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Abstract: Pharmacological strategies to lower the viral load among patients suffering from severe 

diseases were researched in great detail during the SARS-CoV-2 outbreak. The viral protease Mpro 

(3CLpro) is necessary for viral replication and is among the main therapeutic targets proposed, thus 

far. To stop the pandemic from spreading, researchers are working to find more effective Mpro in-

hibitors against SARS-CoV-2. The 33.8 kDa Mpro protease of SARS-CoV-2, being a nonhuman hom-

ologue, has the possibility of being utilized as a therapeutic target against coronaviruses. To develop 

drug-like compounds capable of preventing the replication of SARS-main CoV-2’s protease (Mpro), 

a computer-aided drug design (CADD) approach is extremely viable. Using MOE, structure-based 

virtual screening (SBVS) of in-house and commercial databases was carried out using SARS-CoV-2 

proteins. The most promising hits obtained during virtual screening (VS) were put through molec-

ular docking with the help of MOE. The virtual screening yielded 3/5 hits (in-house database) and 

56/66 hits (commercial databases). Finally, 3/5 hits (in-house database), 3/5 hits (ZINC database), 

and 2/7 hits (ChemBridge database) were chosen as potent lead compounds using various scaffolds 

due to their considerable binding affinity with Mpro protein. The outcomes of SBVS were then vali-

dated using an analysis based on molecular dynamics simulation (MDS). The complexes’ stability 

was tested using MDS and post-MDS. The most promising candidates were found to exhibit a high 

capacity for fitting into the protein-binding pocket and interacting with the catalytic dyad. At least 

one of the scaffolds selected will possibly prove useful for future research. However, further scien-

tific confirmation in the form of preclinical and clinical research is required before implementation. 

Keywords: main protease (Mpro); structure-based virtual screening; ZINC; in-house; ChemBridge 

database; molecular dynamics simulation 
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1. Introduction 

Since December 2019, after the first outbreak of Corona virus infection reported from 

Wuhan, China, the disease has devastated life throughout the world and the search for 

affective therapeutics is underway [1]. The virus is known as SARS-CoV-2 because its 

RNA genome shares 82 percent of its sequence with the SARS Corona virus [2]. These 

viruses are related to the betacoronavirus clade B [3,4]. Although the outbreak was ini-

tially thought to have originated in Wuhan’s Huanan seafood and cattle market, effective 

human-to-human transmission has caused the number of patients to rise dramatically. As 

of April 9th, there were more than 1,500,000 diseased individuals with a 5.9% mortality 

rate. The recent emergence of the coronavirus-2 causing severe acute respiratory illness 

(SARS-CoV-2) has led to the global pandemic of coronavirus disease 2019 (COVID-19). By 

April 2021, there had been more than 140 million infections reported, causing more than 

3 million fatalities globally. Antiviral medications will likely be essential to manage the 

anticipated future outbreaks of coronaviruses, despite the promising COVID-19 immun-

ization campaigns. The emergence of SARS-CoV-2 variants for which vaccinations are in-

effective suggests that antiviral medications will eventually be needed to enhance immun-

izations [5]. Similar to the common cold virus, SARS-CoV-2 is expected to continue 

spreading and provide a significant threat to our society. In this condition, antiviral med-

ications are required to treat infected patients as well as be delivered prophylactically to 

protect high-risk groups. Since therapeutic medicines that suppress coronavirus replica-

tion have the potential to enhance the lives of millions of people throughout the world, 

their discovery must be prioritized despite the lengthy drug development process. After 

SARS-CoV-1 (found in 2002) and MERS-CoV (Middle East respiratory illness, 2012), 

SARS-CoV-2 is the deadliest of the zoonotic coronaviruses that have infected humans [6]. 

Similar to other coronaviruses, SARS-CoV-2 affects the respiratory system and causes se-

vere pneumonia, which necessitates ventilatory assistance and intensive care, especially 

in the elderly and immunocompromised patients [3]. Vaccine development has advanced 

significantly, but supply and timing are currently limiting factors for its effective imple-

mentation. Several vaccinations have been developed and licensed for mass immuniza-

tion [7]. The cost of storing some vaccines at cryogenic temperatures, meanwhile, may be 

prohibitive in underdeveloped nations. Additionally, a number of changes to the SARS-

CoV-2 genome may impact how well vaccines work to fight the virus [8,9]. These results 

highlight how critical it is to simultaneously develop therapeutic options for SARS-CoV-

2 treatment. 

SARS-CoV-2 belongs to the beta group of coronaviruses, an RNA virus with only one 

strand. It has structural proteins, such as spike-like protein S and lipid membranes, as well 

as M protein (membrane), N protein (nucleo-capsid), and envelope (E) protein that give it 

an envelope appearance. The S spike protein binds to the angiotensin-converting enzyme 

2 (ACE2) receptor on mammalian lung cells, allowing the virus’s RNA genetic material to 

be released into the host cells [10]. Four nonstructural proteins are found in the virus: 

papain-like (PLpro) and CoV main proteases [Mpro; also known as 3CLpro] [11], RNA pol-

ymerase, and helicase [12]. The virus’s transcription and replication are aided by both 

proteases (PLpro and 3CLpro). The replicase genes encode two polyproteins important 

for effective viral replication and transcription [13]. A significant proteolytic process lib-

erates the functional polypeptides from these two polyproteins (pp1a and pp1ab). Prote-

olysis is mostly performed by a papain-like protease (PLpro), which cuts proteins in three 

places, and a 33.8 kDa main protease (Mpro), also called a 3C-like protease, which cuts 

proteins in 11 sites, making nonstructural proteins in the process (NSPs). As no host pro-

tease recognizes the Mpro recognition sequence, to develop drugs against SARS-CoV-2 in-

fections, this enzyme is a prime target for the development of inhibitors. The Mpro and 

PLpro enzymes, which digest viral polyproteins produced by the host cell translational 

machinery, build a functionally active viral replication complex and package it into host 

cells during viral replication [14]. Three domains make up the 3CLpro monomer, with the 

active site (Cys 145 and His 41) located between domains I and II. A larger pocket is found 
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in the gap between the third domain and the protein structure because of the long loop 

connecting it to the rest [15]. Additionally, 3CLpro is the main protease of the virus, and 

it helps in the replication of the virus, making it a valuable antiviral treatment target. Mpro 

is a crucial target for antiviral medication because the human genome lacks a homologue 

of it. Although there is no homologue of Mpro in the human genome, it is known as 3CLpro 

(3-chymotrypsin-like protease) and aids in viral replication, making it a significant target 

for antiviral treatments. Protease inhibitors efficiently stop coronavirus replication and 

proliferation by obstructing the post-translational processing of essential viral polypep-

tides [16]. Pfizer’s PF-07321332 is an oral antiviral compound that is designed to stop 

SARS-CoV-2 Mpro from modifying the active site Cys145 with its nitrile warhead. It is 

thought to be a good antiviral candidate and is currently being tested (NCT04756531, 

NCT04909853, NCT05011513, and ClinicalTrials.gov (accessed on 23 March, 2021)). The 

oral antiviral PAXLOVIDTM, which is a combination of PF-07321332 and the HIV drug 

ritonavir, which slows down the breakdown of PF-07321332, was found to reduce the risk 

of hospitalization or death by 89% compared to a placebo in nonhospitalized high-risk 

adults with COVID-19. In December 2021, the FDA gave Pfizer’s Paxlovid an emergency 

use authorization to treat mild-to-moderate COVID-19 in adults and children older than 

12 who are at least 12 years old (www.fda.gov) [17]. Crystallization of the main protease 

of SARS-CoV-2 (PDB ID: 6LU7) has been accomplished by Liu et al., which provides an 

opportunity to combat the disease by identifying it as a potential therapeutic target. When 

opposed to methods based on trial and error that involve experimental research, the use 

of the in silico method for the screening of prospective therapeutic compounds has been 

demonstrated to be both time and cost efficient. The in silico method of molecular docking 

has the capacity to screen and find potentially useful therapeutic compounds from large 

and huge compound databases. At the moment, several molecular docking studies are 

being conducted against SARS-CoV-2 receptors with drug-like compounds (ChemBridge, 

ZINC, and in-house databases). Furthermore, the majority of these docking investigations 

used quantitative structure-activity relationships (QSARs) modeling, similarity searches, 

and structure-based drug design (SBDD) [18]. 

Drug repurposing is one method for speeding up the normal drug development and 

drug discovery process. This will help to clarify the effectiveness of novel therapeutic uses 

for substances whose efficacy and safety have already been established. The importance 

of potential therapeutic compounds that function as efficient antivirals in controlling the 

pandemic is highlighted by the increasing and faster spread of SARS-CoV-2 as well as the 

appearance of novel variants. In the formation of anticoronavirus therapeutics, Mpro’s cat-

alytic activity may be hindered. In light of this background, the current research looked 

for a few phytocomponents that could suppress the Mpro protein. Phytochemicals are used 

as active drugs in drug development. In the fight against viral diseases, phytocompounds 

derived from a variety of medicinal plants may enhance immune function and combat 

pathogens. Phytochemicals and their derivatives have been the focus of numerous studies 

due to their antiviral activities and mechanisms of action, which have been demonstrated 

to be crucial in the treatment of viral diseases [19]. Over the past decade, computer-aided 

drug discovery (CADD) approaches have emerged as a crucial component of the drug 

development process, having been used to identify protein inhibitors and investigate in-

teractions between proteins and drugs and proteins themselves [20]. Despite the time and 

money required to develop a candidate drug into an approved drug, computational meth-

ods, such as virtual screening, docking, molecular dynamics (MD) simulations [21], and 

binding free energy evaluation, can be used to identify promising drug candidates from 

compound libraries. The purpose of this research was to find potential anti-SARS-CoV-2 

treatments by utilizing a multipronged strategy that included both molecular docking and 

virtual screening techniques. The information that is obtained from the screening will be 

helpful in the investigation of new inhibitors of the SARS-CoV-2 Mpro target that have the 

potential to be both effective and selective. 
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2. Materials and Methods 

2.1. Protein Preparation 

A worldwide database called the Protein Data Bank (PDB) was used to find the three-

dimensional structure of main protease (Mpro) with co crystallized ligand structure, which 

causes severe acute respiratory syndrome (PDB Id: 6LU7) (accessed on 23 March 2021) 

(https://www.rcsb.org). The main protease is composed of two chains, such as A and C. 

Chain A is the protease, and chain C is the N-[(5methylisoxazol-3yl) carbonyl] alanyl-L-

valyl-N-1-(1R,2Z) (1R,2Z)-4-(benzyloxy) (benzyloxy) [(3R)-2-oxopyprolidin-3-3yl]-4-oxo-

1-1-[(3R)-2-oxopyprolidin-3-3yl] but-2-enyl methyl)-L-lucinamide (N3 inhibitor). A pep-

tide inhibitor (N3 inhibitor) was in a complex with the protein. Water molecules, inhibi-

tors, and other heteroatoms were removed from the protein structure. All the atoms’ Am-

ber14:EHT (Amber ff14SB and ETH combined) forcefields were used to refine the protein 

structure. The missing hydrogens were added to the amino acids. The forcefield parame-

ters, missing atom types, bond stretch parameters, missing angles, and missing van der 

Waals parameters were added to all atoms. Restrained electrostatic potential atomic par-

tial charges (RESP) and AM1-BCC [22] charges were used for the protein-ligand complex, 

the RESP, and AM1-BCC charges were used for leap protein preparation and for prepa-

ration of inhibitors, respectively. The 3D protonation was used to incorporate hydrogen 

atoms into the protein structure, followed by minimization of energy with the MOE (mo-

lecular operating environment) program’s default parameters [23]. 

2.2. Preparation of Databases 

Small molecules used in virtual screening can be found in commercial databases, 

such as ZINC and ChemBridge. ZINC had millions of compounds, compared to the 

ChemBridge database that contain 168423 ligands/compounds in ChemBridge [24]. A 

Tanimoto cut-off level of 60% was used to screen the ZINC database, which resulted in 

the production of a library containing 11,193 drug-like molecules [25]. An in-house data-

base containing compounds isolated or synthesized by our collaborators, with a focus on 

natural products and structural analogues. The in-house database contains over 1600 com-

pounds, representing a wide range of structural diversity across a wide variety of core 

scaffolds and substitution patterns. Three-dimensional protonation (MMFF94x force field) 

and energy minimization (constrained minimization of 0.01 Kcal/Å2 was performed to op-

timize the ligand structures) using MOE were performed on all of the compounds in the 

in-house database. Anti-COVID-19 lead compounds can be found using structure-based 

virtual screening, which scans both in-house and commercial databases. 

2.3. Structure-Based Virtual Screening 

The drug target (receptor) and ligands’ 3D structures in the database are necessary 

for the structure-based virtual screening (SBVS) methods. In order to find new potential 

inhibitors, we employed molecular docking approach to assess the binding modes of drug 

target proteins and the ligands, called the structure-based drug design (SBDD). This helps 

to predict the improved and healthy interactions that will take place between the target 

receptor and the drug. Using the MOE, the SBVS was used to screen ZINC, in-house, and 

ChemBridge databases. Additionally, using both revised-Lipinski’s rule of 5 as well as 

Lipinski’s rule of 5, the number of screened results was significantly reduced. New lead 

hits discovered through screening a compound database of thousands of compounds are 

illustrated by the property of “drug-likeness” [26]. 

2.4. Molecular Docking 

The MOE docking software was utilized to conduct the molecular docking studies 

[27]. The retrieved compounds were docked with Mpro to further evaluate these drug-like 

compounds. The 3D protonation of the target receptor was followed by energy minimiza-

tion using the MOE software 2019’s default parameters to achieve the best possible 
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outcome. To improve the result, all of the compounds were docked into the Mpro’ binding 

pocket. MOE was used to dock the retrieved hits against the Mpro drug target. Ten confor-

mations were generated for each hit, with the top-ranked conformations of each inhibitor 

being used for advanced research. The docking analysis was scrutinized more closely, 

with docking scores and protein/hit interactions playing a larger role. In addition, the re-

sults of molecular docking were validated using MDS. 

2.5. Molecular Dynamics Simulation (MDS) 

A molecular dynamic (MD) simulation was carried out to investigate the dynamic 

behavior of proteins upon inhibitor binding at the atomic level. The docked conformations 

of the selected hits within the active pocket of Mpro were subjected to MD simulations. A 

detailed MDS analysis was carried out using the Amber14 package and the ff14SB force 

field [28]. To evaluate the stability of the previously retrieved compounds at the active 

sites of Mpro and Mpro/N3 complex, MDS was used. Tleap, a preparatory program, was 

used to build and solve the complexes. The solvated octahedral box was used in this ex-

periment. After solvating each system in an octahedral box using the TIP3P water model 

with 15 Å, the systems were neutralized by adding counterions (either Na+ or Cl−). Each 

neutralized system’s energy was reduced as much as possible through two steps of energy 

minimization in order to achieve the goal of relaxing all of the systems. These steps were 

steepest descent minimization and conjugate gradient minimization. At 50 ps, the mini-

mized complexes were heated to 300 K. Then, using a two-step process, each system was 

brought into equilibrium at a constant 1 atom and 300 K. First, we used a weak restraint 

to equilibrate the density at 50 ps. Second, we equilibrated the system without any con-

straints for 1 ns. After that, the production step was run for 150 ns. To keep the tempera-

ture stable, the Langevin thermostat was activated [29] and Berendsen barostat was used 

to monitor the system pressure. For the calculation of long-range electrostatic interaction, 

we used the AMBER18 Particle Mesh Ewald (PME) algorithm. A cut-off distance of 10 Å 

was used for long-range electrostatic interactions and van der Waals interactions. The co-

valent bonds were refined using the AMBER18 SHAKE algorithm [30]. The GPU version 

(PMEMD.cuda) [31] of AMBER18 was used to run MD simulations on four complexes 

with Mpro/N3 complexes. The AMBER18 CPPRTAJ module was used to analyze the MD 

trajectories. The interface analysis and graphical representation were carried out using 

MOE2019 software, PyMol v1.7, and Origin Pro Lab v2018. 

2.6. Assessment of Binding Free Energy 

For the calculation of binding free energy (BFE), trajectories generated by molecular 

dynamics simulations using the MMPBSA.py script were used [32]. Numerous studies 

have employed this method to evaluate the binding free energies of P-P (protein-protein), 

protein-ligand, and nucleic acid-protein complexes. The total binding free energy (Gbind) 

was calculated with the help of the following Equation: 

∆Gbind = ∆Gcomplex− [∆Greceptor + ∆Gligand] 

For each of the energy terms, for example, polar (Gpol), van der Waal forces (GvdW), 

electrostatic energy (Gele), no-polar interactions (Gnpol),Gbond showed the angle of 

bond and their dihedral energy, TS represents the absolute temperature (T) and entropy 

(S), the equation below was used to better understand how they contribute to the total 

energy (G). 

G = Gele + Gbond + GvdW + Gnpol + Gpol − TS 

The molecular mechanics generalized born surface area (MM-GBSA) method was 

used to calculate the binding free energies of the retrieved compounds/complexes and 

Mpro/N3. Since the MM-GBSA is a BFE index, the lower the value, the stronger the bond. 

The binding free energy of the retrieved and reference complexes was calculated in Amber 

18 using the python script MMGBSA.py. The decrease in potential energy over 150 ns 
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revealed that the system is stable in the case of complexes. The various conformations 

obtained over a 150 ns simulation period are examined. The MMGBSA.py script was used 

to calculate the BFE between Mpro and the retrieved hits, as well as the reference drug (N3, 

peptide inhibitor) [33]. In this study, the MMGBSA scripts from AMBER and AMBER 

Tools were used to carry out various steps required to assess the BFE of the protein-ligand 

complex via MMGBSA methods. By taking 15,000 snapshots over a 150-ns trajectory, the 

BFE was calculated. 

3. Results and Discussion 

Despite the encouraging vaccination programs against COVID-19, the use of antivi-

rals is likely going to be necessary in order to contain the unpredictable outbreaks of coro-

naviruses that will occur in the future. Vaccines have already been developed, and there 

are SARS-CoV-2 variants that are resistant to them, which is clear evidence that antivirals 

will eventually need to be used in addition to vaccines [5]. SARS-CoV-2 must, therefore, 

be controlled using an antiviral drug that is both affordable and effective. To discover new 

drugs, it is helpful to see if existing drugs or drugs with similar properties are effective in 

the treatment of viral infections. The traditional methods of drug discovery take a long 

time and are inefficient [34]. According to an in silico study, the N3 inhibitor blocks the 

active catalytic site of HCov-NL-63, preventing its biological function [35]. The current 

project aimed at performing structure-based virtual database screening, molecular dock-

ing, and drug-likeness evaluations of potential compounds. With the help of this method-

ology, potent drug candidates were found to bind closely to the Mpro of the SARS-CoV-2 

catalytic site and limit its proteolytic activity. Through simulation approaches, potential 

anti-SARS-CoV-2 Mpro can be identified by using the structure of the COVID-19 virus Mpro 

in complex with N3. SARS-CoV-2 Mpro candidate inhibitors were virtually tested using 

three databases (ChemBridge, ZINC, and in-house). 

3.1. Structure-Based Virtual Screening 

One of the most useful and effective in silico techniques for the drug design process 

is the structure-based virtual screening (SBVS) method. SBVS makes an effort to anticipate 

the interaction mode that will result in the formation of a stable complex between two 

molecules. It does this by employing scoring functions, which measure the force of non-

covalent interactions that occur between a receptor and an inhibitor. Therefore, scoring 

functions are the primary factors that determine whether or not SBVS software is success-

ful. It is possible to get different results from different software programs, even when uti-

lizing the same input, because these programs all employ different algorithms to perform 

SBVS, which means that there are many distinct software programs that are used to per-

form SBVS. In SBVS, the three-dimensional structure of the target protein is already 

known, and the purpose of the process is to choose ligands from a candidate database in 

such a way that they will have a greater affinity for the three-dimensional structure of the 

target. Molecular docking is a computer approach that can be used to perform VS. During 

this procedure, ligands are moved around in three-dimensional space in an effort to locate 

a target and ligand combination that maximizes the scoring function. The ligands in the 

database are ranked according to the highest score they received, and the highest-scoring 

ones are the ones that can be explored further. For instance, one could look at the mode 

and kind of interaction that takes place [36]. Through in silico screening, lead inhibitors 

for the COVID-19 virus Mpro can be found by using the structure of the COVID-19 virus 

Mpro in complex with N3. To do this, MOE was used to dock possible binding compounds 

from the ChemBridge, ZINC, and in-house databases. All the compounds from the differ-

ent databases (ChemBridge, ZINC, and in-house) were used for virtual screening using 

MOE software with the Mpro. Finding hits/compounds that were chemically and structur-

ally comparable required the SBVS of 3D databases, including the in-house, ChemBridge, 

and ZINC databases. To find prospective, potential, and new inhibitors, VS was per-

formed on the in-house database, which included 1600 ligands, as well as the ZINC and 
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ChemBridge databases. Five hits from the in-house database, 50 hits from ChemBridge, 

and 16 hits from the ZINC database were all reported by the SBVS. To verify the dragga-

bility of the hits, the retrieved results from the commercial database were also subjected 

to Lipinski’s rule of five, while the results from the in-house database were treated with a 

modified version of Lipinski’s rule of (5) five. According to Lipinski’s rule of (five) 5, drug-

gable molecules must have the log S-score ≤ 5, a MW < 500 Dalton, an HBA of <10, a 

log p-score of ≤5, and an HBD of <5. These factors are all indicators of H-bond donors. 

Molecules which did not fit these requirements; their absorptions would be unsatisfactory 

[37]. On the other hand, the “modified Lipinski’s rule of five” suggests that molecules 

having MW > 500 logP, HBD greater than 5, and HBA greater than 10 exhibit good ab-

sorption. After running the retrieved hits via both Lipinski’s rules [38], it was discovered 

that, retrieved hits from 49/50 ChemBridge database, 7/16 ZINC database, and 3/5 (in-

house database) were following both rules effectively. Subsequently, the 3/5 (in-house) 

and 56/66 (commercial databases) retrieved hits were further decreased for further analy-

sis using a molecular docking strategy. 

3.2. Molecular Docking 

By docking all the hits from the 3/5 (in-house database) and 56/66 (commercial data-

bases) using the Mpro binding pockets via MOE, results in this study were further reduced 

and refined. In comparison to the standard drug (N3), the docking scores of our refined 

hits were considerably good (Table 1). For each ligand in the retrieved findings, ten dis-

tinct conformations were generated, and all hits having high conformations were sorted 

and kept in a database file for subsequent analysis. We observed that 3/5 in-house hits, 

7/49 ChemBridge database hits, and 5/7 ZINC database hits were best on the basis of dock-

ing scores and, thus, were selected for further analysis. Furthermore, the top-ranked con-

formations of 3/5 hits (in-house), 3/5 hits (ZINC database), and 2/7 hits (ChemBridge da-

tabase) were well accommodated inside the active site of the Mpro drug target and were 

implicated in several interactions at the active sites of the target protein. From three dif-

ferent databases (ChemBridge, ZINC, and in-house database), docking calculations re-

vealed eight chemically varied molecules having a better binding affinity towards SARS-

CoV-2 Mpro as compared to N3. Docking studies indicated that the Mpro drug target exhib-

its better docking scores and considerable polar contacts with the hits due to the presence 

of electronegative capabilities. Table 1 shows the results of molecular docking. The re-

trieved potential antiviral (anti-COVID19) hits were found to be well-fitted inside the Mpro 

drug target (Figure 1). The compounds reported in Table 1 were ChemBridge, ZINC, and 

in-house database compounds, and these retrieved compounds were piperidine deriva-

tive, tetrahydrothiophene derivative, triazin analog, pyridazine derivative, triazolo pyri-

dine and quinoxaline derivatives, respectively. These compounds have a role in the inhi-

bition of the MPro target [39]. 
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Figure 1. The Mpro protein’s molecular surface representation with an overlay of all retrieved active 

hits in the binding pocket. The ZINC44928678, ZINC08535852, 12-quinoxaline derivative, and 

ChemBridge63310525 active ligands were represented by purple, dark brown, pink, and cyan col-

ors, respectively. 

Table 1. The finalized lead hit compounds’ 2D structures and docking values. 

S. 

NO 

Compound 

Names 
Structures 

Docking 

Scores 

1 ZINC08535852 

 

−41.3801 

2 ZINC44928678 

 

−41.0291 

3 ZINC72171104 

 

−39.5487 

4 
12-quinoxaline 

derivative 

 

−38.7102 
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5 
ChemBridge63310

525 
−38.0478 

6 
18-quinoxaline 

derivative 

 

−37.5300 

7 
ChemBridge53208

972 

 

−35.4302 

8 
25-quinoxaline 

derivative 

 

−34.3177 

Refe

renc

e     

N3 −29.5841 

3.3. Analyses of the Binding Interactions of Finally Selected Drug-like Compounds 

It is widely recognized that molecular docking provides essential guidelines for the 

design and discovery of novel drugs. The S-score quantifies the strength of the receptor-

ligand interactions. The compounds can be chosen as good drug compounds based on 

their docking score (S-score). According to the docking study, all finalized hits exhibited 

favorable contacts with the residues of the Mpro target’s binding site when compared to 

the positive control (Table 2). 

Out of all of the hits identified by using the SBVS against the ZINC, ChemBridge, 

and in-house databases, ZINC08535852 (ZINC database), with a docking score of 
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−41.3801, was the most active ligand of the ZINC database and demonstrated strong in-

teractions with the active site residues of the Mpro of SARS-CoV-2. Figure 2 depicts the 

docking conformations of a selected compound during the docking process. When used 

in conjunction with the 13 amino acid residues in the active site of the main protease, the 

ligand formed seven hydrogen bonds within three degrees of freedom with five amino 

acid residues, namely Cys 44, Asn 51, Pro 52, Tyr 54, and Arn 188 residues (Figure 2). 

When there are more hydrogen bonds, the binding efficiency and inhibition are both in-

creased as a result [40]. Six-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one moiety: The sulfur 

atom of Cys 44 amino acid formed two hydrogen donor interactions with the nitrogen and 

methyl groups of the triazin-5(2H)-one moiety. During the formation of the H-donor in-

teraction between the carbon atom of the 3-methoxycyclohex-1-ene moiety and the carbon 

atom of Asn 51, an H-donor interaction is formed. The nitrogen atoms of the 5-methyl-4,5-

dihydro-1,2,4-triazole moiety interacted with the carbonyl oxygen of the Pro 52 and the 

amino group of the Arg 188 through H-donor and H-acceptor bonds formed by the amino 

group of the Arg 188. It has also been discovered that the nitrogen and oxygen atoms of 

the 6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one moiety of the compound form H-bonds 

with the active residues Tyr 54 and Arg 188 of the main protease, confirming previous 

findings. Further, the hydrophobic interactions between His 41 and Met 49 are demon-

strated (Figure 2). 

 

Figure 2. The binding mechanism of the ZINC08535852 ZINC database ligand within the active site 

of the Mpro protein (A) before MDS and (B) after MDS. 

The compound ZINC44928678 (ZINC database) had a good docking score of -41.0291 

and good interactions with the target protein’s active residues. This compound formed 

seven polar interactions with the active site residues (Thr 24, His 41, Cys 44, Met 49, Cys 

145, and Met 165) according to its binding mode (Figure 3). The carbonyl oxygen and car-

bon atoms of the 2-(pyridazin-4-ylamino) acetaldehyde moiety of the compound inter-

acted with His 41 and Met 165 residues. The toluene moiety’s methyl group formed two 

H-donor bonds with the Thr 24 residue, while Met 49 showed H-donor interaction with 

the toluene moiety’s carbon atom. The dimethyl groups of the 5,6-dimethyl-7H-pyrrolo 

[2,3-c] pyridazine moiety of the ligand form two H-donor linkages with Cys 145. 
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Figure 3. The binding style of the ZINC44928678 ZINC database hit at the Mpro protein’s active site 

(A) before and (B) after MDS. 

The 12-quinoxaline derivative from the in-house database had the highest activity 

among the compounds, with a docking score of −38.7102. It was predicted, based on the 

docking conformations of the ligand 12-quinoxaline derivative, that the 12-quinoxaline 

derivative would form hydrophilic and hydrophobic contacts with the active residues of 

the Mpro protein. These active residues include Cys 44, Met 49, Asn 51, Pro 52, Asn 53, Leu 

141, Asn 142, Gly 143, Cys 145, His 164, Met 165, Glu 166, His 172, Arg 188, Gln 189, and 

Thr 190 of Mpro protein. It was revealed that the compound formed eight polar interactions 

with the active residues of the receptor. The H-bond was observed between -NH group of 

the Asn 142 and nitrogen atom of the thiazolo [2,3-c][1,2,4]triazole moiety of the inhibitor. 

Cys 145 residue forms two H-acceptor bonds with the nitrogen atoms of the thiazolo [2,3-

c][1,2,4]triazole moiety. The carbonyl oxygen atom and –NH group of the Glu 166 residue 

are connected to the OH group of the phenol moiety of the hit via H-bonds. His 164, Met 

165, and His 172 residues were seen to form three H-bonds with the 1,4-dihydroquinoxa-

line moiety of the compound, as shown in Figure 4. 

 

Figure 4. The binding mode of the 12-quinoxaline derivative of the in-house database within the 

active site of Mpro protein (A) before and (B) after MDS. 

ChemBridge63310525 retrieved active hits from the ChemBridge database, forms 

seven hydrogen bonds, and has a high docking score (−38.0478). On the binding site, 
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ChemBridge63310525 interacts with five important residues and comes out on top. Met 

49, Cys145, Glu 166, Gln 189, and Thr 190 form hydrogen bonds with the moieties of the 

ChemBridge63310525. The hit’s furan-2-ylmethanol moiety binds to Cys 145 and Glu 166 

via polar bonds. By hydrogen bonding, the 1-(pyrrolidin-1-yl)butan-1-one moiety inter-

acts with Gln 189 and Thr 190. Met 49 forms H-bonds with the piperidin-1-ium moiety of 

the ligand. Asn 51, Glu166, and Pro 52 interact hydrophobically with the rest of the struc-

ture (Figure 5). The compounds that interacted more strongly than the reference inhibitor 

with the Mpro of SARSCoV-2 are listed in Table 1. 

 

Figure 5. The active site of the Mpro protein (A) before and (B) after MDS, showing the binding 

mechanism of the obtained inhibitor ChemBridge63310525 from the ChemBridge database. 

The retrieved hit compounds are powerful and polarizable due to the electronic 

cloud density of benzene rings (delocalized electrons), the presence of OH and NH, as 

well as electron repulsion groups (-nitro). All hits from the study displayed good Mpro 

interactions and docking scores. All of the lead compounds’ docking scores and 2D struc-

tures are given in Table 1. 

3.4. MD Simulation Analysis of the Final Lead Hit/Mpro Complexes 

The AMBER 18 software was used to perform a 150-ns MDS on the retrieved hit com-

pound/Mpro complexes in order to determine their well-stabilized and equilibrated struc-

tures. The AMBER 18 software was used to perform MDS on the topmost active retrieved 

compound/Mpro systems, two inhibitors from the ZINC database (ZINC08535852, 

ZINC44928678), one hit compound from the in-house database (12-quinoxaline deriva-

tive), and one compound from the ChemBridge database (ChemBridge63310525) in com-

plex with the Mpro drug target, as well as the reference-ligand (N3) Mpro complex. Calcu-

lating the RMSD of the backbone atoms was used to check the stability of the four finalized 

ligand/receptor complexes. The amplitudes of the C atoms’ fluctuation amplitudes were 

inversely proportional to the system’s stability. The lower the RMSD variation, the more 

stable the system is, and the fluctuations of the C atoms in the system [41] will be smaller. 

The RMSD plot is used to understand the complex’s stability, while the RMSF plot is used 

to understand its structural flexibility (Figure 6). 

MDS equilibration was completed using the ZINC08535852/Mpro system at 150 ns. 

The RMSD graph showed that the amplitudes of the fluctuations rose with an RMSD score 

of 3 Å from 0 to 40 ns, and then the score decreased to 1.8 Å with slight fluctuations after 

40 ns. After 140 ns up to 150 ns, the system was completely stabilized, with an RMSD of 

1.8 Å and the least amount of fluctuations (Figure 6A). 
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The third compound is ZINC44928678 in complex with Mpro. This complex was then 

subjected to the MDS to produce an energy-minimized and stabilized structure. The sys-

tem’s RMSD graph revealed that the complex was stable from 0 to 100 ns of MDS at 1.5 Å, 

but that after MDS progression from 100 to 120 ns, their RMSD score increased to 2 Å as 

the system became unstable. The system was then stabilized after 120 ns, displaying 

smaller fluctuations with a slight increase in RMSD 2.5 Å, as shown in Figure 6B. 

Mpro in complex with the 12-quinoxaline derivative was the second most active com-

pound, with an RMSD of approximately 2.4 Å during the 150 ns simulation. The MDS of 

this ligand in contact with the Mpro can be shown in Figure 6C. This MDS was computed 

using RMSD scores of 2.4 Å, and the results are shown in Figure 6C. The RMSD graph of 

this system shows that the fluctuations became less and obtained an RMSD score of 2.4 Å 

after executing the 120–150 ns of MDS. 

The ChemBridge63310525/Mpro (hit ligand/protein) complex’s RMSD graph dis-

played the highest variations from 0 to 140 ns, with an increase of approximately 3.5 Å. 

Soon after 140 ns of MDS, smaller fluctuations were seen in the complex system’s struc-

tural backbone, with an RMSD of approximately 2.8 Å (Figure 6D). Mpro undergoes con-

formational changes, as evidenced by the differences in the backbone RMSD in hits/Mpro. 

 

Figure 6. (A−D) Plot of the lead hits/Mpro and ref-ligand (N3)/Mpro complexes’ root mean square 

deviations. 

The fluctuations of the protein residues upon ligand binding, were analyzed by root 

mean square fluctuation (RMSF) (Figure 7A–D). The stability of a complex can be inferred 

from its RMSF (root mean square fluctuation) trajectories. An unstable bond is indicated 

by a plot with a lot of movement. A low number, on the other hand, or less fluctuation, 

denotes well-structured and less distorted complicated regions. RMSF is an equilibrium 

property that is calculated from the entire MD trajectory, so is its time average. For Mpro 
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with residues containing the four possible inhibitors, the RMSF of backbone atoms was 

computed. The active site residues that interacted with the ligands were discovered to be 

stable and showed minimal variations over time, confirming the stability of the molecules 

with the target protein. The main variations, in contrast, were associated with regions that 

were far from the ligand active site, and others were discovered in the flexible loop region. 

Additionally, it was noted that the RMSF variations in the complexes were smaller than 

those in the other complex, indicating that it had substantially less structural mobility than 

the other complex. All of the systems exhibited patterns that were strikingly similar, as 

presented in Figure 7A–D. Figure 7A–D clearly show the overall RMSF value for all com-

plexes. 

 

Figure 7. (A−D) Plot of the root mean square fluctuation of the identified lead hits/Mpro (purple, 

blue, olive green, and yellow, respectively) and ref-ligand (N3)/Mpro (red color) complexes. The var-

ious color schemes illustrated various hits/Mpro complexes and their related trajectories. Each system 

possessed the residual flexibility. On the graph, the number of residues is shown along the x-axis, 

and the RMSF is displayed along the y-axis in angstroms. 

3.5. Radius of Gyration (Rg) 

The relationship between Rg and time was plotted in order to determine the system’s 

compactness. Low Rg values are explained by the structure’s high stability and closed, 

compact structure, whereas high Rg values are explained by the structure’s low compact-

ness when compared to conformational entropy (more folded). Figure 8 shows the simu-

lation Rg values for the four compounds, which are easily discernible (as shown). In the 

complex, the Rg values remained stable, indicating that the binding of these molecules 

does not alter the protein’s structure. The retrieved four ligands/MPro complexes have 

shown low Rg values (compacted conformation of complexes) as compared to the refer-

ence ligand (N3)/MPro, therefore, indicating that the obtained hits were active inhibitors. 
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The Rg is a parameter for assessing the compactness and overall dimension of the protein, 

which in turn signifies the folding and unfolding of the protein. The lower the gyration 

values, the more folded the protein is, and vice versa. Therefore, Rg was calculated to 

determine whether the compounds/ligands maintained the folding of the system. Con-

densed architecture and size are supported by the complexes’ Rg range (Figure 8A–D). 

 

Figure 8. (A−D) The radii of gyration of the identified lead hits/Mpro (purple, blue, olive green, and 

yellow, respectively) and ref-ligand (N3)/Mpro (red color) complexes were plotted. 

3.6. Molecular Mechanics with Generalized Born and Surface Area Solvation (MMGBSA) 

This module also looked at the binding energy calculation of selected top compounds 

based on their affinity for the active site binding pocket. ZINC08535852, the first lead, had 

an MMGBSA score of −39.5546 Kcal/mol, whereas the active lead in in-house database, 12-

quinoxaline derivative, had an even lower MMGBSA score of −37.8210 Kcal/mol. The 

MMGBSA binding free energies of the ZINC44928678 and ChemBridge63310525 are 

−35.8398 Kcal/mol and −33.2041 Kcal/mol, respectively. These results lead to the conclu-

sion that the retrieved hits had a higher free binding energy score than the reference 

(−20.7812 Kcal/mol) (Table 3). In order to confirm the possible uses of these powerful in-

hibitors in COVID-19, we will soon design further experimental studies to test the inhibi-

tory capacity of compounds towards SARS-CoV-2. 
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Table 2. Details of binding interactions against COVID-19 Mpro. 

Compoun

ds IDs 
Ligand Receptor 

Interactio

n 
Distance 

E 

(kcal/mol) 

ZINC0853

5852 
C1 1 SG CYS 44 H-donor 3.91 −0.2 

 N1 3 SG CYS 44 H-donor 3.34 −0.6 

 N4 7 O PRO 52 H-donor 3.09 −1.1 

 C6 9 O ASN 51 H-donor 3.22 −0.1 

 NH 11 O Tyr 54 H-donor 3.69 −0.1 

 N3 6 NH1 ARG 188 H-acceptor 3.01 −0.7 

 O2 19 CA ARG 188 H-acceptor 3.85 −0.1 

ZINC4492

8678 
C1 1 OG1 THR 24 H-donor 3.65 −0.1 

 C1 1 O THR 24 H-donor 3.65 −0.1 

 C6 6 SD MET 49 H-donor 3.82 −0.2 

 C14 18 SD MET 165 H-donor 3.58 −0.1 

 C16 21 SG CYS 145 H-donor 3.88 −0.1 

 C17 22 SG CYS 145 H-donor 4.1 −0.3 

 O1 20 NE2 HIS 41 H-acceptor 2.98 −0.9 

ZINC7217

1104 
N2 8 SG CYS 145 H-donor 3.33 −2.2 

 N5 20 O THR 190 H-donor 2.83 −4.7 

 5-ring CA ASN 142 pi-H 4.1 −0.4 

 5-ring CA MET 165 pi-H 3.51 −0.3 

 6-ring CB MET 165 pi-H 3.59 −0.5 

 6-ring CD PRO 168 pi-H 4.88 −0.3 

 5-ring CD PRO 168 pi-H 4.43 −0.3 

 5-ring CA GLN 189 pi-H 3.64 −1 

 6-ring CG GLN 189 pi-H 4.21 −0.7 

12-

quinoxalin

e 

derivative 

C3 3 ND1 HIE 172 H-donor 3.86 −0.2 

 C24 24 O HIE 164 H-donor 3.43 −0.3 

 O25 25 OE1 GLU 166 H-donor 2.53 −4.7 

 O25 25 NH GLU 166 H-acceptor 2.4 −4.8 

 N12 12 N CYS 145 H-acceptor 3.12 −0.8 

 N11 11 N CYS 145 H-acceptor 3.12 −0.8 

 N4 4 CA MET 165 H-acceptor 3.25 −0.1 

 O25 25 N GLU 166 H-acceptor 2.86 −1.3 

18-

quinoxalin

e 

derivative 

C3 3 SG CYS 44 H-donor 2.97 −0.2 

 O27 27 NH ASN 142 H-donor 2.8 −0.6 

 O27 27 O GLY 143 H-acceptor 2.5 −0.9 

 C24 24 NH GLY 143 H-acceptor 1.6 −1.8 

 C26 28 SG CYS 145 H-donor 2.39 −0.1 

 6-ring CG MET 49 pi-H 4.73 −0.1 

 6-ring CG MET 49 pi-H 3.86 −1 

 C3 3 CA MET 49 pi-H 4.23 −0.8 
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25-

quinoxalin

e 

derivative 

C3 3 SD MET 49 H-donor 2.84 −0.2 

 O26 26 O GLU 166 H-donor 2.7 −2.3 

 O25 25 NH GLU 166 H-donor 2.8 −2.1 

 N13 13 CB THR 190 H-acceptor 2.58 −0.2 

 N7 7 CA GLN 189 H-donor 3.36 −0.3 

 N10 10 NH ARG 188 H-acceptor 3.31 −0.1 

 5-ring N THR 190 pi-H 3.67 −0.3 

ChemBrid

ge6331052

5 

C9 9 O ARG 188 H-donor 2.93 −0.5 

 C11 11 NH ARG 188 H-donor 2.5 −0.8 

 C8 8 SD CYS 145 H-donor 3.59 −0.1 

 O19 19 O GLU 166 H-donor 3.44 −0.4 

 C14 14 O MET 49 H-donor 3.13 −0.2 

 C22 22 OH THR 190 H-acceptor 2.53 −0.1 

 C20 14 C MET 49 H-donor 3.13 −0.2 

ChemBrid

ge5320897

2 

C15 22 O HIE 41 H-donor 3.75 −0.1 

 C18 28 O HIP 164 H-donor 3.3 −0.2 

 C19 29 SD MET 49 H-donor 4.48 −0.1 

 C18 28 5-ring HIE 41 H-pi 3.58 −0.1 

 6-ring CA ARG 188 pi-H 4.02 −0.4 

 6-ring CD ARG 188 pi-H 4.42 −0.1 

 5-ring CD ARG 188 pi-H 4.52 −0.1 

 6-ring N GLN 189 pi-H 4.76 −0.3 

N3 

(reference 

ligand) 

N 13 O THR 190 H-donor 2.85 −2.6 

 N 23 O GLU 166 H-donor 2.83 −4.8 

 N 39 OE1 GLN 189 H-donor 2.93 −3.3 

 O 85 N GLY 143 H-acceptor 2.80 −1.0 

 CD1 50 5-ring HIS 41 H-pi 4.08 −0.5 

The interaction reports of the selected hits (ZINC08535852, ZINC44928678, 12-

quinoxaline derivative, ChemBridge63310525, and N3 (reference ligand)) were mentioned 

after the MD simulations in Table 2, while the remaining data were after the docking, i.e., 

the docked complexes’ interactions reports. 

Table 3. The average backbone RMSD and binding free energies for the best four complexes. The 

data are reported as the average ± standard error of the mean (SEM). 

Compound Names RMSD (Å) 
Binding Free Energies 

(Kcal/mol) 

ZINC08535852 (ZINC database) 1.8 ± 0.005 −39.5546  ± 0.3671 

ZINC44928678 (ZINC database) 2.5 ± 0.005 −35.8398 ± 0.1901 

12-quinoxaline derivative in-house 

database 
2.4 ± 0.005 −37.8210 ± 0.5091 
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ChemBridge63310525 (ChemBridge 

database) 
2.8 ± 0.005 −33.2041 ± 0.2102 

Reference (N3) 2.8 ± 0.0126 −20.7812 ± 0.4214 

4. Conclusions 

The primary goal of this study was to conduct a SBVS of compounds from the in-

house, ZINC, and ChemBridge databases, as well as molecular docking and MDS of se-

lected compounds and reference ligands (N3), as well as an estimation of binding interac-

tions against the Mpro of SARS-CoV-2. Three active inhibitors, the top active one hit from 

each database, from the ZINC, ChemBridge, and in-house databases (ZINC08535852, 

ChemBridge63310525, and 12-quinoxaline derivative, respectively) showed a strong in-

teraction against the active site of the Mpro of SARS-CoV-2. These compounds were iden-

tified as the most active anti-viral compounds ZINC08535852, ChemBridge63310525, and 

12-quinoxaline derivative, against the Mpro of SARS-CoV-2. These results show that these 

compounds have the potential to be employed as a medication to treat SARS-CoV-2 ill-

ness. If in vitro and in vivo clinical testing are followed, the compounds could potentially 

serve as a candidate for the COVID-19 regimen. 
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