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Abstract: Measurement uncertainty is one of the widespread concepts applied in scientific works,
particularly to estimate the accuracy of measurement results and to evaluate the conformity of
products and processes. In this work, we propose a methodology to analyze the performance of mea-
surement systems existing in the design phases, based on a probabilistic approach, by applying the
Monte Carlo method (MCM). With this approach, it is feasible to identify the dominant contributing
factors of imprecision in the evaluated system. In the design phase, this information can be used to
identify where the most effective attention is required to improve the performance of equipment.
This methodology was applied over a simulated electrocardiogram (ECG), for which a measurement
uncertainty of the order of 3.54% of the measured value was estimated, with a confidence level of
95%. For this simulation, the ECG computational model was categorized into two modules: the
preamplifier and the final stage. The outcomes of the analysis show that the preamplifier module
had a greater influence on the measurement results over the final stage module, which indicates that
interventions in the first module would promote more significant performance improvements in the
system. Finally, it was identified that the main source of ECG measurement uncertainty is related to
the measurand, focused towards the objective of better characterization of the metrological behavior
of the measurements in the ECG.

Keywords: Measurement uncertainty; Monte Carlo method; ECG; Cardiac health

1. Introduction

The field of medicine has considerably evolved with the help of engineering and the
development of systems capable of monitoring patients and measuring their vital signs
so that decisions can be made by a specialist regarding the care of that patient. In this
context, the instruments used to measure and monitor a patient’s vital signs play a critical
role, which requires great reliability in their measurement results. Small variations or
ranges of uncertainties related to the measurement results of these instruments can lead to
catastrophic effects [1]. Thus, focusing on the bioengineering perspective, measurement
devices must be reliable and robust to manage such uncertainties [2].

With the current issues in the context of the analysis and development of measurement
systems, one of the ways to assess the quality of measurement results is through the evalu-
ation of the uncertainty related to the obtained results [3]. The analysis of measurement
uncertainty is a task that can be applied in research and development, with several domains
of knowledge acquired through theoretical, empirical, or hybrid studies [4].

Several recent works, such as [5–7], performed measurement uncertainty analyses to
validate measurement systems and/or methods. In these works, uncertainty was used
with the objective of evaluating the confidence level of the results or with the objective of
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comparing results obtained from different methods. In works such as [8,9], measurement
uncertainty was used as a basis for decision making and conformity assessment. It is
noteworthy that the work in [9] proposed a method for which the measurement uncertainty
analysis showed the need to improve the metrological performance of the method with a
target value for the measurement uncertainty, which is one of the recommendations in [4].

On the other hand, in many recent works such as [10,11], how the uncertainty analysis
was performed or even the uncertainty of the presented results was not indicated. These
works addressed various measurement methods in which, not necessarily, the measurement
system was the focus. However, much attention is drawn to the fact that many other recent
works, such as [12–14], proposed a new sensor or a new measurement system, none of
which showed how the measurement uncertainty was analyzed.

Approaching it in a more specific way, the state of the art of uncertainty analysis
of ECG measurement, which will be the object of study of this work, is highlighted in
works such as [15], which identifies the main sources of the uncertainty in the results
of ECG measurement and evaluates its influence on the QRS, SST, and QRST curves, as
well as on the interpretation of these results. The work by [16] evaluates the accuracy
of its results only by the repeatability and reproducibility of an algorithm implemented
to identify diseases from the digitized images of ECG curves such as the QRS, which
already bring with them the uncertainties identified in works such as that of [15]. It
can be stated that in these cases, repeatability and reproducibility characterize only the
uncertainty related to the process of scanning and classifying the ECG images, which must
be taken into account along with all other sources of uncertainty that are present during the
process of measurement and the generation of these images. In [17], the authors quantified
the sources of uncertainty, using statistical techniques based on Monte Carlo, to more
accurately classify cardiac arrhythmias with AI. It should be noted that in works where
the uncertainty was quantified, the classification method used data that already included
other uncertainties, inherited from the process of measuring the ECG signal. Several other
works such as [18–20] used uncertainty as a parameter to evaluate the performance of the
methods proposed in their respective works.

Measurement uncertainty is a parameter that makes it possible to confidently state
how good a measurement method or system is or how much better it is compared with
others. In works such as [21,22], the measurement uncertainty was experimentally analyzed,
after interfacing the sensors with the system. However, these analyses can be carried out
theoretically [3,4] and can be analyzed before designing or implementing a measurement
system. Measurement uncertainty analysis can be used to show how well the behavior of
a measurement system is known in the design phase and how much the performance of
this system can be improved. Few works were reported on using least-square analysis for
the measurement of observational uncertainties [23] and unequally spaced non-stationary
time series signals [24].

In this context, this work proposes a methodology that uses measurement uncertainty
as a parameter to evaluate performance and guide actions to improve projects and the de-
velopment of measurement systems. In this methodology, the Monte Carlo method (MCM)
is used, the essence of which is to perform numerical simulations from a large number of
repetitions and reach conclusions from the statistical analysis of the obtained responses.
The proposed methodology is based on the acquired knowledge, which has been developed
over time and published by the International Bureau of Weights and Measures (BIPM) in
their guides. Based on such standards, MCM strategies are widely used in the literature
for transmission line resistance computation [25], the assessment of truth uncertainties
based on error feeds [4], and the propagation of distribution uncertainty measurement [3]
applications. Furthermore, MCM was used for measuring compressive concrete strength
in [26], which facilitated the analysis of robustness and sensitivity factors. In [27], MCM
was used for invariance measurement for assessing the capabilities of conventional and
recent measurement strategies. Additionally, the authors in [28] used MCM simulation
for performing more realistic measurements in the modeling of additive manufacturing
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applications. It highlights the impact of the MCM approach for assessing the measurements
of the lattice structures manufactured through additive techniques.

This work differs from the previous ones precisely because it uses systematic nu-
merical simulations and uncertainty as a performance parameter during the analysis of
measurement system design. The articles cited in the characterization of the state-of-the-art
research on the evaluation of the uncertainties in the measurements performed with an
ECG, in general, used this parameter for the interpretation and/or classification of mea-
surement results and subsequent decision making related to the diagnosis of diseases. The
detailed description of the proposed methodology of this work is elaborated in Section 2.2,
which is then applied to evaluate the performance of electrocardiogram (ECG) signals.
Simply put, the contribution of this work is twofold:

• Contribute to filling a small gap in the state of the art of evaluating the uncertainty of
measurements performed with an ECG;

• Present a methodology capable of identifying opportunities for improvement in
measurement system projects, using measurement uncertainty as a parameter.

Very recently, in [16], the authors developed a conversion algorithm to transform
image-based ECGs into digital signals. Further, in [17], an uncertainty-aware deep-learning-
based predictive framework was developed for assessing the uncertainties of the model.
However, none of these studies focused on uncertainty measurement in ECG signals.

Earlier, more prominent works on ECG signals were performed by authors, particu-
larly to classify heart arrhythmia using deep learning [29], automated cardiac arrhythmia
detection [30], and arrhythmia classification [31]. Further, with the support of Internet of
Things (IoT) platforms, related works were reported on the classification optimization of
short ECG segments [32] and atrial fibrillation recognition and detection using Artificial
Intelligence of Things (AIoT).

2. Materials and Methods
2.1. Datasets

The ECG is an essential means of monitoring the cardiac activities of patients. Using
standardized electrodes, carefully placed at specific points on the patient’s body, it is possi-
ble to record the heart’s electrical signals. A standard ECG uses 3, 5, or 12 electrodes [33].
With more electrodes placed over the patient’s body, more information could be acquired
from the setup.

The ECG basically measures the electrical activities generated from the flow of blood
in the heart [34]. By monitoring the heart’s electrical signals, it is possible to assess the
conditions and health status of the patient. The response curves of the measured signals
shown in Figure 1 indicate the normal conditions of the patients, which are obtained after
the iterated processing of the signals captured from the electrodes.

In Figure 2, a sample is presented of the four classes of typical ECG signals, which
are postoperative telemetry data acquired from 418 patients who underwent various types
of cardiac surgery [35]. These data were used to train the classification algorithm, which
identifies cardiac problems based on the ECG waveform.
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Figure 1. A normal ECG waveform for one cardiac cycle representing positive and negative deflection
from baseline.

Figure 2. Typical ECG segments of the four different classes [35].

The noise/artifacts class, shown in Figure 2, represents those signals that cannot be
interpreted by a specialist due to noise or other associated factors, e.g., patient movements
or pacemaker activity [35]. There are certain crucial factors that must be taken into account
when designing and using an ECG, such as frequency distortion, saturation or clipping
distortion, ground loops, artifacts from large electrical transients, and interference from
other electrical devices [36]. These factors are important not only for biomedical engineers
but also for healthcare professionals who use this instrument in their decision making.

All sources of interference in the values indicated by an ECG generate uncertainties
that may affect the interpretation of these results and, consequently, the diagnosis of
diseases. Few recent works, such as [37–40], showed ways to ensure reliability when
analyzing the parameters acquired by considering the ECG signals, taking into account the
uncertainty of these values.

As ECG monitoring devices are widely used as a diagnostic tool, and there are several
manufacturers for this instrument, performance requirements have been established by
international standards over the years in order to guarantee the reliability of the values
indicated by these instruments. Table 1 provides a summary of the most recent performance
requirements established in the standard developed in [41].

In addition to the requirements shown in Table 1, the standard in [41] establishes
the requirements for evaluating the performance of such equipment, based on the overall
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system error and frequency response. Input signals should be limited in amplitude and
rate of slew to ±5 mV and 125 mV/s, respectively, and should be reproduced on the output
recording medium with a maximum instantaneous deviation of ±5% or ±40 microvolts
(µV), whichever is greater [41].

In addition to the standard [41], which establishes minimum safety and performance
requirements for ECG monitoring equipment, the International Organization of Legal
Metrology (OIML) has published the international recommendation [41], which establishes
requirements for the calibration and verification of the ECG monitoring system. These stan-
dards provide guidelines that can be used to identify and quantify sources of uncertainty
in the measurement of ECG signals.

Table 1. Requirement of ECG monitoring devices and their description [41].

Requirement Description Min/Max Units Value

Operating conditions:

Line voltage Range V RMS 104 to 1127
Frequency Range Hz 60± 1
Temperature Range ◦C 25± 10
Relative humidity Range % 50± 20
Atmospheric pressure Range kPa 70 to 106

Input Dynamic Range:

Range of linear operations of input signal Min mV ±5
Allowed variation of amplitude with dc offset Max % ±5

Gain control, accuracy, and stability:

Gain error Max % 5
Gain change rate/min Max %/min ±0.33
Total gain change/h Max % ±3

Time base selection and accuracy:

Time base error Max % ±5

Output display:

Error of rulings Max % ±2
Time marker error Max % ±2

Accuracy of input signal reproduction:

Overall error for signals Max % ±5
Error in lead weighting factors Max % 5
Hysteresis after 15 mm deflection from baseline Max mm 0.5

Standardizing voltage:

Amplitude error Max % ±5

System noise:

Multichannel crosstalk Max % 2

Baseline stability:

Baseline drift rate RTI Max µV/s 10
Total baseline drift RTI (2 min period) Max µV 500

2.2. Methods

The methodology proposed in this work involves the performance evaluation of a
measurement system and can be applied even in the design phase. The methodology
basically consists of a form of synthesis and analysis, taking into account the measurement
uncertainty of the system under development. The application of this methodology is
schematically presented in Figure 3.
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Figure 3. The sequence of stages involved in the synthesis and analysis phases of the proposed
methodology.

For the performance evaluation of a measurement system, with its pre-project or
initial project already elaborated, this measurement system must initially be divided into
modules and, with the information gathered in the project synthesis, the input quantities
and primary sources of measurement uncertainty must be identified.

It is necessary to know how these modules are interconnected, and how they behave
individually and together. With this knowledge, it is possible to determine a mathematical
model for the system, capable of characterizing the metrological behavior of the com-
plete system, as well as the behavior of each module individually. Guidelines for the
mathematical modeling of a measurement system can be found in [4].

As the analysis is performed using statistical tools, it is necessary to assign each of the
sources of uncertainty a probability density function (PDF) that characterizes its random
behavior [25].

The analysis phase highlighted in Figure 3 presents the iterative process where the
various ranges and other necessary parameters are assigned to the input quantities. Follow-
ing this process, the MCM is applied through the numerical simulation of the previously
defined mathematical model, and the outputs are analyzed in comparison with the desired
performance of the system.

In addition to this methodology, proposing the use of measurement uncertainty as a
parameter to evaluate the performance of a measurement system, the application of the
MCM also stands out for numerical simulations using a probabilistic approach, which can
be implemented in software for mathematical computation, as shown in Algorithm 1.
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Algorithm 1 MCM implementation.

X[x1, x2, x3, . . . , xn]; U[u1, u2, u3, . . . , un]

M← c1 //Initialize M (number of iterations)
A[n : M] // The array A is declared
A(1, 1 : M)← f (M, x1, u1, pd f ) //Assigns random number with proper PDF
A(2, 1 : M)← f (M, x2, u2, pd f )
A(3, 1 : M)← f (M, x3, u3, pd f )
...
A(n, 1 : M)← f (M, xn, un, pd f )
Y[n + 1 : M + 2] //The array Y is declared

Y(n + 1, 1 : M)← g(A) //Function g defines the mathematical model
Y(n + 1, M + 1)← average(Y(n + 1, 1 : M))
A(n + 1, M + 2)← standardDeviation(Y(n + 1, 1 : M))
B[n : M]← h(n, X) //The array B is declared with n lines constants

f or i = 1 to n

Z[1 : M]← B(i : M)
B(i : M)← A(i : M)
Y(i, 1 : M)← g(B)
Y(i, M + 1)← average(Y(i, 1 : M))
Y(i, M + 2)← standardDeviation(Y(i, 1 : M))
B(i : M)← Z

This algorithm requires coherent values as input variables for the quantities under
analysis and estimates the measurement uncertainties associated with each of the input
parameters. Its output is a data vector containing the values of the output quantity con-
sidering the influence of each measurement uncertainty source individually, as well as
considering the influence of all uncertainty sources acting concurrently.

The M parameter is the minimum number of simulations recommended for the
MCM application. This number depends on the desired confidence level p (or coverage
probability) for the application so the higher the desired confidence level, the greater the M
should be and, consequently, the greater the computational effort required for simulation.
M can be determined by Equation (1).

M =
1

(1− p)
· 104 (1)

The number of input variables is represented by n, and function f , in Algorithm 1, is
used to generate random numbers according to the PDF suitable for the behavior of the
measurement uncertainty associated with the input variable. The measurement uncertainty
expression guide [25] provides valid recommendations for PDF assignments.

The looping statement in Algorithm 1 is implemented to evaluate the influence on
the output, based on the uncertainty source acting individually. However, these looping
statements can be modified to assess the influence of a group of uncertainty sources, which
would characterize the behavior of a system module.

It is worth noting that the mathematical model implemented through numerical
simulation helps to gain awareness of the metrological behavior of the system as a whole,
as well as of each module individually. Through this analysis, the relative performance
of each module against the performance of the complete system could be evaluated. This
analysis is very convenient to identify which action will promote a significant improvement
in the performance of the system, as well as to evaluate the costs for such improvement.
Thus, an optimized design can be achieved by considering the best cost–benefit ratio.
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The methodology proposed in this work was applied to evaluate the performance
of ECG signal measurement. In Section 2.1, the formation of the knowledge/information
base is presented, which basically comprises the description of the measurement process
through the parameters and metrological requirements that are necessary to characterize
and delimit the system under development. The synthesis and analysis phases of the
proposed methodology are presented in Section 3.

3. Results

The application of the proposed methodology began with the collection of information
and the clear definition of the measurement system, with the identification of modules
and other fundamental parts for its proper functioning. In this application, the high input
impedance electrical circuit module is presented in Figure 4, which was divided into two
modules. The first half was the preamplifier phase, where the first stage of amplification
of the input signal occurred. In the second half of the module, the signal was filtered and
passed through the second amplification stage.

Figure 4. A simplified ECG system with preamplification and filter stages.

3.1. Formulation of the Model

The ECG monitoring system design, shown in Figure 4, was modeled using the Xcos
tool from Scilab version 6.1.1, a free open-source cross-platform numerical computational
tool. Considering the few idealizations for the circuit represented in Figure 4, we have
R1 = R3; R4 = R6; R5 = R7, and R9 = R10, for which the transfer function can be
formulated as shown in Equation (2), for the preamplifier, and in Equation (3), for the
final stage:

v1 =

(
1 +

2R1

R2

)
R5

R4
(vin+ − vin−) (2)

vout =

(
1 +

R11

R8

)
(v1) (3)

From Equations (4) and (5), we could estimate the cut-off frequencies of the first and
second modules, respectively, which are responsible for attenuating the effect of noise in
the input signal.

f1 =
1

2πC1R9
(4)

f2 =
1

2πC2R11
(5)

With these equations, it is possible to evaluate the behavior of each module, in isolation
and of the system as a whole. It is also possible to evaluate the contribution of each element
of this circuit to estimate the accuracy of the system. Moreover, it guarantees the possibility
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to identify exactly where to act, substituting an element or improving the performance of a
specific module and, consequently, of the measurement system under development.

3.2. PDF Assignment

For each of the uncertainty sources, which were considered to be significant in the
previous analysis, quantities were assigned, their average value was determined (µ), and
their range of variation was characterized by the standard deviation (σ) or between an
interval of (a, b). In addition to the quantities, the assigned PDFs characterized their random
behavior. Table 2 presents the quantities and the PDF of the uncertainty sources considered
for analysis in this article.

The parameters presented in Table 2 were categorized into three groups of factors,
with the aim of better organizing the knowledge about the metrological behavior of ECG
signals. The first group gathered the factors related to the measurement, that is, the
electrical signals, which were the factors not completely under the control of whoever
develops the measurement system. The second group brought together the factors related
to the measurement system, which were factors internal to the system that could be
analyzed to identify opportunities for improvement in the system. Finally, the third group
gathered the external factors, which were the factors related to the environment, where the
measurements were carried out. The factors related to the environment were not the focus
of the application but must be treated with due attention.

Table 2. The input quantities and their PDFs assigned on the basis of available information.

Quantity PDF
Parameters

µ σ a b Unit

Measurand:

vin+ N(µ, σ) 0.30 0.04 mV
vin− N(µ, σ) 0.00 0.04 mV

Baseline N(µ, σ) 3.00 0.01 mV

Measuring system:

R1 R(a, b) 22.00 21.78 22.22 kΩ
R2 R(a, b) 10.00 9.90 10.10 kΩ
R4 R(a, b) 10.00 9.90 10.10 kΩ
R5 R(a, b) 47.00 46.53 47.47 kΩ
R8 R(a, b) 5.00 4.95 5.05 kΩ
R9 R(a, b) 3.30 2.27 3.33 MΩ
R11 R(a, b) 150.00 148.50 151.50 kΩ
C1 U(a, b) 1.00 0.99 1.01 µF
C2 U(a, b) 10.00 9.90 10.10 nF

Environment:

Noise N(µ, σ) 0.00 0.01 mV

In this work, all external interference was considered for analysis in the form of noise
inputs pertaining to the measurement signal. The analysis was carried out through the
Cardiovascular Wave Analysis module of the Scilab software. This module provides ECG
data files (open-access databases) that were used in the simulations performed in this work.
In Figure 5, the signal generated by this tool is depicted, from which the parameters related
to the baseline and noise of the signal were obtained.
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Figure 5. Detrended signal (Sd) and filtered signal (Sf).

In the proposed methodology, the MCM was used to analyze the sources of uncertainty,
for which inferences were estimated through numerical iterations. Moreover, the method is
also recommended for situations in which the linearization of the mathematical model of
measurement provides an inadequate representation, or the PDF of the output quantity
significantly deviates from a Gaussian distribution or a t-distribution [25].

The essence of MCM is to perform numerical simulations from a large number of
repetitions and to obtain conclusions about the phenomenon under study from the statistical
analysis of the responses obtained. The MCM in this work was carried out with Algorithm 1,
following the prescribed measurement guidelines [25].

For the implementation of the MCM, normal, rectangular, and U-shaped PDFs were
often used to achieve the desired characteristics of the system under test. The PDFs
used to generate the sample values were implemented in the Scilab software tool. For
this implementation, M = 2× 105 samples were used in order to obtain results, with a
confidence level of 95%.

As an initial response, output data were obtained with a normal probability distribu-
tion, providing a mean of 2596 mV, and a standard deviation of 57 mV, as shown in Figure 6.
The measurement uncertainty, calculated for a coverage probability of 95%, was ±112 mV,
which corresponded to 4.32% of the mean value.

Figure 6. PDF for Vout obtained using the MCM for the approximate model (3) using the information
summarized in Table 2.

The previous results refer to the simulation in which all uncertainty sources acted
simultaneously. However, this simulation strategy can also be applied by varying only one
or a set of uncertainty sources at a time, to assess their level of influence on the results.
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Figure 7 shows the PDFs obtained with the application of the MCM for the two
modules of the measurement system under study, and they were analyzed separately. It is
noteworthy that the probability function of the first module followed a normal curve, and
the second module formed a triangular curve. This fact highlights the importance of using
MCM in this methodology since traditional analytical methods, as observed in [3], assume
that the outputs are characterized by a normal probability distribution curve.

Figure 7. PDF for preamplifier and final stage.

The use of MCM guarantees greater assurance in the results obtained with the applica-
tion of the methodology proposed in this work, since this method allows the propagation
of uncertainty in modules, in addition to the propagation of the PDFs [25].

In Table 3, the results of the simulation of the sources of uncertainty considered
significant in this work are tabulated based on the analysis performed individually as well
as in blocks.

Table 3. Individual or block simulation of uncertainty sources.

Source of Uncertainty
Vout (mV)

U95 (%)
µ σ U95

Measurand:

vin 2596 44 87 3.36
Baseline 2596 8 15 0.59

Measuring system:

Preamplifier 2596 27 54 2.07
Final stage 2596 20 39 1.55

Environment:

Noise 2596 8 15 0.59

In the initial analysis, the use of precision resistors of 1% was considered in the
electrical circuit of the setup (Table 2). By considering the use of high-precision resistors
of 0.1% of the nominal value only in the preamplifier module, an output with a mean of
2596 mV, a standard deviation of 50 mV, and an uncertainty of 99 mV was obtained, which
corresponded to 3.80% of the average value. It is evident from this observation that, in
terms of the average value, the contribution of the preamplifier module dropped from
2.07% to 0.21%.

Considering the use of resistors with an accuracy of 0.1% in the entire experimental
setup shown in Figure 4, an uncertainty of 90 mV was achieved, which corresponded to
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3.47% of the average value. This indicated a 0.85% improvement in the accuracy of the
ECG signal under analysis. In Table 4, the simulation results are presented considering the
implementation, with the suggested improvement actions.

Table 4. Individual or block simulation of uncertainty sources after design improvements.

Source of Uncertainty
Vout (mV)

U95 (%)
µ σ U95

Measurand:

vin 2596 45 87 3.36
Baseline 2596 8 15 0.59

Measuring system:

Preamplifier 2596 3 5 0.21
Final stage 2596 2 4 0.15

Environment:

Noise 2596 8 15 0.59

A comparison of the quantitative results of Table 4 with the results presented in Table 3
highlights the potential of the methodology proposed in this work to identify and direct
improvement actions in measurement system projects, which, in turn, can be analyzed
through computer simulations before their respective implementations.

3.3. Validation and Comparisons with the Literature

In terms of evaluating measurement uncertainty, the most widespread method in the
literature is the analytical method published in ISO-GUM, cited in works such as [3,4,25].
In these studies, basically, a combined standard uncertainty is calculated at approximately
68% confidence level, using the expression:

u(Y) =

√(
∂y

∂X1
u(X1)

)2
+

(
∂y

∂X2
u(X2)

)2
+ . . . +

(
∂y

∂Xn
u(Xn)

)2
(6)

where u(Y) is the combined standard uncertainty of the output quantity, and u(Xi) is the
standard uncertainty assigned to the i-th input quantity being combined. To calculate the
expanded uncertainty for a confidence level of 95%, Equation (7) is used:

U95 = k · u(Y) (7)

where k = 1.96 for a confidence level of 95%, considering the effective degrees of freedom
tending to infinity.

Applying this method to the problem in question and taking the data from Table 2
as inputs, an uncertainty of ±161 mV was found, which corresponded to 6.21% of the
measured value. It is noteworthy that, for the same parameters and input values, the value
found with the methodology proposed in this work was 4.32% of the measured value.

Comparing the result obtained by applying the methodology presented in this work
with the result of applying the methodology used in the literature on the evaluation of
measurement uncertainty, it is highlighted that the methodology proposed in this work
presented more precise results.

4. Discussion

As shown in Table 3, baseline variations and noise interference had a negligible
influence on the obtained results. From these results, it is evident that the most significant
uncertainty was associated with variations in the input signal.
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There are several causes for input signal variations as the most significant source of
uncertainty, such as the placement of sensors on the patient’s body, patient movements dur-
ing measurements, electromagnetic interference from other equipment, and other sources
of uncertainty that are not under the control of who designs the measurement system.

It is noteworthy that the second most significant source of uncertainty was associated
with the preamplifier module. From the estimated observations on the uncertainty infor-
mation, the designer can assess how much the measurement system uncertainty can be
reduced by acting on a specific module in the system.

As previously stated in the aforementioned discussion, the source with the greatest
contribution of uncertainty was related to the input signal, which in turn was related to the
measurand. However, it is noteworthy that the identified improvement actions promoted
significant reductions in the contributions of the analyzed modules. To promote further
improvements, it would be recommended to act smartly on system parameters to improve
the stability of the baseline or reduce the effect of noise on the measured signal.

In Figure 8, the power spectrum of the noisy signal is plotted centered at the zero
frequency before and after noise removal. The power amplitude is represented as the
squared magnitude of a signal’s Fourier transform, normalized by the number of frequency
samples. If the input signal noise, as well as the signal itself, is of low frequency (below
50 Hz before the filter), it would be challenging to remove the noise without significantly
affecting the signal of interest. With the chosen filter applied in this work, it was possible
to remove noise with a frequency above 30 Hz, as can be observed in Figure 8.

Figure 8. ECG signals power as a function of frequency before and after noise removal.

In the spectrogram of the filtered signal, shown in Figure 9, which covers the time
interval of 1 to 2 s, it is possible to notice that the remaining noise and a good part of
the signal of interest were of low power and practically constant over the measurement
period. The analysis of Figures 8 and 9 reveals that particular attention must be paid when
applying filters so that the significant data of the ECG signal of interest are not lost.
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Figure 9. Time–frequency spectrogram after noise removal.

In order to improve the performance of the ECG acting on the source of uncertainty
related to the input signal, in addition to the use of signal-processing techniques and noise
filtering, it is necessary to carry out investigations taking into account the measurement
procedure and the functioning mode of the used sensor. In future works, procedures that
can measure the electrical activity of the heart, or even other signals, can be investigated so
that the results are not so influenced by the positioning of the sensors and the movement of
the patients. Likewise, future investigations can be carried out with the aim of identifying
sensors that are not as susceptible to noise from the environment.

As regards the limitations of the methodology proposed in this work, it should be
noted that it was tested with problems in the time domain; therefore, for applications in the
frequency domain, adjustments in the proposed algorithm are necessary. It should also be
noted that the successful implementation of this methodology is strongly limited by the
ability of the mathematical model to describe the metrological behavior of the elements
and/or modules that constitute the measurement system under analysis.

5. Conclusions

The methodology presented in this work demonstrates the probabilistic uncertainty
from the measurement system, with the measurements and analysis performed on an ECG
monitoring system. The methodology uses a probabilistic approach for the evaluation of
measurement uncertainty, through the application of the MCM, to evaluate the performance
of signals measured from an ECG monitoring system. With the performed analysis, it
was possible to reach the desired situation, for which the ECG measurement uncertainty
would be 3.47% in relation to the measurement result, subjected to a confidence level of
95%. With this analysis, it was also possible to identify strategic points where actions can
be taken to further improve the accuracy of the measurement system, such as actions to
improve baseline stability or actions to reduce the effect of noise. It is noteworthy that
the application of this methodology revealed that the sources of uncertainty related to the
input signal, directly related to the measurand, was 3.36% of the measured value, which
was almost the measurement uncertainty of the ECG itself. Thus, studies can be carried
out with the objective of better investigating the behavior of the measurement system and,
consequently, improving the measurement process, as well as increasing the reliability of
the results. It is concluded that a more detailed and reliable understanding of the behavior
of a measurement system, as well as the individual behavior of an element or a module of
that system, makes it possible to act more efficiently to improve the method’s performance.
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