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Abstract: The aim of this study was to investigate the utility of multiple linear regression (MLR) for the
estimation of reference evapotranspiration (ETo) of the Peloponnese, Greece, for two representative
months of winter and summer during 2016–2019. Another objective was to test the number of inputs
needed for satisfactorily accurate estimates via MLR. Datasets from sixty-two meteorological stations
were exploited. The available independent variables were sunshine hours (N), mean temperature
(Tmean), solar radiation (Rs), net radiation (Rn), wind speed (u2), vapour pressure deficit (es − ea),
and altitude (Z). Sixteen MLR models were tested and compared to the corresponding ETo estimates
computed by FAO-56 Penman–Monteith (FAO PM) in a previous study, via statistical indices of
error and agreement. The MLR5 model with five input variables outperformed the other models
(RMSE = 0.28 mm d−1, adj. R2 = 98.1%). Half of the tested models (two to six inputs) exhibited very
satisfactory predictions. Models of one input (e.g., N, Rn) were also promising. However, the MLR
with u2 as the sole input variable presented the worst performance, probably because its relationship
with ETo cannot be linearly described. The results indicate that MLR has the potential to produce
very good predictive models of ETo for the Peloponnese, based on the literature standards.

Keywords: multiple linear regression; linear regression; FAO Penman–Monteith; reference
evapotranspiration; Peloponnese; Greece

1. Introduction

Reference evapotranspiration (ETo) as a climate parameter plays a pivotal role in
climate crisis research and in water resources management. There are complex interactions
between evapotranspiration and key environmental components, such as groundwater
and streamflow, as well as with anthropogenic and climatic impacts, such as wildfires, air
pollution, land use/land cover (LULC) change, crop intensification, and construction [1–4].
Moreover, ETo is directly related to the productive sector of agriculture, since crop water
needs are usually estimated as a function of ETo with a crop-specific coefficient [5]. Irri-
gation system design and precision irrigation techniques demand accurate determination
of ETo [6,7]. Since the management of finite resources such as water is challenging, the
exploitation of accurate predictive tools of ETo, which are still easy to apply, is of major
importance in an interdisciplinary context [8–10]. Another important contribution of ETo is
its use in computing actual evapotranspiration, which is difficult to acquire [11,12].

The measurement of the ETo is demanding. Therefore, several methods for esti-
mating ETo have been developed, ranging from simple empirical or physically based
models [13,14] to complex algorithms and techniques, such as fuzzy logic and machine
learning (ML) [15–21]. These methods employ data from meteorological stations, or re-
trieved data via remote sensors [22–32]. The FAO-56 Penman–Monteith (FAO PM) equation
(Equation (1)) is the most established method used to compute ETo worldwide. How-
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ever, it requires a large number of meteorological variables, which are not always easy to
retrieve [33,34].

ETo =
0.408∗∆(Rn−G) + γ 900

T+273∗u2(es− ea)
∆ + γ(1 + 0.34∗u2)

(1)

where Rn is the net radiation (MJ m−2 d−1), G is the soil heat flux (MJ m−2 d−1), T is the air
temperature (◦C), es − ea is the vapour pressure deficit (kPa), ∆ is the slope of the vapour
pressure curve (kPa ◦C−1), u2 is the wind speed at 2 m distance from the surface (m s−1),
and γ is the psychrometric constant (kPa ◦C−1) [33].

On the other hand, there is a handful of empirical methods in the literature utilising
limited climatic parameters (e.g., the Hargreaves–Samani equation [35]). However, FAO PM
usually outperforms them in terms of accuracy and consistency, especially over different
seasons of the year [36]. As a general rule, the level of prediction accuracy generally
improves with the increase in input parameters [37]. The cost of the necessary sensors,
the equipment, and the maintenance of meteorological stations, along with the difficult
environmental conditions at several regions, result in data unavailability or at least scarcity,
especially for the developing countries. Therefore, an effort to reduce the quantity of data
required for predictive models is highly recommended, provided that satisfactory accuracy
is secured [38]. Air temperature (minimum, maximum, and mean values) is the most basic
parameter. In a parsimonious prospect, parameters that are suitable explanatory variables
for ETo modelling can be easily measured (i.e., air temperature), or can be either measured
or computed (i.e., wind speed, solar and net radiation, sunshine hours, vapour pressure
deficit). The computation of any missing data can be carried out using air temperature,
Julian day, and latitude, according to FAO guidelines [33,39,40].

Among the highly complex methods that have been tested lately, multiple linear
regression (MLR) has been suggested by a number of recent studies as an adequate method
for estimating climatic parameters such as air temperature, growing degree days, and solar
radiation [41–44]. Remotely sensed data, especially MODIS and Landsat products, have
gained ground in MLR modelling lately, as inputs for the estimation of climatic parameters,
such as land surface temperature and surface urban heat island [45–47]. The added value
of MLR is that it is a simple, comprehensible method, producing easily interpretable results,
while requiring short real-time control and low computational effort [48]. The challenge lies
in the ability of MLR to produce sufficiently accurate predictions of ETo over an area with
inhomogeneous LULC types and relief, and which presents distinguished differences in
meteorological parameters over short distances (http://climatlas.hnms.gr/sdi/?lang=EN
(accessed on 3 May 2022)) [36].

The recent relevant literature is rather limited compared to more complex methods
such as artificial neural networks (ANNs). Perugu et al. developed MLR models to
estimate ETo for Andhra Pradesh, India, based on temperature, sunshine hours, wind
speed, and relative humidity as independent variables [49]. They put forward these
models for regions with similar climatic conditions. The regression models developed
earlier by Mallikarjuna et al. for the same area, utilizing the same explanatory variables,
also showed a satisfactory performance in ETo estimation at daily scale (i.e., R2 between
89.1–97% and RMSE between 0.26–0.49 mm d−1) [50]. Khoshravesh et al. applied non-
linear and Bayesian regression models for three arid regions in Iran, and the best results they
yielded were R2 > 95% and a RMSE of about 4.00 mm d−1 [51]. Tabari et al. evaluated the
performances of neuro-fuzzy models, multiple linear regression, and multiple non-linear
regression models, along with temperature-based and radiation-based models for a semi-
arid region in Iran [52]. The model with mean temperature, solar radiation, wind speed,
and relative humidity as inputs displayed the best performance (RMSE = 0.552 mm d−1,
R2 = 96%, and MAE = 0.442 mm d−1). The model with only mean air temperature as an
input produced the poorest estimates. The non-linear regression improved RMSE, R2,
and MAE to 0.452 mm d−1, 97.6%, and 0.331 mm d−1, respectively. These values were
considered acceptable for MLR predictions of ETo in a semi-arid region [52]. Shirsath
and Singh found that all MLR models outperformed the climate-based Penman, Priestley–
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Taylor, and Stephens and Stewart models in predicting daily pan evaporation, although
the best values of the evaluating measures were R2 = 61% and RMSE = 1.597 mm d−1 [53].
These MLR models were slightly less accurate than the corresponding comparative ANN
models. Sanford et al. developed MLR equation with climate parameters (minimum
and maximum temperature and precipitation) at an annual scale (1971–2000) for Virginia
watersheds with R2 = 84.4% [54]. The MLR equation was modified in a following study
using these parameters to estimate the ET/P ratio, yielding an R2 value of 86.74% and
an RMSE = 0.067 mm d−1 for the best-fit parameters for the conterminous US [55]. The
obtained values were considered satisfactory for explaining most of the variation in long-
term average ETo across the conterminous US [55]. Although most recent articles do not
employ MLR to the assessed models, Niaghi et al. applied MLR to datasets of six stations
at Red River Valley [56]. They grouped the input combinations into air temperature-
based (Tmax, Tmin), mass transfer-based (Tmax, Tmin, wind speed), and radiation-based
(solar radiation, Tmax, Tmin) measurements. The best performance for MLR models
was for the latter inputs (RMSE = 0.68 mm d−1, MAE = 0.51 mm d−1, and R2 = 88%).
The MLR models were not sensitive to differences between local and spatial applications
compared to the heuristic models, due to their inability to depict complex relationships [56].
Ohana-Levi et al. found that the six linear regression models had much higher RMSE
values than the corresponding non-linear multivariate adaptive regression spline (MARS)
models [57]. The correlation coefficients during training and testing were 0.84 and 0.85,
respectively, for the linear models [57]. In MLR models where leaf area index (LAI) was
added as an explanatory variable, the testing RMSE profoundly improved when using
the Kc approach (the RMSE of 1.05 mm d−1 without LAI reduced to 0.81 mm d−1) [57].
Sharafi and Ghaleni compared the performance of six MLR models to empirical methods.
They found that all the MLR models outperformed the latter [58]. The obtained RMSE
values, ranging between 0.36 mm d−1 and 0.50 mm d−1, were considered excellent, so
that MLR was recommended for all climate types of Iran, from arid desert to humid [58].
An MLR model of precipitation, temperature, soil moisture, and NDVI as explanatory
variables was applied to four basins in India [59]. The ETo variance was explained by
82−91% (adj. R2) via the utilised MLR model [59]. The MLR stepwise modelling applied at
the Inner Mongolia Autonomous Region (1971–2016) demonstrated that the ETo values in
different regions were affected by different climatic parameters [60]. It is noteworthy that
ETo was found insensitive to mean air temperature for the whole area [60]. For the Megecha
catchment in Ethiopia, sunshine hours, wind speed, maximum temperature, and relative
humidity were proven to be the best explanatory variables of ETo in MLR modelling [61].

This study examines sixteen MLR models utilizing data from sixty-two meteorological
stations in the Peloponnese, a southwestern region of Greece (Table A1). The Peloponnese
constitutes a challenging testbed for ETo research, since it presents considerable inho-
mogeneities regarding relief, LULC, altitude, etc. The empirical methods of a previous
study exhibited inconsistency in terms of accuracy, with larger errors found for August
(summertime) [36]. As described, MLR is not very popular in recent literature of ETo. This
is probably because of the complex nature of ETo. However, the added value of MLR
is the simplicity and the comprehensibility of the method and the equations produced.
Furthermore, it is of importance to examine whether limited data (even one sole input
variable) can predict ETo satisfactorily. The latter would be useful for cases with sparse
data availability. Therefore, MLR for ETo estimation needs to be further investigated
since it would be a promising alternative, being easily applicable and interpretable for
interdisciplinary research and management purposes.

2. Materials and Methods
2.1. The Study Area

The Peloponnese peninsula of southwest Greece occupies about 1/6th of the Greek
territory (21,439 km2), with a population of 1,086,935 (census 2011; https://www.statistics.
gr/el/statistics/-/publication/SAM03/2011 (accessed on 19 April 2022)). The area is
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mostly hilly and mountainous. Moving from coastline to the mainland, the altitude reaches
2407 m. Its lithology, along with tectonic activity and climatic conditions, has resulted in
the formation of relief. The hydrographic network is well-developed, though with few
large rivers [62]. The most populated urban area is located at the northernmost edge, while
the broadest plain covers the northwest. Except from urban areas, which are sparsely
distributed primarily along the coastline, the main LULC types are forests, transitional
vegetation, and various crop plots (Figure 1) [63]. According to the Köppen–Geiger classifi-
cation, Peloponnese’s climate is Mediterranean, warm, with dry summers and mild winters
(classified as Csa) [64]. The annual average (1971–2000) precipitation, air temperature, and
sunshine hours range between 400 to over 2000 mm, 8–20 ◦C, and 1900–3100 h, respectively
(http://climatlas.hnms.gr/sdi/?lang=EN (accessed on 3 May 2022)).
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2.2. Methods

Ground-based datasets of daily scale from sixty-two meteorological stations run-
ning under the National Observatory of Athens, for the months August and December of
2016–2019 were utilised (Figure 1, Table A1). The selected period exhibits interest in the con-
text of climate crisis, since the two warmest years (2016 and 2019) since the pre-industrial
era are included (https://climate.copernicus.eu/copernicus-2019-was-second-warmest-
year-and-last-five-years-were-warmest-record (accessed on 23 June 2022)). August and De-
cember were selected as representative months of summertime and wintertime respectively
(http://climatlas.hnms.gr/sdi/?lang=EN (accessed on 3 May 2022)), in methodological
consistency with our previous study [36], aiming the results to be directly comparable. In
the former study, ETo was computed for the Peloponnese by FAO PM, which serves as our
reference method. In this study, multiple linear stepwise regression has been applied with
seven explanatory (independent) variables, namely mean air temperature (Tmean), wind
speed at 2 m distance from the surface (u2), solar radiation (Rs), net radiation (Rn), sun-
shine hours (N), and vapour pressure deficit (es − ea). In addition to the climate variables,
altitude (Z) was also used as an input variable, since it indirectly affects ETo [65]. Rs, Rn, N,
and es − ea were previously calculated as in Zanetti et al. [40], based on FAO guidelines for
missing climate data (functions of Julian date and station latitude) [33]. Since the need to
limit the required variables in ETo modelling is underlined in the recent literature [66], the
possibility of only a few variables or even only the most easy-to-acquire variable, Tmean,
to produce satisfactorily accurate predictions of ETo for the Peloponnese was investigated.
MLR as a statistical technique employs several explanatory variables and one response
(dependent) variable, which is ETo in the present study. The aim of MLR is to model the
linear relationship between the explanatory variables and the response variable, as an
extension of ordinary least squares regression, since it incorporates more than one explana-
tory variable. In other words, MLR aims to find the linear function that minimizes the sum
of the squares of errors (SSE) between the observed and the predicted data. An advantage
of this method is the easy interpretation of the coefficients, which are generated in the
model with low computational effort, in comparison to more complex techniques, such
as energy balance methods and artificial intelligence algorithms [13–21,24–30,37–43,67–75].
For the MLR model, the response (dependent) variable y is assumed to be a function of
k independent variables xi. The general form of the equation is computed as follows
(Equation (2)):

yi = b0 + b1x1 + . . . + bkxk + e (2)

where b0 and bi stand for the fitting constants; xi represents the ith observation of each of
the explanatory variables, yi stands for the ith prediction of ETo, and ei is a random error
term representing the remaining effects of variables on y, which are not covered by the
model (residuals). The least squares criterion for the minimum sum of squares of error
terms is usually applied to determine the fitting constants [61]. Stepwise MLR has the
advantage of presenting the MLR models, beginning from the most influential parameter of
the input combination (which explains the larger percentage of ETo variability, expressed by
adj. R2) [60]. It presents the models in ascending order of adj. R2, and it may omit several
input variables in case they do not meaningfully contribute to the variability explanation.
This meaningful contribution of one variable is determined via the adj. R2, as opposed to
R2, which generally increases with the number of inputs. Therefore, adj. R2 and R2 are not
directly comparable, since the latter would generally have a greater value than the former
(Table 1).

https://climate.copernicus.eu/copernicus-2019-was-second-warmest-year-and-last-five-years-were-warmest-record
https://climate.copernicus.eu/copernicus-2019-was-second-warmest-year-and-last-five-years-were-warmest-record
http://climatlas.hnms.gr/sdi/?lang=EN


Hydrology 2022, 9, 124 6 of 15

Table 1. The statistical measures employed to evaluate the performance of the regression models.

Formulae of the Indices

RMSE =

√
∑n

i=1(pi−ri)
2

n (2) NRMSE =

√
∑n

i=1(pi−ri)
2

n
r (3)

MAE = ∑n
i=1|pi−ri|

n (4) adj.R2 = 1− (1−R2)(1−n)
n−k−1 (5)

R2 =(
n ∑n

i=1 pi oi−∑n
i=1 pi ∑n

i=1 oi√
n ∑n

i=1 pi
2−(∑n

i=1 pi )
2∗
√

n ∑n
i=1 oi

2−(∑n
i=1 pi )

2

)2

(6)
IoA = 1− ∑n

i=1(pi−ri)
2

∑n
i=1(|pi−r|−|ri−r|2

(7)

The predicted ETo values from the regression models were then compared against
the values of FAO PM via statistical indices (Table 1). Specifically, the error levels between
predicted and reference values were computed via measures such as root mean square
error (RMSE, mm d−1), normalised root mean square error (NRMSE, %), mean absolute
error (MAE, mm d−1), and standard error of the predicted value (SE, mm d−1) (Table 1,
Equations (2)–(4)). The error values follow the magnitude of the computed ETo values,
except for NRMSE, which is expressed in *100% (Table 1, Equation (3)). Moreover, two
measures that express the percentage of ETo variability explained by the independent
variables of the model and the agreement between predicted and reference values were
utilised, namely the adjusted coefficient of determination (adj. R2) and the index of agree-
ment (IoA) (Table 1, Equations (5) and (7)). These measures are suitable for statistical
analyses of evapotranspiration, [57,76,77]. At last, residual analysis was performed using
the Durbin–Watson index (D–W), Cook’s Distance (Cook’s D), and Centred Leverage. D–W
is used to detect the presence of autocorrelation in the residuals. Values around 2.0 (usually
between 1.50 and 2.50) express normality, meaning negligible correlation among residuals.
Lower (higher) values express positive (negative) correlation. Cook’s D values greater than
0.5 indicate potential outlier, and C. Leverage (between 0 and (k − 1)/k) is used to detect
particular influential points.

In Table 1, pi stands for the ith value predicted by the regression model, ri stands for
the ith reference value computed by FAO PM, r is the mean reference value, k is the number
of the independent variables, and the sample size (n) is 290.

3. Results

MLR models with all the potential input combinations, from one to six explanatory
variables, were tested. In total, sixteen models were examined. Models with altitude or
latitude as sole input variables were not applicable, whereas models with seven inputs
exhibited statistically insignificant results (p > 0.05). The obtained results are presented in
Table 2.

As portrayed in Table 2, half of the tested models (8) yielded RMSE values below
0.35 mm d−1 and adj. R2 values greater than 97.1% (Table 2). Among these models, MLR4,
MLR5, and MLR6 obtained an RMSE below 0.29 mm d−1, and an adj. R2 between 98%
and 98.1%. The results for the majority of the models are statistically significant at the
99% confidence level. Only four models (MLR10, MLR11, MLR13, MLR15) yielded one
coefficient that was statistically significant at the 95% confidence level. Regarding the
statistical analysis of the residuals performed for each model, C. Leverage and Cook’s D
were generally low, as were the SEs of the predicted values (Table 2).

MLR5 and MLR6 with five and six independent variables, respectively, have the (same)
highest adj. R2 (98.1%). As anticipated, MLR6, which includes one extra independent
variable, obtained slightly better RMSE/NRMSE values than MLR5 (0.276 mm d−1/8.2% vs.
0.280 mm d−1/8.3%). The two models have the same MAE (0.206 mm d−1) and IoA (99.5%).
The model with the highest adj. R2 (98.1%) with the fewer inputs is therefore MLR5, which is
a function of N, Tmean, u2, es− ea, and Rn. The former means that these five variables play
a significant role in the prediction of ETo for the Peloponnese. The addition of altitude (Z) as
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an extra independent variable of the model (MLR6) deteriorated the aforementioned indices,
without increasing the explanation of the variance (adj. R2 = 98.1%). The contribution of Z
to the adj. R2 change was about 0.03%. The equation produced by the model with the best
performance (MLR5) is presented in Table 3.

Table 2. The 16 regression models and the corresponding indices of performance.

Models Independent
Variables Sig. Adj. R2 D–W Cook’s D C. Leverage SE RMSE NRMS MAE IoA

MLR1 N <0.001 0.960 1.742 0.003 ± 0.006 0.003 ± 0.0001 0.034 ± 0.0003 0.409 0.121 0.320 0.990

MLR2 N, Tmean <0.001 0.971 1.732 0.004 ± 0.010 0.007 ± 0.004 0.035 ± 0.006 0.343 0.102 0.248 0.993

MLR3 N, Tmean, u2 <0.001 0.975 1.675 0.004 ± 0.011 0.010 ± 0.015 0.036 ± 0.011 0.321 0.095 0.238 0.994

MLR4 N, Tmean, u2,
es − ea <0.001 0.980 1.784 0.005 ± 0.014 0.014 ± 0.016 0.036 ± 0.011 0.286 0.085 0.214 0.995

MLR5 N, Tmean, u2,
es − ea, Rn <0.001 0.981 1.738 0.004 ± 0.014 0.017 ± 0.018 0.039 ± 0.011 0.280 0.083 0.206 0.995

MLR6 N, Tmean, u2,
es − ea, Rn, Z <0.001 0.981 1.746 0.005 ± 0.014 0.021 ± 0.019 0.044 ± 0.012 0.276 0.082 0.206 0.995

MLR7 Rn <0.001 0.955 2.093 0.003 ± 0.006 0.003 ± 0.001 0.036 ± 0.003 0.429 0.127 0.323 0.989

MLR8 Rn, u2 <0.001 0.969 1.949 0.004 ± 0.007 0.007 ± 0.011 0.035 ± 0.010 0.357 0.106 0.280 0.992

MLR9 Rn, u2, Tmean <0.001 0.975 1.952 0.005 ± 0.019 0.010 ± 0.013 0.036 ± 0.011 0.321 0.095 0.251 0.994

MLR10 Rn, u2, Tmean,
Z <0.05 0.975 1.904 0.005 ± 0.015 0.014 ± 0.014 0.041 ± 0.011 0.318 0.094 0.249 0.994

MLR11 Rn, u2, Tmean,
Z, Rs <0.05 0.976 1.922 0.005 ± 0.016 0.017 ± 0.016 0.042 ± 0.012 0.313 0.093 0.245 0.994

MLR12 Tmean <0.001 0.918 1.857 0.003 ± 0.004 0.003 ± 0.002 0.048 ± 0.008 0.582 0.172 0.461 0.978

MLR13 Tmean, u2 <0.05 0.920 1.842 0.007 ± 0.046 0.007 ± 0.012 0.056 ± 0.018 0.574 0.170 0.467 0.979

MLR14 Rs <0.001 0.918 2.098 0.003 ± 0.006 0.003 ± 0.002 0.048 ± 0.006 0.582 0.172 0.442 0.978

MLR15 u2 <0.05 0.030 0.122 0.003 ± 0.003 0.003 ± 0.012 0.154 ± 0.064 2.001 0.592 1.953 0.120

MLR16 es − ea <0.001 0.817 1.884 0.003 ± 0.007 0.003 ± 0.003 0.071 ± 0.014 0.868 0.257 0.637 0.947

Note: Sig., significance (p-value); D–W, Durbin–Watson; Cook’s D, Cook’s Distance; SE, standard error of the
predicted value; and C. Leverage, Centred Leverage. All values are presented as mean ± SD.

Table 3. Formulae of the MLR model with the best performance (MLR5) and the two most accurate
models with one input (MLR1, MLR7).

Model Multiple Linear Regression Equation Adj. R2

MLR5 ETo = −9.166 + 1.066 ∗ N + 1.284 ∗
(es − ea) + 0.064 ∗ u2 + 0.031 ∗ Tmean (2) 0.981 *

MLR1 ETo = −8.188 + 1.011 ∗ N (3) 0.960 *

MLR7 ETo = 0.494 + 0.033 ∗ Rn (4) 0.955 *
Note: * Sig. < 0.001.

Models MLR1, MLR7, MLR14, MLR15, and MLR16 were one-input models, which means
simple linear regression models. The climate variables, namely N, Tmean, Rn, Rs, es − ea, and
u2 were the inputs of the aforementioned models, respectively. Among these models, MLR1
(N input) produced the best results (adj. R2 = 96.0% and RMSE = 0.409 mm d−1), followed by
MLR7 (Rn input) (Table 2). The Tmean input model (MLR12) exhibited inferior performance.
The produced MLR equations for the two best one-input models are displayed in Table 3. The
model with the poorest performance was MLR15, with u2 as the sole explanatory variable,
with an adj. R2 equal to 3%. The model with es− ea as the sole input (MLR16) also showed
poor performance (Table 2).
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4. Discussion

The ETo plays a critical role in the hydrological cycle, the climate crisis, as well
as in water resource management and irrigation design. The established methods of
estimation require the availability of a wide range of climate parameters, which is a serious
drawback. MLR has been examined in search of a simple, affordable, and satisfactorily
accurate modelling technique of ETo. Therefore, datasets of Tmean, Rn, Rs, es − ea, and
u2, retrieved from sixty-two meteorological stations for the Peloponnese (Table A1) have
been utilised. The altitude of the stations was also employed, since it affects ETo [65]. The
months August and December of 2016–2019 were selected as typical months of summertime
and wintertime, respectively, with considerable differences in climate variables between
them (http://climatlas.hnms.gr/sdi/?lang=EN (accessed on 3 May 2022)). Furthermore,
these two months were selected in methodological consistency with a previous study [36],
the FAO PM estimates of which served as reference values for this study. MLR models
with several input combinations of the seven available input parameters were tested. In
total, sixteen models were examined, ranging from one to six explanatory variables, since
models with seven inputs exhibited statistically insignificant results (p > 0.05), and were
therefore omitted. As displayed in Table 2, the results of the majority of the tested models
are significant at the 99% level of confidence. Models with altitude or latitude as sole input
variables were not applicable. As a general rule, the values of error and agreement improve
with an ascending number of input parameters. However, the magnitude of change
differentiates based on the influence of each added parameter on ETo. As anticipated, the
best performance was exhibited by the model with the most (six) inputs (MLR6). However,
the MLR5 model is most recommended, since the extra parameter of MLR6 (Z) contributes
to the interpretation of the variance only by 0.03% (adj. R2 change). The variance of the ETo
observations is explained by 98.1% in both cases. For MLR5, RMSE is only 0.280 mm d−1

and MAE is 0.206 mm d−1, with an agreement between the FAO PM and the MLR5 ETo
values of 99.5% (Table 2). Consequently, MLR5 is a satisfactorily accurate tool for predicting
ETo for August and December of 2016–2019, with a simple linear formula (Table 3). The
major contribution of sunshine hours to the explanation of the data in MLR is in line with
the results of Yirga for Ethiopia [61].

An interesting group of MLR models demonstrated in Table 2 are those with one
sole independent variable as an input. In this case, the MLR transmits to simple linear
regression. From a parsimonious perspective, the potential of only one variable being able
to satisfactorily represent the ETo values would be useful in terms of (low) complexity,
computational load and cost, as well as of increased applicability. The usefulness is
amplified due to the rather inhomogeneous characteristics of the region, and the selected
months that belong to different seasons. The only prerequisite, in this case, is that input
data are available or easily retrieved. Among one-input models, MLR1 with N as the input
variable exhibited the best performance, with 96% of the ETo values explained and an
IoA of 99%. The RMSE/MAE and NMRSE are equal to 0.409/0.320 mm d−1 and 12.1%,
respectively (Table 2). According to the literature, these values are considered very good
to excellent in terms of accuracy [58]. Sunshine hours is a parameter that was computed
according to FAO guidelines for missing data, utilizing Julian day and station latitude [33],
which might be a limitation in terms of accuracy compared to direct measurements. The
methodological choice to include parameters computed based on measured parameters
and the FAO procedure in ETo modelling is a common practice (e.g., in ANNs for ETo [40]).
The second-best one-input model is MLR7, which is radiation-based (Rn). It explains
data variability by 95.5%, with an IoA equal to 98.9%. The RMSE/MAE and NRMSE are
0.429/0.323 mm d−1 and 12.7%, respectively. Residual statistical values (i.e., Cook’s D,
C. Leverage) were almost the same as those of MLR1, except from the D–W value, which
was better (2.09), (Table 2). The latter value indicates that the residuals belong to a normal
distribution.

However, the most easy-to-acquire datasets globally, by either ground-based data
or remote sensing, are those of Tmean. MLR12 is a temperature-based, one-input model

http://climatlas.hnms.gr/sdi/?lang=EN
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(Tmean). The variability explained (91.8%) is lower than those explained by N input and
Rn input models, but is the same as the corresponding of the Rs input model (MLR14).
The RMSE/MAE and NRMSE are equal to 0.582/0.461 mm d−1 and 17.2%. The poor
performance of the Tmean input MLR model is also reported by Tabari et al. for Iran [52].
MLR14 (Rs) produced the same or slightly better values (MAE = 0.441 mm d−1) than the
Tmean input model (Table 2). However, these values are almost identical to the results
of Tabari et al. for the best MLR (four-input) model [52]. This accuracy is not satisfactory
for applications such as precise irrigation design, but it remains a useful approach. It
is noteworthy that half of the tested models (two to six inputs) yielded an RMSE below
0.35 mm d−1, three of which were even below 0.29 mm d−1, with adj. R2 ≥ 97.1%. The
produced linear equations for MLR5, and MLR1 and MLR7, which are, respectively, the
model with the best performance, and the two best one-input models, are simple and de-
mand low computational effort and a short time to apply (Table 3). These findings provide
flexible potential choices regarding the available datasets. The worst performance was
exhibited by MLR15, with u2 as the sole explanatory variable. This model explains only 3%
of the ETo observations. The error indices are not acceptable either (RMSE > 2.00 mm d−1,
MAE = 1.953, NRMSE = 59.2%, and the SE of the predicted values was greater than 15%)
(Table 2). The literature reports that near-surface wind speed is an influential parameter
of ETo variability [78]. The influential role of u2 in our study area was also noted in our
previous work on ETo variability across the Peloponnese [36]. It was found that, mostly in
August, (wind speed is generally very low in summer), in cases where increased u2 values
occurred, ETo was directly affected. This deduction is confirmed by the latest study on
ETo across the Peloponnese, in which u2 was proven to be the most influential parameter
after Tmean [73]. In conclusion, it is probable that the relationship between u2 and ETo
is non-linear, thus the MLR model would not depict the established relationship. This
inability of MLR models to portray complex relationships is anticipated due to their linear
character, and has been denoted in the relevant literature [56].

5. Conclusions

MLR was employed to predict ETo with seven available climate parameters as inputs.
Sixteen models, with all the potential input combinations, displayed statistically signifi-
cant results (p ≤ 0.05). Among the tested models, MLR5 with five explanatory variables
exhibited the best performance with less than the available input parameters (p ≤ 0.001).
Therefore, MLR5, which constitutes a linear function of N, Tmean, Rn, es − ea, and u2,
is recommended as a potential tool to predict ETo for the Peloponnese, after further in-
vestigation. Eight out of the sixteen tested models, with two to six inputs, displayed an
RMSE below 0.35 mm d−1, and explained the variance of ETo at least by 97.1%. Moreover,
three of these models yielded an RMSE below 0.29 mm d−1, and explained the variance
by 98−98.1%.

Another noteworthy group of MLR models examined is the one-input models,
which are simple linear equations. The N input model (MLR1) outperformed the rest
(RMSE = 0.409 mm d−1), while it explained the variance of the ETo by 96%. The Rn
model (MLR7) followed closely, with satisfactory results and data variance representation
(RMSE = 0.429 mm d−1, adj. R2 = 95.5%). Probably, sunshine hours and net radiation
significantly affect the ETo of the Peloponnese. The Tmean input model exhibited poorer
performance. On the other hand, the model with the worst performance was MLR15,
with u2 as the sole input. Based on previous research, which reported the influential role
of u2 on the ETo for the Peloponnese, it seems that MLR could not capture the complex,
non-linear relationship between u2 and ETo. Provided that the Peloponnese is an area
with distinguished differences over short distances, and that the regimes of the examined
months vary considerably, these models have the potential to provide useful tools with
flexibility regarding input data, applicable for interdisciplinary purposes. It is, hence,
suggested that MLR models should be tested for longer time periods and larger areas in
Greece, aiming at generalisation.
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Appendix A

Table A1. Meteorological stations (62) used (source: https://meteosearch.meteo.gr (accessed on 15 April 2022)).

ID Station X Y Elevation (m) Municipality ID Station X Y Elevation (m) Municipality

Meteorological Stations for the 3 Empirical Methods (ETo) Meteorological Stations for the 3 Empirical Methods (ETo)

1 Kalavrita 334,349.9 4,210,128 781 Achaia 32 Oleni 282,783.4 4,177,872 61 Ilia

2 Kato Vlassia 317,683.4 4,2085,58 773 Achaia 33 Pineia 285,425.3 4,191,240 184 Ilia

3 Lappa 273,550 4,218,928 15 Achaia 34 Pirgos 273,886.9 4,171,891 22 Ilia

4 Olenia 288,845.1 4,221,654 34 Achaia 35 Vartholomio 253,773.8 4,193,127 15 Ilia

5 Panachaiko 313,491.4 4,235,800 1588 Achaia 36 Zacharo 290,302.6 4,150,806 5 Ilia

6 Panagopoula 318,709.5 4,243,842 15 Achaia 37 Amoni Sofikou 424,227.5 4,186,898 55 Korinthia

7 Panepistimio 305,972.3 4,239,289 66 Achaia 38 Derveni 362,057.1 4,221,737 5 Korinthia

8 Patra 301,697.8 4,236,694 6 Achaia 39 Isthmos 408,645.4 4,200,499 6 Korinthia

9 Rio 305,898.1 4,242,177 2 Achaia 40 Kiato 389,163.5 4,207,722 15 Korinthia

10 Romanos 313,476.1 4,235,744 228 Achaia 41 Krioneri 378,491.9 4,203,310 887 Korinthia

11 Sageika 280,638.4 4,219,575 26 Achaia 42 Loutraki 410,248.7 4,202,636 30 Korinthia

12 Argos 386,329.1 4,165,059 38 Argolida 43 Nemea 381,197.9 4,188,976 290 Korinthia

13 Didima 426,936.9 4,146,702 175 Argolida 44 Perigiali 397,303.1 4,199,344 38 Korinthia

14 Kranidi 424,615.7 4,137,411 110 Argolida 45 Trikala Korinthias 365,493.7 4,206,835 1077 Korinthia

15 Lagadia 326,139.9 4,172,057 970 Arkadia 46 Agioi Theodoroi 423,533.6 4,198,395 37 Korinthia

16 Levidi 349,386.5 4,171,330 853 Arkadia 47 Apidia 392,819.7 4,082,655 230 Lakonia

17 Lykochia 337,772.6 4,151,113 870 Arkadia 48 Asteri 386,527.1 4,076,757 8 Lakonia

18 Magouliana 334,497.7 4,171,275 1256 Arkadia 49 Geraki 384,706.6 4,094,508 330 Lakonia

19 Megalopoli 335,363 4,140,782 432 Arkadia 50 Krokees 371,576.2 4,082,640 241 Lakonia

20 Stemnitsa 330,377.8 4,157,967 1094 Arkadia 51 Molaoi 397,984.6 4,072,957 128 Lakonia

https://meteosearch.meteo.gr
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Table A1. Cont.

ID Station X Y Elevation (m) Municipality ID Station X Y Elevation (m) Municipality

Meteorological Stations for the 3 Empirical Methods (ETo) Meteorological Stations for the 3 Empirical Methods (ETo)

21 Tripoli 359,989.3 4,152,250 650 Arkadia 52 Monemvasia 413,811.4 4,059,051 17 Lakonia

22 Vytina 339,989.8 4,170,409 1013 Arkadia 53 Sparti 360,929.9 4,101,670 204 Lakonia

23 Spetses 424,919.5 4,124,662 3 Attiki 54 Alagonia 343,840.9 4,107,863 765 Messinia

24 Taktikoupoli
Troizinias 443,373.2 4,152,374 15 Attiki 55 Arfara 326,299.4 4,113,666 96 Messinia

25 Ydra 452,645.8 4,133,727 2 Attiki 56 Filiatra 285,439.9 4,115,175 65 Messinia

26 Amaliada 264,604.9 4,186,923 26 Ilia 57 Kalamata 331,127 4,098,974 5 Messinia

27 Andritsaina 314,220.3 4,152,125 731 Ilia 58 Kalamata Dytika 329,347.3 4,100,001 10 Messinia

28 Archaia Olympia 287,981.3 4,163,856 45 Ilia 59 Kardamili 347,857.7 4,074,651 13 Messinia

29 Foloi 297,082.7 4,174,732 600 Ilia 60 Kopanaki 306,288.6 4,128,741 184 Messinia

30 Katakolo 263,537.2 4,169,327 2 Ilia 61 Kyparissia 291,691 4,123,584 36 Messinia

31 Lampeia 306,840.3 4,192,041 840 Ilia 62 Pylos 294,556.8 4,087,590 5 Messinia
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