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Abstract: The corneal epithelium is composed of nonkeratinized stratified squamous cells and has
a significant turnover rate. Limbal integrity is vital to maintain the clarity and avascularity of the
cornea as well as regeneration of the corneal epithelium. Limbal epithelial stem cells (LESCs) are
located in the basal epithelial layer of the limbus and preserve this homeostasis. Proper functioning
of LESCs is dependent on a specific microenvironment, known as the limbal stem cell niche (LSCN).
This structure is made up of various cells, an extracellular matrix (ECM), and signaling molecules.
Different etiologies may damage the LSCN, leading to limbal stem cell deficiency (LSCD), which is
characterized by conjunctivalization of the cornea. In this review, we first summarize the basics of
the LSCN and then focus on current and emerging bioengineering strategies for LSCN restoration to
combat LSCD.

Keywords: limbal stem cells; limbal stem cell deficiency; LSCD; limbal stem cell niche; limbal niche;
bioengineering; niche restoration

1. Introduction

The cornea is the transparent structure of the anterior eye and has several critical roles,
including separating the inner parts of the eye from the outer environment and properly
transmitting light to be focused on the retina. The most superficial layer of the cornea is
the epithelium, which is composed of nonkeratinized stratified squamous cells and has a
significant turnover rate. The junction between the cornea and the adjacent conjunctiva
is an annular transition zone referred to as the limbus [1]. Limbal integrity is vital to
maintain the clarity and avascularity of the cornea as well as regeneration of the corneal
epithelium. Limbal epithelial stem cells (LESCs) are located in the basal epithelial layer of
the limbus and preserve this homeostasis. LESCs show multiple markers, such as K5, K14,
K15, Vimentin, Notch-1, TXNIP, ABCB5, and ABCG2, which can help to isolate and identify
them [2]. Proper functioning of LESCs is dependent on a specific microenvironment, known
as the limbal stem cell niche (LSCN), which demonstrates specific physical, autocrine, and
paracrine functions. This structure is made up of various cells, an extracellular matrix
(ECM), and signaling molecules. Different etiologies may damage the LSCN, leading to
limbal stem cell deficiency (LSCD), which is characterized by conjunctivalization of the
cornea [3,4]. A proper understanding of limbal ultrastructure, the limbal microenvironment,
and functions of LESCs is fundamental to generating LSCN restoration strategies [5]. In this
review, we first summarize the basics of the LSCN and then focus on current and emerging
bioengineering strategies for LSCN restoration to combat LSCD.

2. Limbal Niche (LN)
2.1. Stem Cell Niche

Generally, stem cells require particular anatomical sites for preservation and proper
functioning [1]. These microenvironments are termed the stem cell niche and contain
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several components in addition to stem cells, such as supportive cells, several signaling
factors, neurovascular inputs, and an ECM. This niche plays a critical role in the terminal
differentiation of stem cells into intended tissue cells [2]. While a significant number of
cells have the potential to act as stem cells, only a small fraction of them accomplish this
task [3].

The niche is critical to limbal stem cell functioning. In one study, total removal of
the limbal epithelium with a spared niche was compared to simultaneous injury of the
limbal epithelium and niche. In the first group, the epithelium recovered, while the latter
group demonstrated corneal neovascularization without healing [4]. Pure injury to the
niche without involvement of LESCs may arrest wound healing upon subsequent injury to
the limbus [5].

2.2. LN Microstructure and Components

The LSCN is located in the limbal crypts formed from fibrovascular ridges, called the
palisades of Vogt [6] (Figure 1). These structures have a length of 0.31 mm and a width of
0.04 mm and are typically more detectable on the superior and inferior sections of the cornea
compared to the nasal and temporal regions [7]. Limbal epithelial crypts and focal stromal
projections are the other compartments of this area, which promote signal integration
from different factors of the niche [6,8]. Limbal epithelial crypts are projections from the
undersurface of the limbal epithelium into the stroma. These structures could be parallel
or perpendicular to the palisades of Vogt. Focal stromal projections are finger-shaped
projections of the stroma containing a central blood vessel, which extend upward into the
limbal epithelium [6,8]. Notably, these structures are specific to pigs and humans but no
other mammals [9,10]. Multiple cell types, such as nerve cells, vascular cells, immune
cells, mesenchymal cells, and melanocytes, are detected in the stroma of the limbus [11].
Melanocytes produce melanin to protect LESCs against UV radiation and scavenge reactive
oxygen species (ROS) [12]. Melanocytes and LESCs directly contact each other, which
may suggest a supporting role for melanocytes in maintaining the function of the LN
and LESCs [13]. Mesenchymal stem cells (MSCs), particularly CD90- and CD105-positive
cells, seem to have close interactions with LESCs [14]. In confocal microscopy, these cells
were detected adjacent to LESCs, which can be interpreted as evidence for this claim [15].
Additionally, several molecular signaling pathways were identified in this regard, as well
as paracrine secretions and intercellular contact [14]. Cells at the base of the corneal limbus
are positive for p63, Integrin β1 (CD29), and p75NTR (CD271) [16].

2.2.1. ECM of LN

The limbal epithelium basement membrane is composed of type IV collagen, α2 and
β2-laminin, vitronectin, fibronectin, Integrin β1 (CD29), and tenascin C, which makes the
structure of the limbal ECM completely distinct from that of the corneal stroma [17–19].
Overall, ECM components have various important interactions with niche cells. Hyaluro-
nan (HA) is glycosaminoglycan, which makes up another component of the ECM and is
produced by hyaluronan synthases (HASs), which have three types: HAS1, HAS2, and
HAS3. Notably, all three types of HAS are expressed in the limbal area, and any defects in
the expression of each enzyme can decrease the number of epithelial layers and speed of
wound repair, as well as changes in the morphology of basal cells [20]. HA may have some
role in the maintenance of the stem cell population, as one study showed that defective
HAS2 leads to abnormalities in the compartment of LESCs [21]. Hence, HA not only acts as
a bed to secure cells but also influences cellular behavior, making it an appropriate scaffold
for use in cell or tissue transplantation [22].
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Figure 1. Normal ocular surface and limbus. (A) The corneoscleral limbus contains the palisades of 
Vogt (PVs), which have a length of 0.31 mm and a width of 0.04 mm and are typically more detect-
able on the superior and inferior sections of cornea. (B) Corneoscleral junction with magnification 
showing PVs. (C) The PVs contain different cells, such as melanocytes, mesenchymal stem cells, and 
immune cells. These cells, along with neurovasculature, provide growth factors, nutrients, and 
structural support to promote proper LESC proliferation and differentiation (LESC: limbal epithelial 
stem cell, TAC: transient amplifying cell, MSC: mesenchymal stem cell). Modified with permission 
from [14]. 
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Figure 1. Normal ocular surface and limbus. (A) The corneoscleral limbus contains the palisades of
Vogt (PVs), which have a length of 0.31 mm and a width of 0.04 mm and are typically more detectable
on the superior and inferior sections of cornea. (B) Corneoscleral junction with magnification showing
PVs. (C) The PVs contain different cells, such as melanocytes, mesenchymal stem cells, and immune
cells. These cells, along with neurovasculature, provide growth factors, nutrients, and structural
support to promote proper LESC proliferation and differentiation (LESC: limbal epithelial stem cell,
TAC: transient amplifying cell, MSC: mesenchymal stem cell). Modified with permission from [14].

2.2.2. Genes and Proteins Implicated in LN Regulation

Several types of interactions have been described to regulate the activity and pheno-
type of LESCs, including direct cell–cell contact, paracrine signaling, autocrine signaling,
and soluble factors [23]. Among these soluble factors, the Wnt signaling pathway is one of
the key drivers of differentiation, proliferation, and quiescence of LESCs [24]. It has been
shown that exposure of LESCs to high amounts of the Wnt6 ligand can lead to increased
proliferation and lower expression of terminal differentiation markers of mature corneal
epithelial cells [25]. Aside from the role of Wnt6 expression in the promotion of LESC self-
renewal, it seems that the phenotype of LESCs is dependent on the Wnt7a–PAX6 axis [25,26].
Frizzled receptors are key components of Wnt signaling, and the Frizzled 7 (Fz7) receptor
is the dominant type in the limbal area [27]. It has been reported that Fz7 receptor knock-
down can lead to decreased marker expression and stemness of LESCs [27]. Therefore,
manipulation of these signaling pathways could be of interest for clinical applications.

One of the other signaling pathways involved in LESC stemness is Jagged 1 (Jag1)-
Notch signaling [28]. It has been reported that activation of this pathway can result in
differentiation towards maturity of corneal epithelial cells and decreased LESC stemness.
Therefore, therapies that inhibit Jag1-Notch signaling to enhance LESC stemness can be
investigated in future studies.
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The gene expression profile of inactive LESCs is completely different from that of ma-
ture corneal epithelial cells. Single-cell RNA sequencing (scRNA-seq) can help researchers
to identify different genes involved in the differentiation and function of LESCs [29,30]. For
example, Li and colleagues introduced TSPAN7 and SOX17 as critical factors in maintaining
corneal epithelium homeostasis [31]. Additionally, SOX9 expression seems to have some
role in the regulation of LESC activation or quiescence [32]. Furthermore, RUNX1, SMAD3,
ATF3, ABCB5, H2AX, PBK, and Plk3 are among the other proteins and signaling pathways
implicated in the modulation of the function and proliferation of LESCs [26,30,33]. These
findings may justify future application of these proteins as potential markers to screen the
success rate and outcomes of cultivated LESC transplantation [29]. Overall, these molecules
show promising therapeutic applications for the near future, including increasing the trans-
plantation success rate through effects on the self-renewal capacity and stemness of LESCs,
introducing new drugs modulating the aforementioned pathways to medically manage
partial-LSCD cases, and reprogramming corneal epithelial cells to transdifferentiate into an
LESC-like phenotype, a dramatic shortcut to curing bilateral cases of LSCD [29].

3. LESCs’ Functions
3.1. Epithelial Maintenance

The turnover rate of the corneal epithelium is significantly high. Regeneration of the
corneal epithelium occurs approximately every 2 weeks based on the XYZ hypothesis.
In this theory, X stands for superficial movement of cells from the basal epithelium, Y is
representative of centripetal migration of basal cells from the limbus, and Z represents
damaged or desquamated lost cells [34]. The hypothesis claims that X + Y = Z, or, in
other words, the loss of corneal cells is replenished by basal epithelial and limbal cells.
Progenitor cells required for repopulation of the corneal epithelium are produced through
division of LESCs located in the limbal basal layer. These progenitor cells, also known as
transient amplifying cells (TACs), move centripetally and then superficially for terminal
differentiation. In general, LESCs have a highly controlled division pattern: one daughter
cell remains in the niche to maintain the LESC population while the other one differentiates
into a TAC [35].

3.2. Epithelial Wound Healing

Several studies have reported the response and proliferation of limbal basal epithelial
cells following large wounds [36,37]. However, small wounds can be resolved through
enlargement of cell clusters of the central cornea [38]. It seems that limbal response starts
with a latency period since movement and repopulation of the basal epithelium occurs
about 8 h after wounding [23]. In addition to this key role of the limbus (e.g., proliferation
of progenitor cells), it may induct a population pressure gradient to lead the migration of
wound-edge basal epithelial cells into the wound bed [39].

4. LSCD

Various conditions have been implicated in causing LSCD due to severe damage to
the LESCs or LN, among them ocular cicatricial pemphigoid (OCP), Stevens-Johnson syn-
drome (SJS), thermal or chemical burns, contact lenses, numerous ocular surgeries, local or
systemic usage of 5-FU and MMC, and congenital aniridia [29,40]. LSCD is characterized by
corneal opacity, neovascularization, and invasion of adjacent conjunctiva. LSCD interferes
with corneal wound healing, resulting in subsequent complications such as persistent
epithelial defect (PED), corneal ulcers, and even perforation [41]. Diagnosis of this entity is
mainly clinical and based on slit-lamp examination findings. However, the gold-standard
diagnostic method is impression cytology, which shows goblet or conjunctival cell markers
in the corneal area. MUC5AC is used as a marker for goblet cells, and cytokeratin 7 and
13 identify conjunctival cells. Confocal microscopy and optical coherence tomography
modalities are other useful diagnostic tools [42–44]. Details on this subject are outside of
the scope of this review but are discussed in our previous review article [40].
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From a microscopic point of view, inflammation is an inseparable part of LSCD, with
alteration of several signaling cascades in both the cornea and limbus [45]. It has been
reported that levels of pro-inflammatory cytokines (e.g., IL-1 and IL-6) and angiogenic
molecules (e.g., vascular endothelial growth factor (VEGF)) are increased in the ocular
surface of eyes with conjunctivalization [45]. Prolonged inflammatory conditions can
result in unfavorable consequences, including angiogenesis, decreased expression of LESC
markers, reduced colony-forming efficiency, and an altered ECM [14].

5. Limbal Stem Cell Transplantation

Several types of limbal transplantation are available based on the source (autologous
or allogeneic) and preparation of the harvested tissue (direct or cultivated), including direct
autologous transplantation, direct allogeneic transplantation, cultivated autologous trans-
plantation, and cultivated allogeneic transplantation (Figure 2). A meta-analysis on the
results of 40 studies was performed in 2020 to assess the outcomes of these 4 methods [46].
The results of this study agree with the superiority of autologous approaches in stabilizing
the ocular surface; direct autologous transplantation and cultivated autologous transplan-
tation had the highest success rates at 85.7% and 84.7%, respectively. The success rate of
allogeneic methods was considerably lower: 57.8% for direct allogeneic transplantation
and 63.2% for cultivated allogeneic methods. Direct autologous limbal transplantation was
superior with regard to visual improvement [46]. Although allogeneic transplantation is
one of the most successful approaches in the treatment of LSCD, one of the disadvantages
of this method is the requirement of a long-term immunosuppressive regimen [47]. Hence,
autologous methods are preferable. However, autologous approaches are not applicable in
cases with bilateral LSCD [48]. To overcome this limitation, autologous cultivation methods
were introduced.
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Figure 2. Different methods of limbal stem cell transplantation (CLAU: conjunctival limbal autograft,
CLET: cultivated limbal epithelial transplantation, SLET: simple limbal epithelial transplantation,
KLAL: kerato-limbal allograft, Ir-CLAL: living-related conjunctival limbal allograft, COMET: culti-
vated oral mucosal epithelial transplantation, CjET: conjunctival epithelial transplantation, MSCs:
mesenchymal stem cells, iPSCs: induced pluripotent stem cells, hIDPSC: human immature dental
pulp stem cells, hESCs: human embryonic stem cells). Currently, only animal studies are available for
methods written in italic format in the non-limbal epithelial cells box.

5.1. Tissue Transplantation

LESC transplantation is required in severe cases of LSCD to replace the lost population
of stem cells. The severity and extent of involvement are critical factors in choosing the
appropriate approach and strategy. In unilateral cases with total involvement, the available
options are conjunctival limbal autograft (CLAU) from the fellow eye and simple limbal
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epithelial transplantation (SLET) [14]. CLAU was introduced in the 1980s [49]. In this
technique, two grafts of two clock hours each from the limbus and the adjacent rim of
conjunctiva of the patient’s healthy fellow eye, are harvested and transplanted to the
diseased eye. A success rate of 75% has been reported for CLAU [50]. SLET is a newer
approach that was developed to minimize the risk of iatrogenic LSCD in the fellow healthy
eye. In this method, only 1 small 2 × 2 mm (1-clock-hour) specimen from the patient’s
normal eye is harvested and divided into smaller segments followed by transplantation to
the diseased eye using an amniotic membrane and fibrin glue [51]. A success rate of 76%
has been reported for autologous SLET in chemical injuries by Basu and colleagues [52]. In
bilateral total LSCD, kerato-limbal allograft (KLAL) and living-related conjunctival limbal
allograft (lr-CLAL) are available [53–58]. Overall, traditional approaches are based on
harvesting a sample of functioning limbal tissue from a healthy eye [49]. More recently,
approaches have utilized transplantation of cultivated and expanded LESCs (Table 1) [59].

Table 1. Advantages, disadvantages, and complications of limbal stem cell transplantation techniques
(CLAU: conjunctival limbal autograft, CLET: cultivated limbal epithelial transplantation, SLET: simple
limbal epithelial transplantation, KLAL: kerato-limbal allograft, Ir-CLAL: living-related conjunctival
limbal allograft, COMET: cultivated oral mucosal epithelial transplantation, PED: persistent epithelial
defect, LSCD: limbal stem cell deficiency).

Technique Reference Advantages Disadvantages Complications

CLAU [60–62]

-Acceptable outcomes
-Application of

conjunctival patch in
ocular surface
reconstruction

Risk of iatrogenic
LSCD

-Delayed epithelial healing
-PED

-Corneal perforation
-Progressive conjunctival ingrowth

CLET [63–65]
-Acceptable outcomes
-Requirement of small

donor tissue

-Expense
-Technical
difficulties

-Risk of prion
disease

transmission via
animal product
usage during

culture

-Postoperative hemorrhage under
the graft

-Infection
-PED

-Corneal perforation

SLET [51,66]
-Acceptable outcomes
-Requirement of small

donor tissue

-Risk of donor
tissue loss

-Focal recurrence of LSCD
-Progressive conjunctivalization

and symblepharon
-Keratitis

-PED

COMET [67,68] Applicable in bilateral
cases

-Peripheral corneal
neovascularization
-Suboptimal visual

outcomes

-PED
-Corneal perforation

-Glaucoma
-Infection

Limbal
allografts

lr-CLAL [54,63]

-Applicable in bilateral
cases

-Utilizes a large
conjunctival patch,

which can be used in
ocular surface
reconstruction

-Requirement of
immunosuppres-

sion regimen
-Delayed

epithelialization
-Limited long-term

success

-Rejection
-Glaucoma

-PED
-Corneal melting and perforation

-Graft-related issues
-Infection

-Posterior segment complications
such as retinal detachment, vitreous
hemorrhage, and cystoid macular

edema
KLAL [63,69,70]

-Applicable in bilateral
cases

-Providing a larger
number of LESCs

compared to lr-CLAL
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5.2. LESC Culture and Expansion

In cases with unilateral involvement, autologous transplantation possesses the highest
rate of success with a low risk of complications. However, the chance of developing iatro-
genic LSCD in the healthy fellow eye is a concern [71]. This complication was frequently
detected in rabbit models of autologous transplantation in which a 240◦ arc of limbal tissue
was harvested [72,73]. On the other hand, harvesting tissues at a less than 90◦ arc was
associated with transplantation failure [74,75]. So, it seems an intermediate size of tissue
should be harvested to balance the risk of these two unfavorable outcomes.

To decrease the mentioned risk of iatrogenic damage, tissue-sparing methods were
introduced. Over two decades ago, Pellegrini et al. [59] reported the first application of
cultivated autologous transplantation, called cultivated limbal epithelial transplantation
(CLET). In this technique, a tiny 2 × 2 mm section of limbal tissue is taken from the healthy
eye, followed by ex vivo expansion of LESCs [76]. An amniotic membrane or a suspension
is used as a scaffold to expand the harvested stem cells, which lasts 14–21 days [77,78]. A
success rate of about 76% has been reported for CLET in chemical-burn-induced LSCD
by Rama and colleagues [65]. Notably, it has been shown that the success rate of methods
using cultivated stem cells is associated with the percentage of p63+ cells in cultures;
Rama et al. reported a success rate of 78% for transplantations containing >3% p63+ cells.
Meanwhile, this rate significantly decreases to 11% for transplantation of cultures with <3%
p63+ cells [65]. Some studies reported graft survival might decrease over time, which could
be related to the absence of a healthy niche [79,80]. In this regard, confocal microscopy has
revealed that CLET is not capable of restoring the limbal niche [81]. It should be mentioned
that CLET can be performed with autologous or allogeneic grafts. Allogeneic grafts are
especially useful for bilateral cases of LSCD. A meta-analysis showed that the graft survival
rate and visual improvement were equal for both autologous and allogeneic sources.
However, autologous grafts are preferred as they do not require immunosuppression after
surgery [82].

A technique offering the benefits of autologous transplantation (e.g., lack of immuno-
suppression and risk of disease transmission) in bilateral cases of LSCD without a suitable
source of LESCs would be a valuable therapeutic tool. Hence, researchers began to use
other stem cell lines to transdifferentiate into limbal stem cells, fulfilling this goal and
need [29]. Historically, the first attempt in this line, in which the oral mucosa epithelium
was cultivated and transplanted, was about two decades ago [48]. A brief review of the
available non-limbal sources and relevant studies are provided below.

Oral mucosa epithelium: In 2004, the first usage of the oral mucosa epithelium in LSCD
was reported [48]. In this study, six patients were enrolled, three of which were suffering
from SJS and three of which had eyes with chemical burn. After 2–3 weeks of culture time,
the prepared oral mucosa epithelium was implanted on an amniotic membrane scaffold
with a supportive layer of fibroblasts and transplanted onto the diseased eyes. A success
rate of about 70% has been reported for cultivated oral mucosal epithelial transplantation
(COMET). Mild peripheral corneal neovascularization is the disadvantage of this technique.
Moreover, the phenotype of oral epithelium remains unchanged after transplantation,
leading to suboptimal visual outcomes due to this type being of a thicker and more opaque
nature than the corneal epithelium [83,84].

Conjunctival epithelial cells: Similar to the previous method, conjunctival epithelial
cells (CjECs) were used as another autologous source. After 18.5 months of follow-up,
conjunctival epithelial transplantation (CjET) showed a 86% success rate in resolving
conjunctivalization and corneal opacity [85]. Recovery of the corneal epithelium was
approved using confocal microscopy, during which five to six layers of corneal epithelial
cells with normal morphology were detected [85]. Overall, data on long-term survival with
COMET and CjET grafts are limited.

Hair follicle epithelial stem cells: Follicular epithelial stem cells were reported to be
positive for CD29 and CD271 [86]. Transdifferentiating of hair follicle epithelial stem cells
to the corneal epithelium was studied in a murine model of LSCD [87]. After isolation
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and expansion, hair follicle epithelial stem cells were transferred to a medium similar to
the limbal niche. Finally, these cells showed markers of corneal-epithelium-like cells, and
an 80% success rate of transdifferentiation was observed. Further studies are required to
generalize these results to human subjects.

Pluripotent stem cells: These cells are capable of forming a self-formed ectodermal
autonomous multi-zone (SEAM), which contains cells of ectodermal lineage that mimic
anterior and posterior eye development in vivo [88]. Hongisto et al. studied transdif-
ferentiation of human pluripotent stem cells (PSCs) into human limbal stem cells and
achieved over 65% LESCs in 24 days [89]. Additionally, they introduced a protocol to bank
human-pluripotent-stem-cell-derived LESCs, which can facilitate further progress in these
methods and similar research. Further research is required before implementation of this
method in large-scale clinical trials. Recently, a team of scientists from Osaka University
reported the results of the first ever trial on iPSC-based corneal transplantation [90]. They
performed this trial successfully on four patients without any rejection or tumorigenicity.

Dental pulp: In a rabbit model of LSCD due to chemical injury, grafts containing
human immature dental pulp stem cells (hIDPSCs) were transplanted into the limbal
niche [91,92]. After 3 months, LESCs markers were detected on hIDPSCs, and the condition
of the ocular surface was improved.

Umbilical cord stem cells: Human umbilical cord lining epithelial cells are another
potential source for the management of LSCD. Animal models using this type of stem cell
are available in the literature [93].

Embryonic stem cells: Human embryonic stem cells (hESCs) are pluripotent stem cells
with the capability of differentiating into corneal and limbal epithelial cells [94]. Hence,
application of these cells may be beneficial in LSCD. Although challenging, several in vitro
models have been successfully used to differentiate hESCs into corneal-epithelial-like
cells [95–99].

Amniotic membrane epithelial cells: It seems that expressed markers of amniotic mem-
brane epithelial cells have a significant overlap with mesenchymal and embryonic stem cells.
The other advantage of these cells is that they display immunomodulatory characteristics.
In rabbit models, these cells have been successfully applied to treat LSCD [100,101].

Mesenchymal stem cells: this alternative source is separately discussed later.
Currently, most culture techniques are based on animal materials, which come with

the risk of triggering the host immune system due to the transmission of non-human
pathogens [102]. Nevertheless, studies using non-human reagents with acceptable out-
comes are available [103–105]. Moreover, finding an optimum culture medium to simulate
niche conditions in ex vivo is as important as using non-human reagents. In line with
this concept, although the presence of supportive feeder cells is not necessary, they can
significantly increase clonal efficiency through preserving cell–cell contact [106]. Monolayer
irradiated or mitomycin-treated murine 3T3 fibroblasts (mitotically inactive) have been
used previously as feeder cells to mimic a more suitable microenvironment. Meanwhile,
currently, monolayer limbal mesenchymal cells and human-adipose-derived stem cells
and bone marrow stromal cells are successfully applied in three-dimensional (3-D) culture
systems [107–109].

6. LN Restoration

It seems that the pure transfer of LESCs without restoration of the LN does not lead
to good long-term outcomes, especially in severe cases of LSCD [14,52,66,110]. Ongoing
inflammation can act as a progressive destructive factor for remaining healthy stem cells.
Hence, suppressing inflammation and recovery of LESCs and ECM function compose the
foundations of niche restoration strategies (Figure 3) [14].

6.1. Bio-Scaffolds

After successful ex vivo expansion of LESCs, proper carriers should be used to trans-
plant the grafts onto the targets.
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6.1.1. Amniotic Membrane

The most commonly used carrier in studies is the human amniotic membrane (HAM).
The HAM, which has no vessels or nerves, contains various cytokines and growth factors,
as well as collagen types I, III, IV, and V. So, this tissue has the potential to act as either a
carrier for cell delivery or a scaffold for bioengineering [111,112]. Mimicking a niche-like
environment for LESCs was previously proposed for the HAM [113]. Additionally, this
matrix comprises anti-inflammatory, anti-fibrotic, and anti-angiogenic properties. The
drawbacks of this agent are its low transparency and tensile strength and the risk of disease
transmission [14,114]. Moreover, rapid digestion of the HAM after transplantation may
eclipse its long-term outcomes [115].

6.1.2. Fabrication of Bio-Active ECMs

Currently, several materials are used in the fabrication of bio-active ECMs, including
decellularized corneas (human or animal) and purified/recombinant structural proteins
such as collagen [116]. The process of corneal decellularization is performed via usage
of ribonucleases, osmotic solutions, freeze thawing, and detergents to diminish the risk
of antigenicity [117]. It should be mentioned that after this process, the ECM remains
functional and structured with preservation of healing factors [118]. Decellularized porcine
corneas were also transplanted to patients with corneal ulcers [119,120]. In these studies,
the most suitable candidates were patients with stromal involvement but an intact epithe-
lium. Hence, application of this method in cases of LSCD can be limited and lead to the
development of an alternative option: hydrogel production through digestion of decellular-
ized corneas [14,121,122]. In one study, a thermoresponsive hydrogel was fabricated from
a decellularized porcine cornea after digestion using pepsin/HCl [123]. Numerous wound-
healing factors were found in this hydrogel. Compatibility of this fabricated hydrogel with
corneal cells makes it a proper cell delivery method for 3-D structures [124]. Moreover,
further approaches are available to fabricate a bio-active hydrogel, including a silk-film-
derived hydrogel with the ability to affect gene expression of the corneal epithelium, a
cross-linked collagen hydrogel to substitute the corneal stroma, and a collagen-coupled
polymer hydrogel that supports epithelial wound closure [125–127]. Regarding the puri-
fied/recombinant structural proteins, fabrication of bioengineered limbal crypts is achieved
using collagen type I and cast molding [116]. The other approach is using 3-D printing
via various bio-inks [128,129]. Collagen type I is the most common type in corneal struc-
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tures. The biomechanics of collagen can be improved through several methods, such as
cross-linking and plastic compression. Its suitable biomechanics, availability, and biocom-
patibility make collagen a suitable bio-scaffold [130,131].

6.1.3. Others

Synthetic polymers and fibrin are among the other available options. Polyethylene gly-
col and polymethacrylate are constructed polymers with supportive roles in the cultivation
of LESCs. However, they have not been studied in human trials yet [132,133]. Synthetic
polymers offer several strengths, such as chemical stability, manipulability, and easy mass
production [130]. Fibrin membrane, which is mostly composed of fibrinogen and thrombin,
has a long history of safe application as a sealant in ophthalmology [134,135]. Fibrin can be
prepared easily and showed an acceptable success rate in trials for LSCD.

6.2. Revitalization of Limbal Niche via Biological Factors

As mentioned before, signaling and cellular contacts are required for proper function-
ing of the limbal niche. Administration of exogenous factors can be used as an alternative
to these signaling pathways [14].

6.2.1. Blood-Derived Factors

Currently, ophthalmologists use autologous/allogeneic serum eye drops (ASEs) in
routine practice for various ocular surface disorders, including dry eye disease (DED),
PED, and corneal involvement following graft-versus-host disease (GVHD), and Sjögren
disease [14]. ASEs are enriched with numerous cytokines and factors, such as TGF-β
and EGF, as well as minerals and vitamins helpful in corneal epithelium maintenance
and regeneration [136]. These properties justify the usage of ASEs in the management of
ocular surface disturbances. Similarly, platelet-derived preparations, including platelet-rich
plasma (PRP), platelet releasate (PR), and plasma rich in growth factors (PRGF), contain
various growth factors, such as TGF, EGF, IGF-1, and pigment epithelium-derived factor
(PEDF), highlighting the potential usefulness of platelet-derived products in limbal niche
restoration [137].

6.2.2. Bio-Active Soluble Factors/Cocktails

Different sources can be used to produce bio-active soluble factors/cocktails. One of
these sources is amniotic membrane extract eye drops (AMEEDs). One study showed the
enhancement of LESC functioning using in vivo cultivation with AMEEDs [138]. The other
product extracted from the HAM is HC-HA/PTX3, which has shown to be effective in
enhancement of self-renewal capacity of LESCs in 3-D culture systems through influencing
the Wnt/BMP signaling pathway [139]. A similar function has been reported for PEDF, a
soluble growth factor derived from human plasma, which activates the p38 MAPK and
STAT3 signaling pathways [140].

The supernatant layer of in vitro cell cultivation is called secretome since it has all
the secreted factors of those cells. Some studies have reported the mesenchymal stem cell
(MSC) secretome can also promote LN and ocular surface regeneration. Additionally, MSC
secretomes can lead to increased expression of the CD44 receptor and subsequent improve-
ment in hyaluronic acid binding, which can decrease scar formation [141,142]. Other useful
factors derived from MSCs include exosomes, which act in cell–cell contact. Corneal-MSC-
derived exosomes can enhance wound repair capacity in animal corneas [143]. Additionally,
corneal exosomes exhibit anti-inflammatory and immunomodulatory properties, which can
address the pathophysiology of LSCD [144]. Furthermore, exosomes can act as a delivery
vehicle [145].

Finally, conditioned media from limbal fibroblasts have shown promising results [146].
In an LSCD murine model, using limbal-fibroblast-conditioned media resulted in an
increase in corneal-epithelial-like cells as well as lower density of conjunctival goblet
cells [146].
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6.3. Cell-Based Strategies

Currently, MSCs are the subject of many studies on LN and ocular surface reconstruc-
tion due to their formidable properties. Over half of a century has been passed since the
initial isolation of these cells from bone marrow specimens [147]. The authors first noted
the capability of MSCs in repairing bone defects [147]. The beneficial roles of MSCs are not
limited to this finding, as their immunomodulatory functions have made them applicable in
the treatment of autoimmune diseases and also organ transplantation [148]. Furthermore,
they are also capable of producing ECMs in 3-D culture systems [149]. Application of
MSCs in the management of chemical injuries, DED, and LSCD has been studied [150–153].
MSCs can be obtained from various sources, including bone marrow, adipose tissue and
the HAM, limbus, and omentum [154–158]. It has been reported that bone-marrow-derived
MSCs can decrease the level of inflammatory cytokines, oxidative stress species, and lipid
peroxidation while increasing factors helpful for limbal niche restoration [159–163]. As
discussed before, MSCs are one of the most important components found in a normal
living LN. The properties that have been reported for limbal-derived MSCs are similar to
those found for bone-marrow-derived ones [164,165]. MSCs also offer multiple advantages
compared to limbal epithelial cells, including the ability to harvest from multiple tissues
through a faster and cheaper process. Moreover, 100% of the MSCs in a transplant are
stem cells [37]. In an animal model of chemical burn, local application of limbal-derived
MSCs resulted in an increase in corneal transparency, a decreased epithelial defect, and
attenuated corneal neovascularization [158]. Similarly, corneal MSCs secrete high levels
of antiangiogenic factors [146]. Although data on the clinical application of MSCs are
limited, the first clinical trial using allogeneic human-bone-marrow-derived MSCs reported
a success rate of 76.5–85.7%, an efficacy similar to that of CLET [166]. Several routes are
available to deliver the MSCs, including systemic topical, subconjunctival, sub-tenon, and
intrastromal injection [167]. However, there is no general consensus on the optimal route
for MSC delivery. Different routes of administration have specific drawbacks. The systemic
route of administration may lead to a considerable rate of side effects, while a low number
of cells may be delivered to the target site. On the topical route, the cells can be washed out,
leading to a short period of cell retainment. In using a scaffold to transplant cells, the num-
ber of transferred cells is low, and the cost and risk of surgery should also be considered.
Regarding the subconjunctival route, the best cell vehicle solution and cell concentration
and also the number and location of injection are still unknown. Moreover, the volume of
injection is limited. The intrastromal technique has more technical difficulties [152,159,168].
We conducted a clinical trial to evaluate the safety and maximally tolerated dose of locally
delivered allogeneic MSCs. In this study, different doses of bone-marrow-derived MSCs
were given using subconjunctival injections to evaluate safety as well as anatomical and
functional results in adult cases of neurotrophic keratitis [169]. The results of the first three
patients were reported in the annual ARVO 2022 meeting [170]. Overall, MSCs usage can
be considered an emerging approach in the management of severe ocular surface disorders
with promising results.

7. Conclusions

The presence of a competent limbal niche is completely necessary for proper function-
ing and homeostasis of LESCs. The limbal niche contains several components, including
supportive cells, several signaling factors, neurovascular inputs, and a specialized ECM.
Following severe acquired or hereditary injuries to the limbal niche resulting in LSCD,
taking action to restore the niche is essential for therapeutic interventions to be successful.
In addition to traditional LESC transplantation methods, regenerative approaches such as
bio-scaffolds and cell-based therapies have attracted increasing attention. However, further
clinical trials and human studies are required to incorporate these novel strategies into
clinical practice.
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