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Abstract: Pharmacological strategies to lower the viral load among patients suffering from severe
diseases were researched in great detail during the SARS-CoV-2 outbreak. The viral protease Mpro

(3CLpro) is necessary for viral replication and is among the main therapeutic targets proposed, thus far.
To stop the pandemic from spreading, researchers are working to find more effective Mpro inhibitors
against SARS-CoV-2. The 33.8 kDa Mpro protease of SARS-CoV-2, being a nonhuman homologue, has
the possibility of being utilized as a therapeutic target against coronaviruses. To develop drug-like
compounds capable of preventing the replication of SARS-main CoV-2’s protease (Mpro), a computer-
aided drug design (CADD) approach is extremely viable. Using MOE, structure-based virtual
screening (SBVS) of in-house and commercial databases was carried out using SARS-CoV-2 proteins.
The most promising hits obtained during virtual screening (VS) were put through molecular docking
with the help of MOE. The virtual screening yielded 3/5 hits (in-house database) and 56/66 hits
(commercial databases). Finally, 3/5 hits (in-house database), 3/5 hits (ZINC database), and 2/7 hits
(ChemBridge database) were chosen as potent lead compounds using various scaffolds due to their
considerable binding affinity with Mpro protein. The outcomes of SBVS were then validated using an
analysis based on molecular dynamics simulation (MDS). The complexes’ stability was tested using
MDS and post-MDS. The most promising candidates were found to exhibit a high capacity for fitting
into the protein-binding pocket and interacting with the catalytic dyad. At least one of the scaffolds
selected will possibly prove useful for future research. However, further scientific confirmation in the
form of preclinical and clinical research is required before implementation.

Keywords: main protease (Mpro); structure-based virtual screening; ZINC; in-house; ChemBridge
database; molecular dynamics simulation
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1. Introduction

Since December 2019, after the first outbreak of Corona virus infection reported from
Wuhan, China, the disease has devastated life throughout the world and the search for
affective therapeutics is underway [1]. The virus is known as SARS-CoV-2 because its RNA
genome shares 82 percent of its sequence with the SARS Corona virus [2]. These viruses are
related to the betacoronavirus clade B [3,4]. Although the outbreak was initially thought to
have originated in Wuhan’s Huanan seafood and cattle market, effective human-to-human
transmission has caused the number of patients to rise dramatically. As of April 9th, there
were more than 1,500,000 diseased individuals with a 5.9% mortality rate. The recent emer-
gence of the coronavirus-2 causing severe acute respiratory illness (SARS-CoV-2) has led to
the global pandemic of coronavirus disease 2019 (COVID-19). By April 2021, there had been
more than 140 million infections reported, causing more than 3 million fatalities globally.
Antiviral medications will likely be essential to manage the anticipated future outbreaks of
coronaviruses, despite the promising COVID-19 immunization campaigns. The emergence
of SARS-CoV-2 variants for which vaccinations are ineffective suggests that antiviral medi-
cations will eventually be needed to enhance immunizations [5]. Similar to the common
cold virus, SARS-CoV-2 is expected to continue spreading and provide a significant threat
to our society. In this condition, antiviral medications are required to treat infected patients
as well as be delivered prophylactically to protect high-risk groups. Since therapeutic
medicines that suppress coronavirus replication have the potential to enhance the lives of
millions of people throughout the world, their discovery must be prioritized despite the
lengthy drug development process. After SARS-CoV-1 (found in 2002) and MERS-CoV
(Middle East respiratory illness, 2012), SARS-CoV-2 is the deadliest of the zoonotic coron-
aviruses that have infected humans [6]. Similar to other coronaviruses, SARS-CoV-2 affects
the respiratory system and causes severe pneumonia, which necessitates ventilatory assis-
tance and intensive care, especially in the elderly and immunocompromised patients [3].
Vaccine development has advanced significantly, but supply and timing are currently
limiting factors for its effective implementation. Several vaccinations have been developed
and licensed for mass immunization [7]. The cost of storing some vaccines at cryogenic
temperatures, meanwhile, may be prohibitive in underdeveloped nations. Additionally,
a number of changes to the SARS-CoV-2 genome may impact how well vaccines work to
fight the virus [8,9]. These results highlight how critical it is to simultaneously develop
therapeutic options for SARS-CoV-2 treatment.

SARS-CoV-2 belongs to the beta group of coronaviruses, an RNA virus with only one
strand. It has structural proteins, such as spike-like protein S and lipid membranes, as
well as M protein (membrane), N protein (nucleo-capsid), and envelope (E) protein that
give it an envelope appearance. The S spike protein binds to the angiotensin-converting
enzyme 2 (ACE2) receptor on mammalian lung cells, allowing the virus’s RNA genetic
material to be released into the host cells [10]. Four nonstructural proteins are found in
the virus: papain-like (PLpro) and CoV main proteases [Mpro; also known as 3CLpro] [11],
RNA polymerase, and helicase [12]. The virus’s transcription and replication are aided
by both proteases (PLpro and 3CLpro). The replicase genes encode two polyproteins
important for effective viral replication and transcription [13]. A significant proteolytic
process liberates the functional polypeptides from these two polyproteins (pp1a and pp1ab).
Proteolysis is mostly performed by a papain-like protease (PLpro), which cuts proteins in
three places, and a 33.8 kDa main protease (Mpro), also called a 3C-like protease, which
cuts proteins in 11 sites, making nonstructural proteins in the process (NSPs). As no host
protease recognizes the Mpro recognition sequence, to develop drugs against SARS-CoV-2
infections, this enzyme is a prime target for the development of inhibitors. The Mpro and
PLpro enzymes, which digest viral polyproteins produced by the host cell translational
machinery, build a functionally active viral replication complex and package it into host
cells during viral replication [14]. Three domains make up the 3CLpro monomer, with
the active site (Cys 145 and His 41) located between domains I and II. A larger pocket
is found in the gap between the third domain and the protein structure because of the
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long loop connecting it to the rest [15]. Additionally, 3CLpro is the main protease of the
virus, and it helps in the replication of the virus, making it a valuable antiviral treatment
target. Mpro is a crucial target for antiviral medication because the human genome lacks
a homologue of it. Although there is no homologue of Mpro in the human genome, it is
known as 3CLpro (3-chymotrypsin-like protease) and aids in viral replication, making it a
significant target for antiviral treatments. Protease inhibitors efficiently stop coronavirus
replication and proliferation by obstructing the post-translational processing of essential
viral polypeptides [16]. Pfizer’s PF-07321332 is an oral antiviral compound that is designed
to stop SARS-CoV-2 Mpro from modifying the active site Cys145 with its nitrile warhead.
It is thought to be a good antiviral candidate and is currently being tested (NCT04756531,
NCT04909853, NCT05011513, and ClinicalTrials.gov (accessed on 23 March 2021)). The
oral antiviral PAXLOVIDTM, which is a combination of PF-07321332 and the HIV drug
ritonavir, which slows down the breakdown of PF-07321332, was found to reduce the risk
of hospitalization or death by 89% compared to a placebo in nonhospitalized high-risk
adults with COVID-19. In December 2021, the FDA gave Pfizer’s Paxlovid an emergency
use authorization to treat mild-to-moderate COVID-19 in adults and children older than
12 who are at least 12 years old (www.fda.gov) [17]. Crystallization of the main protease
of SARS-CoV-2 (PDB ID: 6LU7) has been accomplished by Liu et al., which provides an
opportunity to combat the disease by identifying it as a potential therapeutic target. When
opposed to methods based on trial and error that involve experimental research, the use
of the in silico method for the screening of prospective therapeutic compounds has been
demonstrated to be both time and cost efficient. The in silico method of molecular docking
has the capacity to screen and find potentially useful therapeutic compounds from large
and huge compound databases. At the moment, several molecular docking studies are
being conducted against SARS-CoV-2 receptors with drug-like compounds (ChemBridge,
ZINC, and in-house databases). Furthermore, the majority of these docking investigations
used quantitative structure-activity relationships (QSARs) modeling, similarity searches,
and structure-based drug design (SBDD) [18].

Drug repurposing is one method for speeding up the normal drug development and
drug discovery process. This will help to clarify the effectiveness of novel therapeutic uses
for substances whose efficacy and safety have already been established. The importance
of potential therapeutic compounds that function as efficient antivirals in controlling the
pandemic is highlighted by the increasing and faster spread of SARS-CoV-2 as well as
the appearance of novel variants. In the formation of anticoronavirus therapeutics, Mpro’s
catalytic activity may be hindered. In light of this background, the current research looked
for a few phytocomponents that could suppress the Mpro protein. Phytochemicals are used
as active drugs in drug development. In the fight against viral diseases, phytocompounds
derived from a variety of medicinal plants may enhance immune function and combat
pathogens. Phytochemicals and their derivatives have been the focus of numerous studies
due to their antiviral activities and mechanisms of action, which have been demonstrated
to be crucial in the treatment of viral diseases [19]. Over the past decade, computer-aided
drug discovery (CADD) approaches have emerged as a crucial component of the drug
development process, having been used to identify protein inhibitors and investigate
interactions between proteins and drugs and proteins themselves [20]. Despite the time
and money required to develop a candidate drug into an approved drug, computational
methods, such as virtual screening, docking, molecular dynamics (MD) simulations [21],
and binding free energy evaluation, can be used to identify promising drug candidates from
compound libraries. The purpose of this research was to find potential anti-SARS-CoV-2
treatments by utilizing a multipronged strategy that included both molecular docking and
virtual screening techniques. The information that is obtained from the screening will be
helpful in the investigation of new inhibitors of the SARS-CoV-2 Mpro target that have the
potential to be both effective and selective.

ClinicalTrials.gov
www.fda.gov


Bioengineering 2023, 10, 100 4 of 19

2. Materials and Methods
2.1. Protein Preparation

A worldwide database called the Protein Data Bank (PDB) was used to find the
three-dimensional structure of main protease (Mpro) with co crystallized ligand structure,
which causes severe acute respiratory syndrome (PDB Id: 6LU7) (accessed on 23 March
2021) (https://www.rcsb.org). The main protease is composed of two chains, such as A
and C. Chain A is the protease, and chain C is the N-[(5methylisoxazol-3yl) carbonyl]
alanyl-L-valyl-N-1-(1R,2Z) (1R,2Z)-4-(benzyloxy) (benzyloxy) [(3R)-2-oxopyprolidin-3-3yl]-
4-oxo-1-1-[(3R)-2-oxopyprolidin-3-3yl] but-2-enyl methyl)-L-lucinamide (N3 inhibitor). A
peptide inhibitor (N3 inhibitor) was in a complex with the protein. Water molecules,
inhibitors, and other heteroatoms were removed from the protein structure. All the atoms’
Amber14:EHT (Amber ff14SB and ETH combined) forcefields were used to refine the
protein structure. The missing hydrogens were added to the amino acids. The forcefield
parameters, missing atom types, bond stretch parameters, missing angles, and missing
van der Waals parameters were added to all atoms. Restrained electrostatic potential
atomic partial charges (RESP) and AM1-BCC [22] charges were used for the protein-ligand
complex, the RESP, and AM1-BCC charges were used for leap protein preparation and
for preparation of inhibitors, respectively. The 3D protonation was used to incorporate
hydrogen atoms into the protein structure, followed by minimization of energy with the
MOE (molecular operating environment) program’s default parameters [23].

2.2. Preparation of Databases

Small molecules used in virtual screening can be found in commercial databases,
such as ZINC and ChemBridge. ZINC had millions of compounds, compared to the
ChemBridge database that contain 168423 ligands/compounds in ChemBridge [24]. A
Tanimoto cut-off level of 60% was used to screen the ZINC database, which resulted in the
production of a library containing 11,193 drug-like molecules [25]. An in-house database
containing compounds isolated or synthesized by our collaborators, with a focus on natural
products and structural analogues. The in-house database contains over 1600 compounds,
representing a wide range of structural diversity across a wide variety of core scaffolds and
substitution patterns. Three-dimensional protonation (MMFF94x force field) and energy
minimization (constrained minimization of 0.01 Kcal/Å2 was performed to optimize the
ligand structures) using MOE were performed on all of the compounds in the in-house
database. Anti-COVID-19 lead compounds can be found using structure-based virtual
screening, which scans both in-house and commercial databases.

2.3. Structure-Based Virtual Screening

The drug target (receptor) and ligands’ 3D structures in the database are necessary
for the structure-based virtual screening (SBVS) methods. In order to find new potential
inhibitors, we employed molecular docking approach to assess the binding modes of drug
target proteins and the ligands, called the structure-based drug design (SBDD). This helps
to predict the improved and healthy interactions that will take place between the target
receptor and the drug. Using the MOE, the SBVS was used to screen ZINC, in-house, and
ChemBridge databases. Additionally, using both revised-Lipinski’s rule of 5 as well as
Lipinski’s rule of 5, the number of screened results was significantly reduced. New lead
hits discovered through screening a compound database of thousands of compounds are
illustrated by the property of “drug-likeness” [26].

2.4. Molecular Docking

The MOE docking software was utilized to conduct the molecular docking studies [27].
The retrieved compounds were docked with Mpro to further evaluate these drug-like com-
pounds. The 3D protonation of the target receptor was followed by energy minimization
using the MOE software 2019’s default parameters to achieve the best possible outcome. To
improve the result, all of the compounds were docked into the Mpro’ binding pocket. MOE

https://www.rcsb.org
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was used to dock the retrieved hits against the Mpro drug target. Ten conformations were
generated for each hit, with the top-ranked conformations of each inhibitor being used for
advanced research. The docking analysis was scrutinized more closely, with docking scores
and protein/hit interactions playing a larger role. In addition, the results of molecular
docking were validated using MDS.

2.5. Molecular Dynamics Simulation (MDS)

A molecular dynamic (MD) simulation was carried out to investigate the dynamic
behavior of proteins upon inhibitor binding at the atomic level. The docked conformations
of the selected hits within the active pocket of Mpro were subjected to MD simulations. A
detailed MDS analysis was carried out using the Amber14 package and the ff14SB force
field [28]. To evaluate the stability of the previously retrieved compounds at the active
sites of Mpro and Mpro/N3 complex, MDS was used. Tleap, a preparatory program, was
used to build and solve the complexes. The solvated octahedral box was used in this
experiment. After solvating each system in an octahedral box using the TIP3P water
model with 15 Å, the systems were neutralized by adding counterions (either Na+ or
Cl−). Each neutralized system’s energy was reduced as much as possible through two
steps of energy minimization in order to achieve the goal of relaxing all of the systems.
These steps were steepest descent minimization and conjugate gradient minimization. At
50 ps, the minimized complexes were heated to 300 K. Then, using a two-step process, each
system was brought into equilibrium at a constant 1 atom and 300 K. First, we used a weak
restraint to equilibrate the density at 50 ps. Second, we equilibrated the system without
any constraints for 1 ns. After that, the production step was run for 150 ns. To keep the
temperature stable, the Langevin thermostat was activated [29] and Berendsen barostat
was used to monitor the system pressure. For the calculation of long-range electrostatic
interaction, we used the AMBER18 Particle Mesh Ewald (PME) algorithm. A cut-off
distance of 10 Å was used for long-range electrostatic interactions and van der Waals
interactions. The covalent bonds were refined using the AMBER18 SHAKE algorithm [30].
The GPU version (PMEMD.cuda) [31] of AMBER18 was used to run MD simulations on
four complexes with Mpro/N3 complexes. The AMBER18 CPPRTAJ module was used
to analyze the MD trajectories. The interface analysis and graphical representation were
carried out using MOE2019 software, PyMol v1.7, and Origin Pro Lab v2018.

2.6. Assessment of Binding Free Energy

For the calculation of binding free energy (BFE), trajectories generated by molecular
dynamics simulations using the MMPBSA.py script were used [32]. Numerous studies
have employed this method to evaluate the binding free energies of P-P (protein-protein),
protein-ligand, and nucleic acid-protein complexes. The total binding free energy (Gbind)
was calculated with the help of the following Equation:

∆Gbind = ∆Gcomplex − [∆Greceptor + ∆Gligand]

For each of the energy terms, for example, polar (Gpol), van der Waal forces (GvdW),
electrostatic energy (Gele), no-polar interactions (Gnpol),Gbond showed the angle of bond
and their dihedral energy, TS represents the absolute temperature (T) and entropy (S), the
equation below was used to better understand how they contribute to the total energy (G).

G = Gele + Gbond + GvdW + Gnpol + Gpol − TS

The molecular mechanics generalized born surface area (MM-GBSA) method was
used to calculate the binding free energies of the retrieved compounds/complexes and
Mpro/N3. Since the MM-GBSA is a BFE index, the lower the value, the stronger the bond.
The binding free energy of the retrieved and reference complexes was calculated in Amber
18 using the python script MMGBSA.py. The decrease in potential energy over 150 ns
revealed that the system is stable in the case of complexes. The various conformations
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obtained over a 150 ns simulation period are examined. The MMGBSA.py script was used
to calculate the BFE between Mpro and the retrieved hits, as well as the reference drug
(N3, peptide inhibitor) [33]. In this study, the MMGBSA scripts from AMBER and AMBER
Tools were used to carry out various steps required to assess the BFE of the protein-ligand
complex via MMGBSA methods. By taking 15,000 snapshots over a 150-ns trajectory, the
BFE was calculated.

3. Results and Discussion

Despite the encouraging vaccination programs against COVID-19, the use of antivirals
is likely going to be necessary in order to contain the unpredictable outbreaks of coron-
aviruses that will occur in the future. Vaccines have already been developed, and there
are SARS-CoV-2 variants that are resistant to them, which is clear evidence that antivirals
will eventually need to be used in addition to vaccines [5]. SARS-CoV-2 must, therefore, be
controlled using an antiviral drug that is both affordable and effective. To discover new
drugs, it is helpful to see if existing drugs or drugs with similar properties are effective in
the treatment of viral infections. The traditional methods of drug discovery take a long
time and are inefficient [34]. According to an in silico study, the N3 inhibitor blocks the
active catalytic site of HCov-NL-63, preventing its biological function [35]. The current
project aimed at performing structure-based virtual database screening, molecular docking,
and drug-likeness evaluations of potential compounds. With the help of this methodol-
ogy, potent drug candidates were found to bind closely to the Mpro of the SARS-CoV-2
catalytic site and limit its proteolytic activity. Through simulation approaches, potential
anti-SARS-CoV-2 Mpro can be identified by using the structure of the COVID-19 virus Mpro

in complex with N3. SARS-CoV-2 Mpro candidate inhibitors were virtually tested using
three databases (ChemBridge, ZINC, and in-house).

3.1. Structure-Based Virtual Screening

One of the most useful and effective in silico techniques for the drug design process
is the structure-based virtual screening (SBVS) method. SBVS makes an effort to antici-
pate the interaction mode that will result in the formation of a stable complex between
two molecules. It does this by employing scoring functions, which measure the force of
noncovalent interactions that occur between a receptor and an inhibitor. Therefore, scoring
functions are the primary factors that determine whether or not SBVS software is successful.
It is possible to get different results from different software programs, even when utilizing
the same input, because these programs all employ different algorithms to perform SBVS,
which means that there are many distinct software programs that are used to perform
SBVS. In SBVS, the three-dimensional structure of the target protein is already known,
and the purpose of the process is to choose ligands from a candidate database in such a
way that they will have a greater affinity for the three-dimensional structure of the target.
Molecular docking is a computer approach that can be used to perform VS. During this
procedure, ligands are moved around in three-dimensional space in an effort to locate a
target and ligand combination that maximizes the scoring function. The ligands in the
database are ranked according to the highest score they received, and the highest-scoring
ones are the ones that can be explored further. For instance, one could look at the mode
and kind of interaction that takes place [36]. Through in silico screening, lead inhibitors for
the COVID-19 virus Mpro can be found by using the structure of the COVID-19 virus Mpro

in complex with N3. To do this, MOE was used to dock possible binding compounds from
the ChemBridge, ZINC, and in-house databases. All the compounds from the different
databases (ChemBridge, ZINC, and in-house) were used for virtual screening using MOE
software with the Mpro. Finding hits/compounds that were chemically and structurally
comparable required the SBVS of 3D databases, including the in-house, ChemBridge, and
ZINC databases. To find prospective, potential, and new inhibitors, VS was performed on
the in-house database, which included 1600 ligands, as well as the ZINC and ChemBridge
databases. Five hits from the in-house database, 50 hits from ChemBridge, and 16 hits
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from the ZINC database were all reported by the SBVS. To verify the draggability of the
hits, the retrieved results from the commercial database were also subjected to Lipinski’s
rule of five, while the results from the in-house database were treated with a modified
version of Lipinski’s rule of (5) five. According to Lipinski’s rule of (five) 5, druggable
molecules must have the log S-score ≤5, a MW <500 Dalton, an HBA of <10, a log p-score
of ≤5, and an HBD of <5. These factors are all indicators of H-bond donors. Molecules
which did not fit these requirements; their absorptions would be unsatisfactory [37]. On
the other hand, the “modified Lipinski’s rule of five” suggests that molecules having MW
>500 logP, HBD greater than 5, and HBA greater than 10 exhibit good absorption. After
running the retrieved hits via both Lipinski’s rules [38], it was discovered that, retrieved hits
from 49/50 ChemBridge database, 7/16 ZINC database, and 3/5 (in-house database) were
following both rules effectively. Subsequently, the 3/5 (in-house) and 56/66 (commercial
databases) retrieved hits were further decreased for further analysis using a molecular
docking strategy.

3.2. Molecular Docking

By docking all the hits from the 3/5 (in-house database) and 56/66 (commercial
databases) using the Mpro binding pockets via MOE, results in this study were further
reduced and refined. In comparison to the standard drug (N3), the docking scores of
our refined hits were considerably good (Table 1). For each ligand in the retrieved
findings, ten distinct conformations were generated, and all hits having high conforma-
tions were sorted and kept in a database file for subsequent analysis. We observed that
3/5 in-house hits, 7/49 ChemBridge database hits, and 5/7 ZINC database hits were
best on the basis of docking scores and, thus, were selected for further analysis. Further-
more, the top-ranked conformations of 3/5 hits (in-house), 3/5 hits (ZINC database), and
2/7 hits (ChemBridge database) were well accommodated inside the active site of the
Mpro drug target and were implicated in several interactions at the active sites of the tar-
get protein. From three different databases (ChemBridge, ZINC, and in-house database),
docking calculations revealed eight chemically varied molecules having a better binding
affinity towards SARS-CoV-2 Mpro as compared to N3. Docking studies indicated that
the Mpro drug target exhibits better docking scores and considerable polar contacts with
the hits due to the presence of electronegative capabilities. Table 1 shows the results of
molecular docking. The retrieved potential antiviral (anti-COVID19) hits were found to be
well-fitted inside the Mpro drug target (Figure 1). The compounds reported in Table 1 were
ChemBridge, ZINC, and in-house database compounds, and these retrieved compounds
were piperidine derivative, tetrahydrothiophene derivative, triazin analog, pyridazine
derivative, triazolo pyridine and quinoxaline derivatives, respectively. These compounds
have a role in the inhibition of the MPro target [39].

Table 1. The finalized lead hit compounds’ 2D structures and docking values.

S. NO Compound Names Structures Docking Scores

1 ZINC08535852 −41.3801
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Table 1. Cont.

S. NO Compound Names Structures Docking Scores

2 ZINC44928678 −41.0291

3 ZINC72171104 −39.5487

4 12-quinoxaline
derivative −38.7102

5 ChemBridge63310525 −38.0478

6 18-quinoxaline
derivative −37.5300

7 ChemBridge53208972 −35.4302
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Table 1. Cont.

S. NO Compound Names Structures Docking Scores

8 25-quinoxaline
derivative −34.3177

Reference N3 −29.5841

Figure 1. The Mpro protein’s molecular surface representation with an overlay of all retrieved
active hits in the binding pocket. The ZINC44928678, ZINC08535852, 12-quinoxaline derivative,
and ChemBridge63310525 active ligands were represented by purple, dark brown, pink, and cyan
colors, respectively.

3.3. Analyses of the Binding Interactions of Finally Selected Drug-like Compounds

It is widely recognized that molecular docking provides essential guidelines for the
design and discovery of novel drugs. The S-score quantifies the strength of the receptor-
ligand interactions. The compounds can be chosen as good drug compounds based on
their docking score (S-score). According to the docking study, all finalized hits exhibited
favorable contacts with the residues of the Mpro target’s binding site when compared to the
positive control (Table 2).
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Table 2. Details of binding interactions against COVID-19 Mpro.

Compounds IDs Ligand Receptor Interaction Distance E (kcal/mol)

ZINC08535852 C1 1 SG CYS 44 H-donor 3.91 −0.2
N1 3 SG CYS 44 H-donor 3.34 −0.6
N4 7 O PRO 52 H-donor 3.09 −1.1
C6 9 O ASN 51 H-donor 3.22 −0.1

NH 11 O Tyr 54 H-donor 3.69 −0.1
N3 6 NH1 ARG 188 H-acceptor 3.01 −0.7
O2 19 CA ARG 188 H-acceptor 3.85 −0.1

ZINC44928678 C1 1 OG1 THR 24 H-donor 3.65 −0.1
C1 1 O THR 24 H-donor 3.65 −0.1
C6 6 SD MET 49 H-donor 3.82 −0.2

C14 18 SD MET 165 H-donor 3.58 −0.1
C16 21 SG CYS 145 H-donor 3.88 −0.1
C17 22 SG CYS 145 H-donor 4.1 −0.3
O1 20 NE2 HIS 41 H-acceptor 2.98 −0.9

ZINC72171104 N2 8 SG CYS 145 H-donor 3.33 −2.2
N5 20 O THR 190 H-donor 2.83 −4.7
5-ring CA ASN 142 pi-H 4.1 −0.4
5-ring CA MET 165 pi-H 3.51 −0.3
6-ring CB MET 165 pi-H 3.59 −0.5
6-ring CD PRO 168 pi-H 4.88 −0.3
5-ring CD PRO 168 pi-H 4.43 −0.3
5-ring CA GLN 189 pi-H 3.64 −1
6-ring CG GLN 189 pi-H 4.21 −0.7

12-quinoxaline
derivative C3 3 ND1 HIE 172 H-donor 3.86 −0.2

C24 24 O HIE 164 H-donor 3.43 −0.3
O25 25 OE1 GLU 166 H-donor 2.53 −4.7
O25 25 NH GLU 166 H-acceptor 2.4 −4.8
N12 12 N CYS 145 H-acceptor 3.12 −0.8
N11 11 N CYS 145 H-acceptor 3.12 −0.8

N4 4 CA MET 165 H-acceptor 3.25 −0.1
O25 25 N GLU 166 H-acceptor 2.86 −1.3

18-quinoxaline
derivative C3 3 SG CYS 44 H-donor 2.97 −0.2

O27 27 NH ASN 142 H-donor 2.8 −0.6
O27 27 O GLY 143 H-acceptor 2.5 −0.9
C24 24 NH GLY 143 H-acceptor 1.6 −1.8
C26 28 SG CYS 145 H-donor 2.39 −0.1
6-ring CG MET 49 pi-H 4.73 −0.1
6-ring CG MET 49 pi-H 3.86 −1
C3 3 CA MET 49 pi-H 4.23 −0.8

25-quinoxaline
derivative C3 3 SD MET 49 H-donor 2.84 −0.2

O26 26 O GLU 166 H-donor 2.7 −2.3
O25 25 NH GLU 166 H-donor 2.8 −2.1
N13 13 CB THR 190 H-acceptor 2.58 −0.2

N7 7 CA GLN 189 H-donor 3.36 −0.3
N10 10 NH ARG 188 H-acceptor 3.31 −0.1
5-ring N THR 190 pi-H 3.67 −0.3

ChemBridge63310525 C9 9 O ARG 188 H-donor 2.93 −0.5
C11 11 NH ARG 188 H-donor 2.5 −0.8

C8 8 SD CYS 145 H-donor 3.59 −0.1
O19 19 O GLU 166 H-donor 3.44 −0.4
C14 14 O MET 49 H-donor 3.13 −0.2
C22 22 OH THR 190 H-acceptor 2.53 −0.1
C20 14 C MET 49 H-donor 3.13 −0.2
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Table 2. Cont.

Compounds IDs Ligand Receptor Interaction Distance E (kcal/mol)

ChemBridge53208972 C15 22 O HIE 41 H-donor 3.75 −0.1
C18 28 O HIP 164 H-donor 3.3 −0.2
C19 29 SD MET 49 H-donor 4.48 −0.1
C18 28 5-ring HIE 41 H-pi 3.58 −0.1
6-ring CA ARG 188 pi-H 4.02 −0.4
6-ring CD ARG 188 pi-H 4.42 −0.1
5-ring CD ARG 188 pi-H 4.52 −0.1
6-ring N GLN 189 pi-H 4.76 −0.3

N3 (reference
ligand) N 13 O THR 190 H-donor 2.85 −2.6

N 23 O GLU 166 H-donor 2.83 −4.8
N 39 OE1 GLN 189 H-donor 2.93 −3.3
O 85 N GLY 143 H-acceptor 2.80 −1.0

CD1 50 5-ring HIS 41 H-pi 4.08 −0.5

Out of all of the hits identified by using the SBVS against the ZINC, ChemBridge, and
in-house databases, ZINC08535852 (ZINC database), with a docking score of −41.3801, was
the most active ligand of the ZINC database and demonstrated strong interactions with the
active site residues of the Mpro of SARS-CoV-2. Figure 2 depicts the docking conformations
of a selected compound during the docking process. When used in conjunction with the
13 amino acid residues in the active site of the main protease, the ligand formed seven
hydrogen bonds within three degrees of freedom with five amino acid residues, namely
Cys 44, Asn 51, Pro 52, Tyr 54, and Arn 188 residues (Figure 2). When there are more
hydrogen bonds, the binding efficiency and inhibition are both increased as a result [40].
Six-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one moiety: The sulfur atom of Cys 44 amino
acid formed two hydrogen donor interactions with the nitrogen and methyl groups of
the triazin-5(2H)-one moiety. During the formation of the H-donor interaction between
the carbon atom of the 3-methoxycyclohex-1-ene moiety and the carbon atom of Asn 51,
an H-donor interaction is formed. The nitrogen atoms of the 5-methyl-4,5-dihydro-1,2,4-
triazole moiety interacted with the carbonyl oxygen of the Pro 52 and the amino group of
the Arg 188 through H-donor and H-acceptor bonds formed by the amino group of the
Arg 188. It has also been discovered that the nitrogen and oxygen atoms of the 6-methyl-
3,4-dihydro-1,2,4-triazin-5(2H)-one moiety of the compound form H-bonds with the active
residues Tyr 54 and Arg 188 of the main protease, confirming previous findings. Further,
the hydrophobic interactions between His 41 and Met 49 are demonstrated (Figure 2).

Figure 2. The binding mechanism of the ZINC08535852 ZINC database ligand within the active site
of the Mpro protein (A) before MDS and (B) after MDS.
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The compound ZINC44928678 (ZINC database) had a good docking score of -41.0291 and
good interactions with the target protein’s active residues. This compound formed seven
polar interactions with the active site residues (Thr 24, His 41, Cys 44, Met 49, Cys 145,
and Met 165) according to its binding mode (Figure 3). The carbonyl oxygen and carbon
atoms of the 2-(pyridazin-4-ylamino) acetaldehyde moiety of the compound interacted
with His 41 and Met 165 residues. The toluene moiety’s methyl group formed two H-
donor bonds with the Thr 24 residue, while Met 49 showed H-donor interaction with the
toluene moiety’s carbon atom. The dimethyl groups of the 5,6-dimethyl-7H-pyrrolo [2,3-c]
pyridazine moiety of the ligand form two H-donor linkages with Cys 145.

Figure 3. The binding style of the ZINC44928678 ZINC database hit at the Mpro protein’s active site
(A) before and (B) after MDS.

The 12-quinoxaline derivative from the in-house database had the highest activity
among the compounds, with a docking score of −38.7102. It was predicted, based on the
docking conformations of the ligand 12-quinoxaline derivative, that the 12-quinoxaline
derivative would form hydrophilic and hydrophobic contacts with the active residues
of the Mpro protein. These active residues include Cys 44, Met 49, Asn 51, Pro 52,
Asn 53, Leu 141, Asn 142, Gly 143, Cys 145, His 164, Met 165, Glu 166, His 172, Arg 188,
Gln 189, and Thr 190 of Mpro protein. It was revealed that the compound formed eight polar
interactions with the active residues of the receptor. The H-bond was observed between
-NH group of the Asn 142 and nitrogen atom of the thiazolo [2,3-c][1,2,4]triazole moiety
of the inhibitor. Cys 145 residue forms two H-acceptor bonds with the nitrogen atoms of
the thiazolo [2,3-c][1,2,4]triazole moiety. The carbonyl oxygen atom and –NH group of
the Glu 166 residue are connected to the OH group of the phenol moiety of the hit via
H-bonds. His 164, Met 165, and His 172 residues were seen to form three H-bonds with the
1,4-dihydroquinoxaline moiety of the compound, as shown in Figure 4.
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Figure 4. The binding mode of the 12-quinoxaline derivative of the in-house database within the
active site of Mpro protein (A) before and (B) after MDS.

ChemBridge63310525 retrieved active hits from the ChemBridge database, forms
seven hydrogen bonds, and has a high docking score (−38.0478). On the binding site,
ChemBridge63310525 interacts with five important residues and comes out on top. Met 49,
Cys145, Glu 166, Gln 189, and Thr 190 form hydrogen bonds with the moieties of the
ChemBridge63310525. The hit’s furan-2-ylmethanol moiety binds to Cys 145 and Glu 166
via polar bonds. By hydrogen bonding, the 1-(pyrrolidin-1-yl)butan-1-one moiety interacts
with Gln 189 and Thr 190. Met 49 forms H-bonds with the piperidin-1-ium moiety of the
ligand. Asn 51, Glu166, and Pro 52 interact hydrophobically with the rest of the structure
(Figure 5). The compounds that interacted more strongly than the reference inhibitor with
the Mpro of SARSCoV-2 are listed in Table 1.

Figure 5. The active site of the Mpro protein (A) before and (B) after MDS, showing the binding
mechanism of the obtained inhibitor ChemBridge63310525 from the ChemBridge database.

The retrieved hit compounds are powerful and polarizable due to the electronic cloud
density of benzene rings (delocalized electrons), the presence of OH and NH, as well as
electron repulsion groups (-nitro). All hits from the study displayed good Mpro interactions
and docking scores. All of the lead compounds’ docking scores and 2D structures are given
in Table 1.
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3.4. MD Simulation Analysis of the Final Lead Hit/Mpro Complexes

The AMBER 18 software was used to perform a 150-ns MDS on the retrieved hit
compound/Mpro complexes in order to determine their well-stabilized and equilibrated
structures. The AMBER 18 software was used to perform MDS on the topmost active
retrieved compound/Mpro systems, two inhibitors from the ZINC database (ZINC08535852,
ZINC44928678), one hit compound from the in-house database (12-quinoxaline derivative),
and one compound from the ChemBridge database (ChemBridge63310525) in complex
with the Mpro drug target, as well as the reference-ligand (N3) Mpro complex. Calculating
the RMSD of the backbone atoms was used to check the stability of the four finalized
ligand/receptor complexes. The amplitudes of the C atoms’ fluctuation amplitudes were
inversely proportional to the system’s stability. The lower the RMSD variation, the more
stable the system is, and the fluctuations of the C atoms in the system [41] will be smaller.
The RMSD plot is used to understand the complex’s stability, while the RMSF plot is used
to understand its structural flexibility (Figure 6).

Figure 6. (A–D) Plot of the lead hits/Mpro and ref-ligand (N3)/Mpro complexes’ root mean
square deviations.

MDS equilibration was completed using the ZINC08535852/Mpro system at 150 ns.
The RMSD graph showed that the amplitudes of the fluctuations rose with an RMSD score
of 3 Å from 0 to 40 ns, and then the score decreased to 1.8 Å with slight fluctuations after
40 ns. After 140 ns up to 150 ns, the system was completely stabilized, with an RMSD of
1.8 Å and the least amount of fluctuations (Figure 6A).
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The third compound is ZINC44928678 in complex with Mpro. This complex was
then subjected to the MDS to produce an energy-minimized and stabilized structure. The
system’s RMSD graph revealed that the complex was stable from 0 to 100 ns of MDS at
1.5 Å, but that after MDS progression from 100 to 120 ns, their RMSD score increased to
2 Å as the system became unstable. The system was then stabilized after 120 ns, displaying
smaller fluctuations with a slight increase in RMSD 2.5 Å, as shown in Figure 6B.

Mpro in complex with the 12-quinoxaline derivative was the second most active
compound, with an RMSD of approximately 2.4 Å during the 150 ns simulation. The MDS
of this ligand in contact with the Mpro can be shown in Figure 6C. This MDS was computed
using RMSD scores of 2.4 Å, and the results are shown in Figure 6C. The RMSD graph of
this system shows that the fluctuations became less and obtained an RMSD score of 2.4 Å
after executing the 120–150 ns of MDS.

The ChemBridge63310525/Mpro (hit ligand/protein) complex’s RMSD graph dis-
played the highest variations from 0 to 140 ns, with an increase of approximately 3.5 Å.
Soon after 140 ns of MDS, smaller fluctuations were seen in the complex system’s structural
backbone, with an RMSD of approximately 2.8 Å (Figure 6D). Mpro undergoes conforma-
tional changes, as evidenced by the differences in the backbone RMSD in hits/Mpro.

The fluctuations of the protein residues upon ligand binding, were analyzed by root
mean square fluctuation (RMSF) (Figure 7A–D). The stability of a complex can be inferred
from its RMSF (root mean square fluctuation) trajectories. An unstable bond is indicated
by a plot with a lot of movement. A low number, on the other hand, or less fluctuation,
denotes well-structured and less distorted complicated regions. RMSF is an equilibrium
property that is calculated from the entire MD trajectory, so is its time average. For Mpro

with residues containing the four possible inhibitors, the RMSF of backbone atoms was
computed. The active site residues that interacted with the ligands were discovered
to be stable and showed minimal variations over time, confirming the stability of the
molecules with the target protein. The main variations, in contrast, were associated with
regions that were far from the ligand active site, and others were discovered in the flexible
loop region. Additionally, it was noted that the RMSF variations in the complexes were
smaller than those in the other complex, indicating that it had substantially less structural
mobility than the other complex. All of the systems exhibited patterns that were strikingly
similar, as presented in Figure 7A–D. Figure 7A–D clearly show the overall RMSF value
for all complexes.

3.5. Radius of Gyration (Rg)

The relationship between Rg and time was plotted in order to determine the system’s
compactness. Low Rg values are explained by the structure’s high stability and closed, com-
pact structure, whereas high Rg values are explained by the structure’s low compactness
when compared to conformational entropy (more folded). Figure 8 shows the simulation Rg
values for the four compounds, which are easily discernible (as shown). In the complex, the
Rg values remained stable, indicating that the binding of these molecules does not alter the
protein’s structure. The retrieved four ligands/MPro complexes have shown low Rg values
(compacted conformation of complexes) as compared to the reference ligand (N3)/MPro,
therefore, indicating that the obtained hits were active inhibitors. The Rg is a parameter for
assessing the compactness and overall dimension of the protein, which in turn signifies
the folding and unfolding of the protein. The lower the gyration values, the more folded
the protein is, and vice versa. Therefore, Rg was calculated to determine whether the
compounds/ligands maintained the folding of the system. Condensed architecture and
size are supported by the complexes’ Rg range (Figure 8A–D).
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Figure 7. (A–D) Plot of the root mean square fluctuation of the identified lead hits/Mpro (purple,
blue, olive green, and yellow, respectively) and ref-ligand (N3)/Mpro (red color) complexes. The
various color schemes illustrated various hits/Mpro complexes and their related trajectories. Each
system possessed the residual flexibility. On the graph, the number of residues is shown along the
x-axis, and the RMSF is displayed along the y-axis in angstroms.

Figure 8. (A–D) The radii of gyration of the identified lead hits/Mpro (purple, blue, olive green, and
yellow, respectively) and ref-ligand (N3)/Mpro (red color) complexes were plotted.
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3.6. Molecular Mechanics with Generalized Born and Surface Area Solvation (MMGBSA)

This module also looked at the binding energy calculation of selected top compounds
based on their affinity for the active site binding pocket. ZINC08535852, the first lead, had
an MMGBSA score of −39.5546 Kcal/mol, whereas the active lead in in-house database,
12-quinoxaline derivative, had an even lower MMGBSA score of −37.8210 Kcal/mol.
The MMGBSA binding free energies of the ZINC44928678 and ChemBridge63310525 are
−35.8398 Kcal/mol and −33.2041 Kcal/mol, respectively. These results lead to the con-
clusion that the retrieved hits had a higher free binding energy score than the reference
(−20.7812 Kcal/mol) (Table 3). In order to confirm the possible uses of these powerful in-
hibitors in COVID-19, we will soon design further experimental studies to test the inhibitory
capacity of compounds towards SARS-CoV-2.

Table 3. The average backbone RMSD and binding free energies for the best four complexes. The
data are reported as the average ± standard error of the mean (SEM).

Compound Names RMSD (Å)
Binding Free Energies

(Kcal/mol)

ZINC08535852 (ZINC database) 1.8 ± 0.005 −39.5546 ± 0.3671
ZINC44928678 (ZINC database) 2.5 ± 0.005 −35.8398 ± 0.1901

12-quinoxaline derivative in-house database 2.4 ± 0.005 −37.8210 ± 0.5091
ChemBridge63310525 (ChemBridge database) 2.8 ± 0.005 −33.2041 ± 0.2102

Reference (N3) 2.8 ± 0.0126 −20.7812 ± 0.4214

The interaction reports of the selected hits (ZINC08535852, ZINC44928678, 12-quinoxaline
derivative, ChemBridge63310525, and N3 (reference ligand)) were mentioned after the MD
simulations in Table 2, while the remaining data were after the docking, i.e., the docked
complexes’ interactions reports.

4. Conclusions

The primary goal of this study was to conduct a SBVS of compounds from the in-
house, ZINC, and ChemBridge databases, as well as molecular docking and MDS of
selected compounds and reference ligands (N3), as well as an estimation of binding in-
teractions against the Mpro of SARS-CoV-2. Three active inhibitors, the top active one hit
from each database, from the ZINC, ChemBridge, and in-house databases (ZINC08535852,
ChemBridge63310525, and 12-quinoxaline derivative, respectively) showed a strong inter-
action against the active site of the Mpro of SARS-CoV-2. These compounds were identi-
fied as the most active anti-viral compounds ZINC08535852, ChemBridge63310525, and
12-quinoxaline derivative, against the Mpro of SARS-CoV-2. These results show that these
compounds have the potential to be employed as a medication to treat SARS-CoV-2 illness.
If in vitro and in vivo clinical testing are followed, the compounds could potentially serve
as a candidate for the COVID-19 regimen.
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