed.

Table 2 shows that ensemble models constructed with Bayesian optimization proce-
dures achieved the highest cross-validation accuracies, in both the comprehensively and
simply preprocessed datasets (accuracies of 98.3 and 99%, respectively). Seven models
achieved an accuracy of more than 95%, when cross-validated on both datasets. These mod-
els were the Kstar, Optimized K-NN, Optimized SVM, the Bagged trees model, Random
forest, the Optimized ANN and the Optimized Ensemble model. All models that achieved
more than 95% accuracy in the cross validation for either dataset were then compared. The
average performance of these classifiers was also compared between the SP50 and CP50
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datasets and between the CP10-M (Table A1) and SP10 (Table A2) and CP40-M (Table A3),
SP40-M (Table A4) datasets. Figure 2 shows the results of these comparisons.
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The results show that in the two datasets balanced for total size and class distribution,
the classifiers trained on simply preprocessed data reached significantly higher accuracies
in cross-validation than the classifiers trained on comprehensively preprocessed data
(Figure 2, top left). When individual classifiers are compared in their performance on the
three datasets (Figure 2, top right and bottom row), significant differences in accuracies can
be observed for most of the classifiers in the two balanced datasets. Only the K-NN and
Kstar models performed with no significant difference in the cross-validation, when trained
on the naively and comprehensively preprocessed datasets. When trained on all available
data, for the comprehensively preprocessed dataset and simply preprocessed dataset,
unbalanced for total size and class distribution, the average cross-validation accuracy did
not differ significantly. When individual classifiers are compared, however, the bagged
trees and the optimized ensemble classifier achieved significantly higher accuracies when
trained on the simply preprocessed data.
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To explore how these cross-validation accuracies translate into effectiveness of the
models to classify novel data, we have tested the models with the hold-out method. This
means that we have trained the classifiers on the 40 subject dataset that was balanced for
size and class distribution and then used these trained classifiers to classify the hold-out
data (CP40-TR and SP40-TR datasets). The hold-out data was the data derived from ten
subjects, balanced for size and class distribution (CP10-TE and SP10-TE datasets). The
results are depicted in Figure 3, the detailed information is provided in Table A5.
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The results show that, in contrast to cross-validation accuracies, there is either no sig-
nificant difference in the accuracy of the classifiers when classifying novel data not included
in the training dataset, or the classifiers trained on the comprehensively preprocessed data
in fact performed better (the Optimized SVM and Bagged trees models) when faced with
novel data (Figure 4). However, here it should be noted that when we tested the deep
learning models on their ability to classify novel data, they achieved higher classification
accuracies than other machine learning models, with the accuracies being 66.8% (DNN)
and 60.6% (TCN), when tested on the comprehensively preprocessed datasets. When tested
on the simply preprocessed datasets they achieved and 65.1% (DNN) and 71.4% (TCN)
accuracy. Both methods reached the accuracy of ~85% in cross-validation testing (Table 2).

The last stream of our results consists of the examination of the created ten subject
(SP10 and CP10) and 50 subject (CP50 and SP50) datasets. This was done in order to test
whether dataset size and preprocessing method affect the final EEG analysis results. The
results are depicted in Figure 5.

The results of the analysis of EEG data show that there are significant differences that
can be observed, both as a result of preprocessing (Figure 5, bottom two rows) and as a
result of dataset size (Figure 5, rightmost four columns). This means that preprocessing
procedures meaningfully affect the features extracted from the EEG data, which can in turn
further affect classifier performance. Moreover, the effects of dataset sample size were also
pronounced, which shows that interpersonal variability additionally contributes to mean-
ingful changes in EEG data, which carries its own implications for classifier development.
If the number of compared electrodes that exhibit significant differences is considered, it
can be concluded that the preprocessing method resulted in more widespread changes in
the EEG signal than the dataset sample size.
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Figure 5. The comparison of frequency band powers by dataset size and data cleaning procedure.
The data is organized to represent different frequencies by column (theta—Θ, alpha—α, beta—β,
gamma—G) and data cleaning and preprocessing procedure in rows (comprehensively and simply
preprocessed data). The frequency powers are depicted in green and yellow colors, while the
red-blue-and-black headplots depict t-values of permutation t-tests, comparing either simply and
comprehensively preprocessed data (bottom) or the data derived from the first 10 with the data
derived from the whole 50 subject dataset (right). The black patches on the red-blue-and-black
headplots mark the areas where no significant differences were detected.
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4. Discussion

In the present paper, we examined the effects of EEG data preprocessing methods,
interpersonal variability and sample size of subjects, which from the dataset is derived,
on the classification accuracies of classifiers commonly used to classify the eye states,
i.e., eyes open vs. eyes closed. We show that hold-out accuracy is significantly affected by
separating the data by subject, not only on an instance-by-instance basis when constructing
the training and test datasets. The data preprocessing method also affected the accuracy
of some classifiers, both in cross-validation and hold-out testing. Moreover, we show that
both the dataset size and preprocessing method produce significantly different features
extracted from the EEG data.

The main findings of our study thus pertain to two main areas of classifier development;

1. Classification accuracy: the classifiers trained on simply preprocessed data performed
better in the cross-validation, when the compared datasets are balanced for size
and class distribution. However, the SVM and Bagged trees algorithms trained on
comprehensively preprocessed data performed 12 and 5.7% better, respectively, in
hold-out testing, with no differences in accuracy apparent in the cross-validation
translating to differences observed in the hold-out accuracy in any of the classifiers.

2. Dataset generation: we have found that the EEG data that the classifiers train on
differs significantly with regard to the preprocessing methods (and their strictness)
used and with dataset sample size. Moreover, we have found that up to 23% more data
can be extracted from the raw EEG recordings, when the data is carefully preprocessed.

With regard to classification accuracy, it is interesting that our study achieved very
high classification accuracies of EC and EO data, with relatively simple preprocessing
methods (in the case of simply preprocessed data), simple feature extraction methods and
unmodified, off-the-shelf classification algorithms implemented in WEKA and MATLAB.
For comparison with some previous studies that classified EC and EO resting state EEG
data, please see Table 3 below.

Table 3. Results of previous studies classifying EC and EO states from resting state EEG recordings.

Study Subjects (#
of Samples) EEG Preprocessing Features Extracted Best

Classifier Accuracy Validation Final Purpose

[14] 9 (257) 16

The data was preprocessed
by filtering (1–40 Hz) and
removing epochs exceeding
±100 µV of amplitude

FFT, all available
frequency bins used as
features (total number
not stated).

SVM 97% 10-fold
CV

The study aimed to
identify the brain’s resting
status using short-length
EEG epochs using both
linear and nonlinear
features derived from
EEG.
Aimed at general-purpose
applications. *

[15] 10 (112,128) 32
Bandpass filtering in the
delta, theta, alpha and beta
bands.

Delta, theta, alpha and
beta band energies
(128 features total).

Random
Forest 85.39% 10-fold

CV

This method exploits high
spatial information
acquired from the Emotiv
EPOC Flex wearable EEG
recording device and
examines successfully the
potential of this device to
be used for BCI
wheelchair technology.
Aimed at targeted or
person-specific final
applications. *

[23] 30 (1800) 33

EEG data was first
re-referenced to average,
then bandpass-filtered
between 1 and 50 Hz

Features were extracted
based on the FFT in 6
(delta, theta, alpha, beta,
gamma and all)
different frequency
bands, per 6 electrodes
in 4 ROIs and 30 trials
for each condition
(8.640 features total).

CNN

96.92%
10-fold
CV

Developing a more
practical and reliable
ear-EEG based application
related to eye state
classification.
Aimed at general-purpose
final applications. *90.81% Test-retest
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Table 3. Cont.

Study Subjects (#
of Samples) EEG Preprocessing Features Extracted Best

Classifier Accuracy Validation Final Purpose

[16]

27 (829,494)

19

“Clean” sections of data,
without artifacts, were
chosen by an expert.

Single electrode data
points (19 features)

K-NN
(k = 1) 99.8%

hold-out
(66%/34%
split)

Predicting eye states using
EEG recordings in a
real-time system,
interpreting classification
rules for gaining insight
into EEG data.
Aimed at general-purpose
final applications. *

10 data points of an
EEG recording
(190 features)

Random
Forest 96.6%

hold-out
(66%/34%
split)

27 (82,836)

“Clean” sections of data,
without artifacts, were
chosen by an expert. The
data was filtered in the 1–40
Hz range and a notch filter
eliminating line noise was
applied.

Single electrode data
points (19 features)

K-NN
(k = 1) 99.4%

hold-out
(66%/34%
split)

10 data points of an
EEG recording
(190 features)

Random
Forest 96.5%

hold-out
(66%/34%
split)

[17] 109 (3270) 64

EEG data was preprocessed
by applying low pass
Butterworth filtering with
the cut off frequency of
40 Hz

Six RQA (recurrence
quantification
analysis)-based
measures (recurrence
rate, determinism,
entropy, laminarity,
trapping time, and
longest vertical line)
had been extracted from
64 EEG channels based
on a genetic algorithm
(384 features total).

Logistic
Regres-
sion

97.27% 10-fold
CV

Automated classification
of EEG signals into
eyes-open and eyes-close
states. The development
of the practical
applications for
performing daily life tasks.
Aimed at general-purpose
final applications.

[18] 1 (14,980) Not
stated. No preprocessing.

The features
(14 features) of EEG
data were extracted
based on the wavelet
transform (Final
number of features not
stated).

Deep fac-
torization
machine
model
(FM:
+LSTM

93% 10-fold
CV

The diagnosis of fatigue
by detecting eye openness
status.
Aimed at general-purpose
final applications.

[19] 1 (14,980) 14

Clustering into dissimilar
groups by Self-organizing
map (SOM). Classification
performed within each
cluster.

No feature extraction,
raw signal used.

Deep
Belief
Network
(DBN)

95.2% 10-fold
CV

The study investigates eye
state identification using
EEG signals.
Aimed at general-purpose
final applications. *

[20] 1 (15,181) 14

Dataset cleaned by removing
the missing values as well as
outliers based on the
“Isolation Forest” technique

No feature extraction,
raw signal used.

Hypertuned
SVM 98.5%

10-fold
CV
(70/30
split)

Medical appliances
capable of classifying
various bodily states, drug
effects etc.
Aimed at general-purpose
final applications.

[21] 10 (Not
stated) 64 No preprocessing.

Mean value of each
sliding window,
asymmetry and
peakedness, maximum
and minimum, complex
logarithm of sample
covariance matrix, 10
most energetic FFT
components, all
windows also inherit
features of previous
windows that are
different from the
current ones (Variable
number of total features
for each window.)

CNN

97.96% 10-fold
CV

The approach is
dynamically applicable to
BCI devices of higher
resolution and problems
other than the frontal lobe
activity classification.
Aimed at targeted or
person-specific final
applications. *83.3%

“Leave-
one-out”
CV

[22] 1 (14,980) 14

First, the Independent
Component Analysis (ICA)
algorithm is employed to
remove the artifacts from
EEG data, then the data is
Fast Fourier Transformed.

Fast Fourier Transform,
time analysis,
time-frequency analysis
using the STFT, and
time-frequency-space
analysis extracted
characteristics of data
were chosen as features
based on the results of
Principle Component
Analysis (14 features).

EBPTA 98.94% 10-fold
CV

The eye status
categorization from brain
activity signals and its
application to real time
applications.
Aimed at general-purpose
final applications. *
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Table 3. Cont.

Study Subjects (#
of Samples) EEG Preprocessing Features Extracted Best

Classifier Accuracy Validation Final Purpose

This
paper

50 (6603)

24

Visual inspection of the
dataset to assess its usability,
filtering (1–50 Hz), epoching
of the data into 2 s long
epochs, removal of any
epochs where the voltage
observed exceeds ±100 µV. Welch FFT acquired

frequency bin powers
encompassing the
ranges of 4–7 Hz,
8–13 Hz, 13–30 Hz and
30–50 Hz were
averaged to obtain the
powers of the Θ, α, β
and G frequency bands.
This was done for the
data obtained from each
of the 24 electrodes that
comprised the EEG
datasets, resulting in 96
features and 1 binary
nominal target variable.

Ensemble
Classifier 99% 10-fold

CV

Final purpose is the
evaluation of the effects of
preprocessing and
validation methods on
classifier accuracy.

50 (6603) Random
Forest 63.1%

Hold-out
(40
subjects/
10
subjects)

50 (9481)

Visual inspection and
rejection of obvious
electrode
detachment/malfunction
and other similar types of
artifacts, filtering (1–50Hz),
independent component
analysis (ICA)
decomposition, rejection of
artifact independent
components, channel
automatic rejection by
spectrum, ±3 SD outlier
channels removed, visual
inspection and rejection of
any remaining artifact data,
re-referencing to average,
blind source separation (BSS)
correction of muscle artifacts,
interpolation of missing
channels, epoching of the
data into 2 s long epochs.

Ensemble
Classifier 98.3% 10-fold

CV

50 (6603) SVM 64.9%

hold-out
(40
subjects/
10
subjects)

* Studies marked with *; the final application aimed at is not explicitly stated by the authors of the paper, but
is inferred from the conclusions or statements authors make in their article. General-purpose—meant for use
by a wide group of people, without personalization and adjustment of the classifiers. Targeted/person-specific
purpose—meant for use by a specific person or a small group, classifier is meant to be adjusted and retrained for
each individual user. Abbreviations; SVM—support vector machine, CNN—convolutional neural network, K-
NN—K-nearest neighbors, FM—Factorization Machine, LSTM—Long Short-Term Memory, EBPTA—Evolutionary
Back Propagation Training Algorithm, FFT—Fast Fourier Transform, CV—cross validation.

Existing studies employing the data of more than ten subjects are compared first, as
these studies used the best comparable number of subjects to our study. These
studies [16,21,24] attained validation accuracies of 96.92%, 99.8% and 97.27%, with
10-fold cross-validation, 66–34% hold-out and 10-fold cross-validation, respectively. The
number of subjects contributing to the datasets was 30 [24], 27 [21] and 109 [16]. In compar-
ison to our attained 10-fold cross-validation accuracies of 98.3% for the comprehensively
preprocessed dataset and 99% for the simply preprocessed one, our classification methods
achieved higher accuracy than two of these studies. However, the feature selection was
somewhat different in [16], but the results of [24] are directly comparable to the results of
the present study. Additionally, all three studies can be understood as developing or testing
classifiers for general-purpose use, with the authors of [16] explicitly stating so. Regardless,
only the authors of [21] perform a hold-out method of testing, appropriate for testing the
stability of the classifier in accuracy of the classification on data that significantly varies
from subject to subject. Moreover, even when hold-out testing is used, it is unclear whether
the withheld and the test data originate from different subjects or whether the instances
of data are randomly assigned to each, without regard for subject origin. The highest
accuracy of the hold-out testing presented in the current paper (Figures 3 and 4) is either
comparable to the one achieved in [21] (99.6% accuracy for simply and 99.1% accuracy for
comprehensively preprocessed data) or vastly inferior (64.9% for the comprehensively and
63.1% for the simply preprocessed data), depending upon whether the data from different
subjects is strictly separated or whether the instances are randomly assigned to the hold-out
and test datasets, without regard for subjects of origin.

Next, the results of studies using similar feature extraction procedures as the present
paper are examined. Six studies report using either the FFT or the wavelet transform
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to extract frequency-power features of EEG data [19,20,22–25], achieving 10-fold cross
validation accuracies of 98.4, 97.96, 97, 96.92, 93 and 85.39%. The accuracies are largely
comparable, among the studies and with the results of the present study, with the 85.39%
accuracy of [25] standing out as being noticeably lower than the rest.

Furthermore, it is interesting that the studies employing no feature extraction, merely
using the EEG signal as is, after limited preprocessing was employed [17,18,21] have
reached high classification accuracies (99.8%, 95.2% and 98.5%, respectively). This could
be interpreted as feature extraction being somewhat redundant for the classification of
EEG data, although rigorous hold-out validation should be carried out before making this
conclusion. The conclusion that not all important features of EEG signals can be extracted
via the FFT could also be drawn from these results. This latter conclusion seems to be
supported by the greater hold-out accuracy of the TCN model for the simply preprocessed
data, which was concurrently the highest subject-invariant classification we were able to
achieve (71.4%). The hold-out accuracies of all other methods were shown in Table A6.

On the topic of the classifiers used, the Random Forest, SVM and CNN types of
classifiers were found to be the ones that most often produce best classification results,
with two studies each reporting their results as being the best with the use of these classi-
fiers to classify resting state EEG data into EC and EO. In our study, ensemble classifiers
achieved better results than traditional rule-based classification methods, more precisely,
the “Optimized Ensemble” classifier was the best model for classification using 10-fold
cross-validation method while the “Optimized SVM” classifier obtained a slightly higher
result on hold-out method.

From these previous results, we can conclude that the cross-validation accuracies
achieved by the seven best classifiers on our datasets, ranging from 95 to 99%, are com-
parable to previous work on EC and EO classification from EEG signals. Our highest
classification accuracy, achieved with simple preprocessing methods, simple feature ex-
traction procedures and off-the-shelf classification algorithms is most likely due to our
dataset being relatively large, being derived from 50 subjects. The fact that the dataset
size affects classification accuracy is nothing new and has been reported multiple times
previously. However, the extent to which a 5-fold increase in dataset size (and the number
of subjects contributing to the data) affects the final extracted features of an EEG signal is
still remarkable (Figure 5). This dataset size was nonetheless still likely too small to enable
the full use of deep learning approaches, as reflected by relatively low cross-validation
accuracies (Table 1).

Moreover, it is interesting that both the classifiers trained on the comprehensively
preprocessed and simply preprocessed data achieved accuracies comparable to or exceeding
previous studies on this topic, when evaluated by 10-fold cross validation. This could
be interpreted as both sets of data being equally well suited for classification purposes,
with the simply preprocessed data enabling even significantly higher (although not large,
Figure 2) differences in classification accuracy.

However, the true differences in the suitability of the datasets for classification are
revealed, when one compares the accuracies that classifiers trained on either dataset
achieved in the hold-out validation process. There, the SVM and Bagged trees algorithms,
out of the seven best classifiers that trained on the comprehensively preprocessed data
have achieved significantly better (12 and 5.7%, respectively) classification accuracies than
the classifiers trained on the simply preprocessed data, while the other five have shown no
significant differences in classification accuracy.

To best explain this observation, the way in which the datasets were generated must
be kept in mind. For the purpose of comparing the accuracies of the classifiers with the
hold-out method, the training data consisted of the 2 s data instances belonging to the last
40 subjects, and was matched for size and overall class distribution. The test data consisted
of the data of the first ten subjects, also matched for size and class distribution. This means
that great care was taken to produce datasets, where test and training data are derived from
different people, thus isolating the effects of interpersonal variability in the classification
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accuracy and presenting a realistic challenge to the trained classifiers, if the intention
was to use them as general-purpose classifiers in real-world applications. When the data
is matched for size and class distribution, the more comprehensive data preprocessing
procedures can thus be concluded to be beneficial for controlling the effects of inter-subject
variability, for at least the SVM and bagged trees classification algorithms. The reverse was
true for the TCN model, however. There the problem of overfitting was more pronounced
for the comprehensively preprocessed data, with the hold-out accuracy for the simply
preprocessed data having been 10.8% greater. This could reflect the need for more data
to be used in training for the deep learning approaches in general, with comprehensive
preprocessing removing information useful to the machine learning model in the EC and
EO classification process. An interesting contrast thus forms between the simpler and older
machine learning approaches, such as bagged trees, and the more modern deep learning
approaches to classification, where today’s methods rely on availability of big data to
support the learning with more complex models, but the potential tradeoff seems to be
a greater ability to discern subject invariant characteristics of EEG data. These findings
should be more extensively verified and tested in future studies with more data utilized to
enable the full drawing of such conclusions.

The overall result of the hold-out testing is important, as it shows that interpersonal
variability greatly affects classification accuracy, which bears important implications for
the development of future classifiers of EEG signals. This is further supported by the
results of the hold-out testing without paying attention to the subject-specific origin of the
datasets, that is using the data of the same subjects for training and testing the classifiers,
by randomly sampling the same number of data instances as produced by the data of the
last 40 subjects for training and randomly sampling the same number of data instances
produced by the data of the first ten subjects for testing, without previously dividing it into
two sets of subjects (Figure 4). This gives us both a training and testing dataset containing
data instances of all 50 subjects. When the hold-out method of validation is used in this way,
the classification accuracies of classifiers trained on either dataset exceed 90%, compared
to ~60% accuracy on the hold-out testing with the data of different subjects, presenting
a significant and large difference in the obtained accuracy. That interpersonal variability
affects this data is further supported by results in Figure 5, where the features extracted
from 50 subjects significantly differed from the ten-subject feature dataset on most electrode
locations in most frequency bands, regardless of data preprocessing procedures used.

Moreover, these results show that the classifiers validated with cross-validation are
prone to overfitting, with those trained on the comprehensively preprocessed data possibly
being less prone to overfit, at least in the case of the SVM and bagged trees algorithms
(Figure 3). Depending upon the intended final use of a classifier, these results bear important
implications for the interpretation of the results of previous studies and future classifier
development.

When the reporting of the accuracy of the developed and tested classifiers in previous
work is examined, it becomes clear that ten-fold cross validation is the most popular
method used to obtain accuracies, regardless of the final intended application of the
classifier. Additionally, when the hold-out method is used, the procedure for the testing
and training data generation is not sufficiently explained, being unclear whether the data
for training and testing originates from different subjects or whether the data instances
from all the subjects are mixed and then assigned to the testing and training datasets. This
makes the degree of overfitting possibly present in the results unclear, which can be an
issue.

The mentioned intended final use of the classifier is important here, as overfitting the
data is not necessarily detrimental. For example, if one imagines that the goal of a project is
to develop a BCI to be used by a single person, and that person only, then overfitting to the
data of that person, to achieve the highest possible accuracy is appropriate. Conversely, if
one wants to build a system for early detection of neurodegenerative diseases, for example,
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then special care should be taken not to overfit the data, as subject invariant classification
models are crucial for these purposes.

With regard to most of the studies that have previously classified EC and EO in resting
state EEG data developing classifiers for general-purpose use (Table 3, eight out of ten
studies), meant for application without retraining the algorithms for each new user, we
believe that these fall into the second group of applications, requiring subject invariant
classification. Therefore, the reported accuracies, which consist mostly of the results of
ten-fold cross-validation (Table 3, seven out of ten studies) might be skewed, when the
intended use of the classifier is taken into account. However, only three studies out of ten
explicitly state the final purpose of the classifier.

We propose that future studies clearly state what the intended final application of
a classifier being developed is and that the data preprocessing and classifier validation
methods are chosen based on whether overfitting to the data of a single subject (or a group of
subjects) can be considered to be detrimental to the performance of the classifier. Moreover,
in general purpose applications, where subject invariant classification is required, the 10-
fold cross-validation alone might not be sufficient to validate the classifier to a satisfactory
degree.

Perhaps less crucial, but an additional argument for comprehensive preprocessing
of the data can be made when sample sizes are relatively small and the extraction of as
many instances per dataset is necessary, as we show that up to 23% more data can be
extracted from an EEG dataset when comprehensive preprocessing is employed. On the
topic of dataset size, the large differences in the cross-validation and hold-out methods
observed in this study could be interpreted as the sample size of subjects being too small
to allow for the interpersonal variability being accounted for during the training of the
classifiers. This could mean that more than 50 subjects are required to achieve classifiers
that are interpersonally stable in accuracy, when using frequency band features of EEG
datasets to classify the EO and EC conditions.

5. Conclusions and Future Work

To conclude, the present study shows that the data preprocessing methods of EEG
significantly affect the final generated feature dataset. Furthermore, interpersonal variabil-
ity of EEG data has been shown to significantly affect the classification accuracy of the EO
and EC condition with the use of the hold-out validation method. When compared to the
10-fold cross-validation, the hold-out validation results differed significantly.

The methods applied in the present study are rather simple, however, when the
broader scope of modern machine learning is considered. The effects observed here might
not hold true for more specialized models, designed to deal with the issue of EC and EO
classification specifically. However, as EC and EO classification is often used as the vali-
dating test of classifiers intended for other purposes, even more complex classifiers would
greatly benefit in their validity, were they evaluated with interpersonal data variability
in mind. Furthermore, to accurately and consistently evaluate modern machine learning
methods, i.e., deep learning approaches, such as TCN, that are specialized for time-series
classification, more data should be used. The amount of data needed for consistent perfor-
mance and satisfactory training of these algorithms should be explored and the question of
how much data is enough data answered. The issue of overfitting might also be somewhat
ameliorated with a dataset of sufficient size being used.

With regards to these results and considerations, we propose that great care is taken
when designing new classifiers, and to take into consideration whether the issue of overfit-
ting to the data of the subject(s) which from the dataset is derived is detrimental to the final
intended purpose of the classifier. If the answer to this question is yes, then comprehensive
EEG data preprocessing, the usage of hold-out validation and sufficient sample size should
be used to enable subject invariant classification.
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Appendix A

Table A1. The performance of the classifiers on Dataset CP10-M.

Dataset Accuracy
Precision Recall F-Measure

EO EC EO EC EO EC

Optimized Ensemble 96.1 93.7 97.4 95.4 96.5 94.5 96.9

Optimized ANN 93.8 91.7 95.0 91.1 95.3 91.4 95.1

Optimized K-NN 94.3 83.3 97.1 94.5 94.2 95.6 95.4

Random Forest 93.5 94.6 93.0 87.0 97.2 90.6 95.0

Optimized SVM 91.9 90.0 93.0 87.9 94.3 88.9 93.6

Bagged Trees 92.2 85.7 96.0 92.3 92.2 88.9 94.1

KStar 91.3 89.4 92.3 86.1 94.2 87.7 93.3

LMT 88.9 85.7 90.6 83.0 92.1 84.3 91.4

J48 86.6 80.9 89.9 82.2 89.1 81.6 89.5

PART 86.9 83.7 88.7 79.3 91.3 81.5 90.0

Logistic Regression 86.9 82.9 89.0 80.2 90.7 81.5 89.8

JRip 86.2 80.5 89.5 81.5 88.8 81.0 89.2

Table A2. The performance of the classifiers on Dataset SP10.

Dataset Accuracy
Precision Recall F-Measure

EO EC EO EC EO EC

Optimized Ensemble 98.4 98.9 97.4 98.5 98.0 98.7 97.7

Random Forest 98.0 97.5 98.9 99.4 95.4 98.4 97.1

Optimized ANN 96.8 97.5 95.4 97.4 95.6 97.4 95.5

Optimized SVM 95.9 97.8 92.6 95.9 95.9 96.8 94.2

Bagged Trees 95.7 97.7 92.2 95.7 95.7 96.7 93.9
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Table A2. Cont.

Dataset Accuracy
Precision Recall F-Measure

EO EC EO EC EO EC

Optimized K-NN 95.1 97.5 90.7 94.9 95.4 96.2 92.9

LMT 94.0 94.5 93.0 96.2 90.0 95.3 91.5

KStar 93.1 92.6 94.1 96.9 86.3 94.7 90.0

PART 92.3 93.1 90.8 95.0 87.6 94.0 89.2

J48 91.2 92.5 88.8 93.9 86.5 93.2 87.7

JRip 90.4 92.1 87.2 92.9 85.9 92.5 86.5

Logistic Regression 88.2 90.0 84.7 91.7 82.0 90.8 83.3

Table A3. The performance of the classifiers on Dataset CP40-M.

Dataset Accuracy
Precision Recall F-Measure

EO EC EO EC EO EC

Optimized Ensemble 96.8 94.9 98.1 97.3 96.4 96.1 97.2

Optimized SVM 96.0 92.8 98.2 97.3 95.1 94.9 96.6

Optimized ANN 95.9 93.0 98.1 97.2 95.1 95.1 96.6

Optimized K-NN 95.5 92.2 97.9 96.9 94.6 94.5 96.2

Random Forest 95.1 96.8 93.9 91.1 97.9 93.9 95.9

KStar 94.3 95.8 93.3 90.3 97.2 93.0 95.2

Bagged Trees 93.1 88.1 96.7 94.9 92.0 91.4 94.3

LMT 90.9 93.4 89.5 84.3 95.7 88.6 92.5

PART 89.6 90.3 89.2 84.1 93.6 87.1 91.3

JRip 87.5 86.9 87.9 82.3 91.2 84.5 89.5

J48 87.1 88.5 86.3 79.3 92.6 83.7 89.4

Logistic Regression 80.8 77.3 83.3 76.4 84.0 76.8 83.7

Table A4. The performance of the classifiers on Dataset SP40-M.

Dataset Accuracy
Precision Recall F-Measure

EO EC EO EC EO EC

Optimized SVM 97.5 97.6 97.4 96.4 98.3 96.9 97.8

Optimized ANN 97.5 95.2 99.2 98.9 96.7 97.0 97.9

Optimized K-NN 96.2 92.0 99.1 98.6 94.6 95.2 96.8

Optimized Ensemble 99.0 98.3 99.4 99.2 98.8 98.7 99.1

Random Forest 97.4 99.1 96.3 94.6 99.4 96.8 97.8

KStar 95.9 98.7 94.2 91.4 99.2 94.9 96.6

Bagged Trees 96.4 92.4 99.2 98.7 94.8 95.4 96.9

LMT 95.4 98.2 93.6 90.5 98.8 94.2 96.2

PART 93.5 94.9 92.5 89.1 96.6 91.9 94.5

J48 92.7 94.2 91.8 88.0 96.1 91.0 93.9

JRip 90.3 89.9 90.6 86.4 93.1 88.1 91.8

Logistic Regression 81.7 79.4 83.3 75.7 86.0 77.5 84.6
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Table A5. The performance of models on evaluation measures for “comprehensively” and “simply”
preprocessed datasets based on train/test split method: 40 subjects (various, randomly selected) for
train/ten subjects (various, randomly selected) for test. CP4/1: CPR40-TR and CPR10-TE; SP4/1:
SPR40-TR and SPR10-TE.

Models
Accuracy

Precision Recall F-Measure

EO EC EO EC EO EC

CP4/1 SP4/1 CP4/1 SP4/1 CP4/1 SP4/1 CP4/1 SP4/1 CP4/1 SP4/1 CP4/1 SP4/1 CP4/1 SP4/1

Optimized SVM 98.6 98.7 97.4 98.0 99.3 99.1 98.7 98.5 98.5 98.9 98.0 98.2 98.9 99.0

Optimized ANN 99.1 99.1 98.5 98.7 99.5 99.4 99.1 98.9 99.1 99.3 98.8 98.8 99.3 99.3

Optimized K-NN 98.9 99.5 97.4 99.1 99.8 99.6 99.6 99.3 98.5 99.5 98.5 99.2 99.1 99.5

Optimized
Ensemble 99.1 99.6 98.7 99.3 99.4 99.8 98.9 99.6 99.3 99.6 98.8 99.4 99.3 99.7

Random Forest 98.3 99.2 97.8 99.1 98.5 99.3 97.4 98.7 98.8 99.5 97.6 98.9 98.7 99.4

KStar 98.4 99.1 98.7 99.3 98.2 99.0 96.7 98.3 99.3 99.6 97.7 98.8 98.7 99.3

Bagged Trees 98.5 99.0 97.4 98.5 99.1 99.3 98.5 98.7 98.5 99.1 97.9 98.6 98.8 99.2

Table A6. The performance of models on evaluation measures (“Precision”, “Recall” and “F-
measure”) for “comprehensively” and “simply” preprocessed datasets based on train/test split
method: 40 subjects for train/10 subjects for test. CPH40/10: CP40-M and CP10; SPH40/10: SP40-M
and SP10.

Models

CPH40/10 SPH40/10

Accuracy
Precision Recall F-Measure Accuracy Precision Recall F-Measure

EO EC EO EC EO EC EO EC EO EC EO EC

Optimized SVM 64.9 67.6 63.3 51.0 77.6 58.1 69.7 52.9 77.6 38.9 41.8 75.5 54.3 51.3

Optimized ANN 60.8 78.3 50.9 47.4 80.6 59.1 62.4 59.9 76.5 50.6 46.6 79.2 57.9 61.7

Optimized K-NN 56 68.5 49.0 43.1 73.3 52.9 58.7 58.7 65.9 54.7 45.1 74.0 53.6 62.9

Random Forest 62.8 49.1 85.3 84.6 50.6 62.1 63.5 63.1 49.4 85.7 85.0 50.8 62.5 63.8

KStar 52.8 39.9 68.6 60.9 48.3 48.2 56.7 50.6 37.5 65.6 56.1 47.2 44.9 54.9

Bagged Trees 64.5 81.1 55.1 50.5 83.8 62.2 66.5 58.8 81.5 46.0 46.0 81.5 58.8 58.8

TCN 60.6 59.7 61.7 64.6 56.6 62.1 59.0 71.4 86.4 65.1 50.9 91.9 64.1 76.2

DNN 66.8 64.2 66.9 71.3 63.1 67.6 64.9 65.1 74.8 61.4 50.1 81.1 60.0 69.9
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