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Abstract: This study proposes seven equations to predict the settling velocity of sediment particles
with variations in grain size (d), particle shape factor (SF), and water temperature (T) based on the
artificial neural network procedure. The data used to develop the equations were obtained from
digitizing charts provided by the U.S. Interagency Committee on Water Resources (U.S-ICWR) and
compiled from the measurement data of settling velocity from several sources. The equations are
compared to three existing equations available in the literature and then analyzed using graphical
and statistical analysis. The simulation results show the proposed equations produce satisfactory
results. The proposed equations can predict the settling velocity of natural particle sediments, with
diameters ranging between 0.05 mm and 10 mm in water with temperatures between 0 ◦C and 40 ◦C,
and shape factor SF ranging between 0.5 and 0.95.

Keywords: settling velocity; U.S-ICWR’s charts; explicit equation; artificial neural networks

1. Introduction

The settling or fall velocity of sediment particles (Ws) is an important aspect of sedi-
ment transport processes, such as suspension, deposition, mixing, and exchange near the
bed [1]. It is defined as the average terminal velocity attained by a sediment particle during
the settling process in still water [1]. Some of its influencing factors include fluid properties,
such as temperature, viscosity, and flow regime as well as sediment characteristics, such as
particle size and its shape factor, and submerged specific weight [1,2]. The settling velocity
for a single spherical particle, Ws, was studied by applying gravity force, buoyancy, and
drag forces during its settling process [1,2]. Due to the hydrodynamic complexity associated
with Ws, a correlation is usually proposed between non-dimensional parameters of the drag
coefficient CD and the particle Reynold number Re defined by Equations (1) and (2) [1,3].

Re =
Wsd

ϑ
(1)

CD =
4
(

ρs/ρ f − 1
)

dg

3W2
s

(2)

where d is the particle diameter, ϑ and ρf are the kinematic viscosity and density of the
fluid, respectively, ρs is the density of sediment, and g = gravity acceleration [1,3]. The
original idea of the CD to Re relationship was Stokes. Stokes derived the drag force on a
spherical particle by solving the Navier–Stokes equations without the inertia terms and
proposed relationship CD = 24/Re. This theory was observed to be valid in the laminar
region for Re < 0.1. However, the theory fails to accurately predict the settling velocity
when the fluid becomes turbulent, thereby, making the turbulent drag important [4]. Oseen
and Goldstein (see Wu [1]) improved the Stokes theorem by including the inertia terms
in the Navier–Stokes equations to provide the formulas to estimate the settling velocity
considered to be valid for the turbulent region. Meanwhile, the sediment particles with
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irregular shapes, such as those in natural rivers, have rough surfaces and exhibit different
characteristics in settling velocity compared to spherical particles.

The hydrodynamic complexity associated with Ws, for nonspherical materials, be-
comes more complex. The study of settling velocity for nonspherical materials has been
carried out for a long time. The effect of particle shape on the settling velocity was studied
extensively over sixty years ago using experimental investigation [5–9]. These studies
provide a series of graphical relations to estimate the settling velocity of sediment particles
for given particle sizes, shape factors, and water temperature [1,2]. The graphic was pub-
lished by the Subcommittee on Sedimentation of the U.S. Interagency Committee on Water
Resources, US-ICWR [10] to determine the settling velocity at different fluid conditions
and sediment particles. However, this graphical relationship is inconvenient because some
interpolation is required to obtain the desired value [1,11]. Several methods and formulas
have been proposed afterward to estimate the sediment settling velocity for spherical and
nonspherical particles [11–26]. Among these formulas, the formula proposed by Wu and
Wang [11] was obtained by using more extensive experimental data. They matched the
results as closely as possible to the charts from the Interagency Committee. In other words,
the formula of Wu and Wang [11] can be said to be an explicit form of the more complete
Interagency Committee’s charts.

This study also proposes explicit equations for the Interagency Committee’s charts. In
contrast to the development of the Wu and Wang formula [11], the procedures presented in
this study directly use the information available on the Interagency Committee’s charts
through an artificial neural networks (ANN) approach. The relationship between a number
of input and output data can be built through the ANN method. The input data consisting
of grain diameter (d), particle shape (SF), water temperature (T), and output (Ws) is taken
from the graphics through digitizing the Interagency Committee’s charts. This study uses
the Corey shape factor SF which is defined by Equation (3):

SF =
c√
ab

(3)

where a, b, and c are the lengths of the longest, the intermediate, and the shortest mutually
perpendicular axes, respectively [1]. This explicit ANN method proposed in this study
will be helpful because it can also be applied to obtain sediment parameters that must
be obtained through many graphic interpolations found in sediment transport studies.
Examples include Shield diagrams to determine the critical bed shear stresses at the bottom
regarding the initial motion of particles, some charts related to the CD and Re relationship
for calculating Ws, and other graphics that are widely used in sediment transport studies.
The proposed equations in this study were validated and tested through their applica-
tion to other experimental data on settling velocity compiled from several sources. The
equations are also compared to three existing equations to compute the settling velocity of
particle sediment considering shape factor SF including those proposed by Jimenez and
Madsen [21], Wu and Wang [11], and Camenen [23], for evaluating their performances.

The continuous availability of the dataset as well as the existence of multidimen-
sional and complex non-linear relations in the settling velocity estimation makes the ANN
approach feasible as an alternative solution. Artificial neural networks (ANNs) are a com-
putational approach inspired by the neural system of the human brain. They have become
very popular in many diverse fields in recent years due to their ability to receive multiple
information and provide meaningful solutions to problems with high-level complexity and
nonlinearity without requiring the complex nature of the underlying process to be well
defined or clearly understood [27–30]. Moreover, the process of receiving and processing
the information of neural networks relies on several non-linear processing elements, such
as nodes or neurons [27]. The commonly used and simple neural network model is the
Multilayer Perceptron (MLP) which is an architecture arranged in a layered configuration
consisting of three main layers which include the input, hidden, and output layers. The
ANNs have been successfully used in studies related to hydrologic modeling [31–34], and
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for streamflow predictions [35–38]. Several studies have also successfully applied the
method in sediment transport, such as suspended sediment estimations [39–43], prediction
of bed sediment load [44,45], and others. However, its application to sediment settling
velocity estimation is quite limited as observed in Seyed Mortez et al. [46], Goldstein and
Coco [4], and Rushd et al. [3]. Seyed Mortez et al. [46] developed an ANN model to predict
the settling velocity of natural sediment and compared the results with the experimental
and existing formulas from the previous study. It was discovered that the ANN model has
more prediction ability than the available formulas. Goldstein and Coco [4] also developed
a genetic programming (GP) algorithm in an ANN model to predict the settling velocity
of non-cohesive sediment and found that the GP models improved the results better com-
pared to the formulas of Dietrich [17] and Ferguson and Church [22]. It was concluded
that the GP models ideally capture the complex and non-linear properties of the input
variables considered, such as the nominal diameter of the sediment, kinematic viscosity
of the fluid, and submerged specific gravity of the sediment. Moreover, Rushd et al. [3]
predicted the settling velocity of spherical particles using MLP based methodology for both
the Newtonian and the non-Newtonian fluids (Power-law, Bingham Plastic, and Herschel
Bulkley models) and showed that MLP has a good performance, thereby, making it an
effective and accurate prediction tool for the settling velocity in both fluid conditions. It
should be noted that the ANN procedure involves implicit operations, and this makes
it difficult for those not familiar with the system to understand and apply it to practical
studies. Therefore, this study proposes five explicit equations of the ANN algorithm to
ensure their easy application and integration into other existing programs dealing with
sediment transport and settling velocity computations.

The ANNs can also be treated as a universal approximator with the ability to learn the
complex nature of the underlying process under consideration without it being explicitly
defined in a mathematical form [47,48]. It was, therefore, considered an approximation
method in this study for the three-dimensional function of the settling velocity with three
independent variables which include sediment grain size (d), shape (SF), and fluid temper-
ature (T) or kinematics viscosity ϑ. In this case, the graphical form of the settling velocity
function is known which is the Interagency Committee’s charts while its mathematical
equation needs to be determined using the ANN procedure.

The main objective of this study is to determine equations that describe an explicit
neural network formulation to estimate the settling velocity of sediment particles. Five
equations are proposed in this study. The first and second equations of settling velocity
are related directly to sediment and fluid parameters as the input, such as the sediment
size (d), shape factor (SF), and water temperature (T). The third to fifth equations use shape
factor SF and non-dimensional diameter parameter D∗ defined by Equation (4) as the input
parameters and particle Reynold number Re or drag coefficient CD as the output parameter
while setting velocity is determined from Re and CD.

D∗ = d

 g
(

ρs/ρ f − 1
)

ϑ2

1/3

(4)

The following section of this paper will describe the materials and methods used in
developing the equations. The compilation of the data needed for training, validation, and
testing is described in the data description, then the method is given to specify the ANN
structure and the method used for transforming the ANN model into explicit equations to
determine the settling velocity as a function of sediment and fluid characteristics. Then, the
section is followed by the simulation results of the ANN models and a comparison with
existing formulas will be discussed. Examples for the use of procedures and the conclusion
are also given.
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2. Materials and Methods
2.1. Data Description

The data for training and validation of the model were obtained by digitizing the In-
teragency Committee’s charts using WebPlotDigitizer software (https://automeris.io/
WebPlotDigitizer/, accessed on 20 August 2021). The digitization process produced
520 data points with nominal diameter of the sediment particle (d) ranging from 0.06 mm
to 10 mm, water temperature (T) from 0 ◦C to 40 ◦C, shape factor of the sediment particle
(SF) from 0.5 to 0.9, and settling velocity (Ws) from 0.177 cm/s to 50.67 cm/s. From these
digitized data, 350 were used for training and 86 for validation, and 84 for testing (testing 1).
The measurement data from several available sources were used in another testing model
(testing 2), as indicated in Table 1. The sediment material under study is limited to quartz
material with a density of around 2650 kg/m3.

Table 1. Data used for training, validation, and testing ANN Models.

Source
Number Source Data Using Data Point Range of Fluid and

Sediment Parameters

1
U.S. Inter-Agency Committee [10];
data obtained by digitizing charts.

training & validation 359, 86 d: 0.06 mm to 10 mm, T: 0 ◦C to 40 ◦C, SF: 0.5 to
0.9 and Ws: 0.177 cm/s to 50.67 cm/s.testing 1 84

2 Schultz et al. [9] testing 2 121 d: 0.19 mm to 1.6 mm, T: 13.5 ◦C to 19.5 ◦C, SF:
0.34 to 0.99 and Ws: 1.6 cm/s to 16.35 cm/s.

3 Cheng [20] testing 2 38 d: 0.061 mm to 10.0 mm, T: 7.5 ◦C to 20 ◦C, SF:
0.7 and Ws: 0.235 cm/s to 44.54 cm/s.

4 Smith and Cheung [49] testing 2 22 d: 0.42 mm to 6.91 mm, T: 20.0 ◦C, SF: 0.29 to
0.977 and Ws: 4.8 cm/s to 31.6 cm/s.

5 Hallermeier [16] testing 2 35 d: 0.083 mm to 1.098 mm, T: 10.5 ◦C to 27.5 ◦C,
SF: 1.0 and Ws: 0.5 cm/s to 17.0 cm/s.

6 Gibbs et al. [12] testing 2 16 d: 0.084 mm to 5.0mm, T: 20 ◦C,
SF: 1 and Ws: 0.521 cm/s to 46.07 cm/s.

7 Ferguson and Church [22] testing 2 12 d: 0.075 mm to 4.796 mm, T: 23 ◦C,
F: 0.7 and Ws: 0.425 cm/s to 30.07 cm/s.

Testing 2 was conducted with a set of different datasets, such as the data from
Schultz et al. [9]. This data can be used for testing, although some data used to de-
velop the Interagency Committee’s charts was obtained from experiments conducted by
Schultz et al. [1,9–11]. However, in this study, the data were considered suitable for testing
because those obtained from the digitization of the charts were generally not equal to those
provided by Schultz et al. [9].

2.2. Artificial Neural Network Configuration

This study employed the feed-forward backpropagation neural network which is
one of the most popular neural networks widely used due to its simplicity, accuracy, and
efficiency in algorithm processing. It is often distinguished by one or more hidden layers
in the ANN configuration which is normally followed by an output layer. Figure 1 shows
the ANN configuration used in this study. The configuration consists of three layers which
are the input, hidden, and output layers with three neurons constructed in the input layer
to represent the value relating to the sediment and fluid characteristics. The neurons are
also connected to four neurons in the hidden layer and transferred into one neuron in the
output layer. This multiple layer configuration of neurons along with the nonlinear transfer
function allows the learning process of the nonlinear relation between the input and output
layers as indicated in the ANN configuration presented in Figure 1.

This study developed five ANN models, ANN1 to ANN5, with respect to the input
and output parameters. Table 2 shows the input and output parameters used in each
ANN model. In the first model (ANN1), the original dataset was configured as the input
parameters and these include X1 = d is the nominal particle diameter in millimeter (mm),
X2 = T is the water temperature in ◦C, and X3 = SF is the shape factor while the settling
velocity, Y0 = Ws (cm/s), was used as the target parameter in the output layer. Meanwhile,
in the second model (ANN2), the logarithmic transformation was conducted for the particle

https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
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diameter in the input layer, X1 = log(d (mm)), and the log transformation of settling velocity
as the output layer, Y0 = log(Ws (cm/s)) while the water temperature and shape factor
remain the same as in the first model. In the third to fifth models (ANN3 to ANN5), two
non-dimensional parameters are used for the input and a non-dimensional parameter as
the output. The input parameters for ANN3 are X1 = SF and X2 = D∗ and for ANN4 are
X1 = SF and X2 = log(D∗) while the output parameter for ANN3 and ANN4 is the same
Y0 = log(Re). The ANN5 uses the same input as the ANN4 with output Y0 = log(CD).
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Table 2. Input and output parameters for ANN1 to ANN5.

Model Input Parameters and Unit Output Parameters and Unit

ANN1 X1 = d (mm), X2 = SF (non-dimensional parameter) and
X3 = T (◦C) YANN = Ws (cm/s)

ANN2 X1 = log(d (mm)), X2 = SF and X3 = T (◦C) YANN = log (Ws), Ws (cm/s)
ANN3 X1 = SF and X2= D∗ (non-dimensional parameter) YANN = log(Re)—non-dimensional parameter
ANN4 X1 = SF and X2= log(D∗) YANN = log(Re)—non-dimensional parameter
ANN5 X1 = SF and X2= log(D∗ ) YANN = log(CD)—non-dimensional parameter

The second-order algorithm of Levenberg–Marquardt was adopted to avoid some
drawbacks of the feed-forward algorithm in the local optima problem. This Levenberg–
Marquardt method is also superior in reducing the learning time with less iteration com-
pared to the traditional backpropagation algorithm, thereby, leading to an increase in the
searching rate to search and obtain the weight and biases and achieve faster convergence
with high precision.

2.3. Development of Explicit Equations

The explicit equations are developed based on the non-linear function of the neural
network transfer function. This involved normalizing the input parameters, Xi, i = 1, 2, and
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3 (number of input or node in input layer) in the initial step using their maximum (Xi, max)
and minimum (Xi, min) values based on the following relation:

Xi = 2 (Xi − Xi,min)/(Xi,max − Xi,min)− 1 (5)

The normalized values (Xi) and the bias with the value of unity (bo = 1) are multiplied
with their respective weight am, bm, cm, and dm where m = 1, 2, 3, and 4. It is important
to note that the number of weights of each input parameter is in line with the number of
nodes in the hidden layer, such that am, bm, and cm represent the weight of each input node,
respectively, while the index, m, represents the node number in the hidden layer and dm
indicates the weighting factor of the bias node for each hidden layer node ‘m’. Moreover,
the input value for nodes in the hidden layer is provided by multiplying the normalized
input and the product was summed to determine the neuron’s value in the hidden layer
input, Um, through the linear relationship presented in Equation (6).

Um = am X1 + bm X2 + cm X3 + dm (6)

The input in the hidden layer nodes is later transferred using the non-linear transferred
function of a hyperbolic tangent to produce the final value in each hidden layer neuron,
Um. Finally, each value of Um is multiplied with the respective weight, µm, such that the
index ‘m’ represents the number node of in the hidden layer and additional bias node. The
values obtained are summed to provide the input value for the output node based on the
following equation.

Y = µ1 tanh
(
U1
)
+ µ2 tanh

(
U2
)
+ µ3 tanh

(
U3
)
+ µ4 tanh

(
U4
)
+ µ5 (7)

The linear transformation is used to provide the normalized output value,
=
Y, to ensure

Y =
=
Y while the final output YANN is obtained after

=
Y is denormalized to produce the

following explicit Equation (8).

YANN =
4

∑
k=1

Ak tanh
(
ak X1 + bk X2 + ck X3 + dk

)
+ B (8)

where YANN is the predicted value relating to Ws, Re or CD and Ak and B are coefficients that
depend on the weights ak, bk, ck, and dk where k = 1, 2, 3, and 4. These weight coefficients
are obtained through a training process in the ANN model with the objective function of
minimizing the error of each output value based on the following equation:

min E(YANN) = min
N

∑
i=1

(YANN,i −Y0,i)
2 (9)

where Y0 is the ANN target value relating to Ws, log(Ws), log(Re), and log(CD) for ANN1,
ANN2, ANN3 & ANN4, and ANN5, respectively, and N is the amount of data. The
application of a simple configuration of the ANN model led to an additional optimization
process after the weight coefficients are produced from MATLAB. This involved developing

an additional ANN algorithm using the Excel spreadsheets to change
=
Y in the form of

the original data set to produce the final output value YANN and also to develop the
explicit equation defined in equation (8) towards improving the model. The optimization is
conducted using the iterative process with the Generalized Reduced Gradient Non-Linear
(GRG Nonlinear) method.

2.4. Comparison with Existing Formulas

The proposed equations, ANN1 to ANN5, will be compared with three existing
formulas for estimating the settling velocity of sediment particles. The first formula
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is developed by Jiménez and Madsen [21] to predict setting velocity Ws. They built
the equation to determine Ws from the previous study by Dietrich [17]. They proposed
an equation to estimate Ws for sediment particles with a given shape factor, roundness
parameter, and diameter using Equation (10):

Ws =

√(
ρs/ρ f − 1

)
gd

C + D
S∗

(10)

In which,

S∗ =
d

4ϑ

√(
ρs/ρ f − 1

)
gd (11)

where C and D depend on shape factor (SF) and particle roundness (P). They provided
relationship charts between the values of C and D concerning SF and P. For natural sediment
particles, the values for SF = 0.7 and P = 3.5, and the values for C and D are 0.954 and 5.12.
Wu and Wang [11] developed the second equation to determine Ws using the following
Equation (12)

Ws =
Mwϑ

Nwd


√√√√√( 4Nw

3(Mw)
2 D3∗

) 1
n

+
1
4
− 1

2


n

(12)

where Mw, Nw and n are coefficients obtained from the calibration results, namely Mw = 53
5e−0.655SF, Nw = 5.65e−2.5SF, and n = 0.7 + 0.9 SF. Camenen [23] developed an equation to
determine the value of Ws by considering the shape factor SF and roundness (P) using the
following equation:

Ws =
ϑ

d


√√√√1

4

(
A
B

) 2
n
+

(
4
3

D3∗
B

) 1
n

− 1
2

(
A
B

) 1
n


n

(13)

where A, B, and n are calibration coefficients depending on the shape factor SF, and
roundness (P):

A = a1 + a2

[
1− sin

(π

2
SF
)]a3

(14)

B = b1 + b2

[
1− sin

(π

2
SF
)]b3

(15)

n = n1

[
sin
(π

2
SF
)]n2

(16)

where a1 = 24, b1 = 0.39 + 0.22(6 − P), n1 = 1.2 + 0.12P, a2 = 100, b2 = 20, n2 = 0.47,
a3 = 2.1 + 0.06P and b3 =1.75 + 0.35P. For a particle roundness (P = 3.5): b1 = 0.94, n1 = 1.65,
a3 = 2.31 and b3 = 2.975. The statistical measure of these three existing equations will be
calculated and used as the comparison with the developed explicit equation.

2.5. Statistical Performance

The ANN1 to ANN5 performance is evaluated based on four statistical measures
which include:

1. Coefficient of determination, R2, between the Wsp and Wse, where Wsp is the pre-
dicted settling velocity and Wse are the data obtained from digitizing the Interagency
Committee’s chart and measurement data compiled from several sources for each
input parameter of sediment and fluid characteristic. The coefficient of determination
ranges from 0 to 1 defined as:
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R2 =
∑N

i=1
(
Wse,i −Wse

)(
Wsp,i −Wsp

)√
∑N

i=1
(
Wse,i −Wse

)2
√

∑N
i=1
(
Wsp,i −Wsp

)2
(17)

where Wse and Wsp are mean digitized or measured and predicted data, respectively, and
N is the amount of data.

2. Mean absolute relative error, MRE, which is defined as:

MRE =
1
N

N

∑
i=1

∣∣∣∣Wse,i −Wsp,i

Wse,i

∣∣∣∣× 100% (18)

3. Maximum absolute relative error, MAXRE, which is defined as:

MAXRE = max
N

∑
i=1

∣∣∣∣Wse,i −Wsp,i

Wse,i

∣∣∣∣× 100% (19)

4. Root Mean Square Error. (RMSE). RMSE is a standard way to estimate the error of an
equation in estimating real values-responses [3]. RMSE is defined by Equation (20)

RMSE =

√√√√ N

∑
i=1

(
Wse,i −Wsp,i

)2

N
(20)

3. Results and Discussion

The training conducted using the MATLAB program produced weights coefficients
a, b, c, d, and µ for five ANN models, and these weight values were used as the initial
values for further optimizations in the MS Excel program developed by the author. These
optimizations were conducted using the objective function of minimizing MRE as defined
in Equation (18) to further minimize the relative error of the predicted settling velocity as
indicated by the coefficients produced for the ANN models in Tables 3–7. Thus, the explicit
ANN1 to determine the settling velocity is Equation (8) with coefficients ak, bk, ck, dk, Ak,
and B in Table 3 with normalized parameters defined by Equation (21).

X1 = 0.2012 d− 1.0121, X2 = 0.05 T − 1, X3 = 5SF− 3.5 , and YANN = Ws (21)

where d (mm), T (◦C), SF (-), Ws (cm/s).

Table 3. Coefficient of Equation (8) for ANN1 model.

Coefficient

k ak bk ck dk Ak B

1 0.296 0.0713 0.1162 1.6124 43.8976 −98.0281
2 −6.1369 −3.661 0.996 1.3414 3.2274
3 −0.3883 −0.1107 −0.1664 1.039 −74.0032
4 1.4203 −0.0537 −0.0894 2.6377 146.6105

Table 4. Coefficient of Equation (8) for ANN2 model.

Coefficient

k ak bk ck dk Ak B

1 1.0431 1.2349 −0.0188 2.0878 0.0623 −0.5864
2 −0.2999 −1.6478 1.8649 1.5139 0.0123
3 −0.7134 0.0237 −0.2138 0.7840 −0.5145
4 0.8745 0.0731 −0.0041 1.0787 2.2831
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Table 5. Coefficient of Equation (8) for ANN3 model.

Coefficient

k ak bk ck dk Ak B

1 −0.0039 −0.0152 0 0.1779 −28.7443 −43.2153
2 −0.014 11.4145 0 12.8343 13.7859
3 0.0067 57.9223 0 59.8398 22.6845
4 0.0232 −1.8331 0 −3.2811 −15.0682

Table 6. Coefficient of Equation (8) for ANN4 model.

Coefficient

k ak bk ck dk Ak B

1 −0.0305 0.8205 0 0.9759 2.9174 37.2271
2 −1.3304 −3.195 0 −0.9563 0.0191
3 −26.6184 16.1434 0 −4.3576 −0.0086
4 −0.0059 −0.0768 0 1.0946 −47.1924

Table 7. Coefficient of Equation (8) for ANN5 model.

Coefficient

k ak bk ck dk Ak B

1 0.2694 −1.2492 0 −1.2904 2.2816 2.6739
2 −4.7911 2.3532 0 2.0994 0.1445
3 −8.1959 −4.3167 0 −1.1346 0.1038
4 −1.0957 −2.2051 0 −2.2642 0.4561

The explicit ANN2 uses Equation (8) with coefficients in Table 4 and uses normalized
parameters in Equation (22).

X1 = 0.90 log(d) + 0.09971, X2 = 0.05 T − 1, X3 = 5SF− 3.5, and YANN = log(Ws) (22)

where d (mm), T (◦C), SF (-), Ws (cm/s).
The explicit ANN3 uses Equation (8) with coefficients in Table 5 and uses normalized

parameters in Equation (23).

X1 = 5SF− 3.5, X2 = 0.00751D∗ − 1.0077, X3 = 0, and YANN = log(Re) (23)

The explicit ANN4 uses Equation (8) with coefficients in Table 6 and uses normalized
parameters in Equation (24).

X1 = 5SF− 3.5, X2 = 0.82864log(D∗)− 1.0083, X3 = 0, and YANN = log(Re) (24)

The explicit ANN5 uses Equation (8) with coefficients in Table 7 and uses normalized
parameters in Equation (25).

X1 = 5SF− 3.5, X2 = 0.82864log(D∗)− 1.0083, X3 = 0, and YANN = log(CD) (25)

Figures 2–4 show the scatter plot between the predicted settling velocity and the
digitized data from the Interagency Committee’s charts for training, validation, and testing
1 for the ANN1 to ANN5 models, respectively. Moreover, the statistical measures of the
simulation results for the training, validation, and testing 1 of the five ANN models are
provided in Table 8.
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The results show that the coefficient of determination (R2) for the ANN1 to ANN5
models is excellent, as indicated by the values estimated to be more than 0.995. The
simulation of the ANN1 produced MRE of 7.88%, 9.41%, and 10.20% for training, validation,
and testing 1, respectively. The MAXRE values produced by ANN1 are 80.92%, 44.47%,
and 47.17% for training, validation, and testing 1, respectively. However, the ANN2 and
ANN3 produced more satisfactory results in terms of MRE and MAXRE, with the MRE
between 1.89% and 2.71% in training, validation, and testing 1, respectively, while the
MAXRE is between 5.06% and 8.31% in the training, validation and testing 1, respectively.
Moreover, the ANN4 and ANN5 produced very satisfactory results in terms of MRE and
MAXRE, with the MRE in the range of 1.24–1.69 in training, validation, and testing 1,
respectively, while the MAXRE in the range of 3.84% to 5.55% in training, validation and
testing 1, respectively.
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Table 8. Statistical measures for ANN1 to ANN5.

Model MRE MAXRE RMSE R2

ANN1 Training 7.88 80.92 0.76 0.9951
Validation 9.41 44.47 0.30 0.9968
Testing 1 10.20 47.17 0.68 0.9973

ANN2 Training 2.71 6.91 0.32 0.9996
Validation 2.17 5.57 0.23 0.9996
Testing 1 2.37 7.96 0.18 0.9996

ANN3 Training 2.16 8.31 0.47 0.9996
Validation 2.48 8.04 0.12 0.9995
Testing 1 1.89 5.06 0.26 0.9990

ANN4 Training 1.24 5.55 0.23 0.9996
Validation 1.39 3.97 0.09 0.9998
Testing 1 1.57 4.10 0.19 0.9996

ANN5 Training 1.52 5.55 0.29 0.9994
Validation 1.69 4.74 0.14 0.9997
Testing 1 1.35 3.84 0.15 0.9996

To find out the contribution of the error to ANN1, we provide scattering plot for results
of the ANN1 and ANN2 models for Ws values lower than 10 cm/s, as seen in Figure 5. It
was discovered that the prediction of the settling velocity using the ANN1 (see Figure 5)
provided inaccurate results for Ws smaller than 10 cm/s which is related to grain sizes
smaller than 1 mm. These errors may be because the Interagency Committee’s charts were
constructed for data with Re > 3, and the curves were extended for Re < 3 using Stokes’ law
assumptions [1,11]. However, the ANN2 produced very satisfactory results for all particle
sizes (d), Safe Factor (SF), and water temperature (T) under consideration.
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The coefficients A2 and A3 of the ANN 4 equation in Table 6 have relatively small
values, so their effect on the overall function value is small. By removing the coefficients
A2 and A3 and applying the optimization technique, new coefficients a, b and A1, A4, and B
are determined, resulting in a simplified form of explicit Equation (8) for ANN4.

Log(Re) = 2.7001 tanh(−0.0329η1 + 0.8483η2 + 0.9665)− 45.2316 tanh(−0.0057η1 − 0.0756η2 + 1.0567) + 35.1902 (26)

where η1 = 5SF − 3.5 and η2 = 0.82864log(D∗) − 1.0083. The coefficients A2 and A3
for ANN5 are also relatively small. By performing the same procedure to obtain the
simplification of the ANN 4 equation, the simplified form of Equation (8) for ANN 5 is:
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Log(CD) = 2.148 tanh(0.0824η1 − 1.3963η2 − 1.1600) + 0.2902 tanh(−0.8174η1 + 0.1532η2 − 0.0501) + 2.1129 (27)

where η1 = 5SF− 3.5 and η2 = 0.82864log(D∗)− 1.0083. Statistical measures of the simula-
tion results for the training, validation, and testing 1 of the simplified ANN4 Equation (26)
and simplified ANN5 Equation (27) are given in Table 9. Figures 6 and 7 show the scat-
ter plot between the predicted settling velocity and the digitized data from the Intera-
gency Committee’s charts for training, validation, and testing 1 for the simplified ANN4
Equation (26) and the simplified ANN5 Equation (27), respectively.

Table 9. Statistical measures for ANN4 Equation (26) and ANN5 Equation (27).

Simplified ANN4, Equation (26) Simplified ANN5, Equation (27)
Simulation MRE MAXRE RMSE R2 MRE MAXRE RMSE R2

(%) (%) (%) (%)

Training 2.55 8.38 0.34 0.9991 2.15 6.01 0.31 0.9992
Validation 2.58 6.10 0.12 0.9998 1.81 5.24 0.18 1.00
Testing 1 2.16 4.87 0.14 0.9998 2.11 6.40 0.20 0.9996
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Table 10 presents the statistical values of the results of testing 2 for the five models,
ANN1 to ANN5, as well as the three existing equations reviewed, Jiminez and Madsen [21],
Wu and Wang [11], and Camenen [23], and also the simplified ANN4 Equation (26) and
simplified ANN 5 Equation (27), respectively. Plotting between Ws predictions and data
is given in Figures 8–10. As in the previous test results, ANN3 and ANN4 give slightly
more accurate results than other proposed ANN. The MRE, MAXRE, and RMSE values
of results of ANN3 and ANN4 are lower than other ANNs. The simulation results also
show that ANN2 and the formula of Wu and Wang [11] provide MRE, MAXRE, RMSE, and
R2 values close to each other. It is not surprising because the Wu-Wang formula [11] was
also developed using the Interagency Committee’s charts as a reference. Shankar et al. [50]
also conclude that the Wu-Wang model predicts the settling velocity of sediment particles
better than the 14 existing models reviewed in their comparison study. Through visual
observations in Figure 9, the results of plotting the models of Jeminez-Madsen [21] and
Camenen [23], there are quite large deviations in some data with Ws between 40 to 50 cm/s.
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Surprisingly, the simplified model of ANN4 Equation (26) and ANN5 Equation (27) produce
statistical measures nearly the same as its full equation (Figures 8d and 9e).
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Table 10. Statistical measures for ANN1 to ANN5 as well as existing equations and ANN4
Equation (26) and ANN5 Equation (27) for testing 2.

Formula MRE (%) MAXRE (%) RMSE R2

ANN1 10.84 68.86 1.16 0.9785
ANN2 9.65 56.01 1.24 0.9762
ANN3 9.15 54.24 1.18 0.9778
ANN4 9.17 55.26 1.21 0.9763
ANN5 10.78 100.51 1.41 0.9680

* Jimenez and Madsen [21] 11.45 64.98 1.56 0.9639
* Wu and Wang [11] 9.21 56.22 1.23 0.9759

* Camenen [23] 11.54 74.70 1.66 0.9582
Simplified ANN4, Equation (26) 9.73 58.49 1.19 0.9777
Simplified ANN5, Equation (27) 9.31 60.24 1.35 0.9706

* Existing formulas compared to this study.
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The above results indicate that the simplified ANN4 Equation (26) and simplified
ANN5 Equation (27) can potentially be used to predict the settling velocity of natural
sediments, especially for those sediment quartz with diameters between 0.05 mm and
10 mm in water having temperatures between 0 ◦C and 40 ◦C and the shape factor ranging
between 0.5 and 0.95 with reasonable accuracy.

4. Application of Explicit Equations

The following are examples of using the ANN formula Equation (8). Examples are
given for ANN1 and ANN2 formulas. The data are taken from a sample test result by
Smith and Cheung [49] with grain diameter d = 0.59 mm, water temperature T = 20 ◦C,
particle safe factor SF = 0.62 and measured settling velocity Wse = 7.3 cm/s. For the
application of the formula ANN1, settling velocity Wsp can be estimated using Equation (8)
with coefficients and normalized parameters in Table 3. The detailed calculation can be
described as follows:

Normalized parameters from Equation (21),

X1 = (0.2012 × 0.59)− 1.0221 = −0.89336
X2 = (0.05 × 20)− 1 = 0
X3 = (5 × 0.62)− 3.5 = −0.4

Predict the settling velocity using Equation (8) with coefficients (ak, bk, ck, dk, Ak and B)
on Table 3, elaborate Equation (8) for k = 1,2,3 and 4,

Ws = Ws,k=1 + Ws,k=2 + Ws,k=3 + Ws,k=4 + B (28)

Ws,k=1 = 43.8976× tanh((0.296×−0.89336) + (0.0713× 0) + (0.1162×−0.4) + 1.6124)

Ws,k=2 = 3.2274× tanh((−6.1369×−0.89336)− (3.661× 0 ) + (0.996 ×−0.4) + 1.3414)

Ws,k=3 = −74.0032× tanh((−0.3883×−0.89336)− (0.1107× 0)− (0.1664×−0.4) + 1.039)

Ws,k=4 = 146.6105× tanh((1.4203×−0.89336)− (0.0537× 0)− (0.0894×−0.4) + 2.6377)

B = −98.0281

Thus, we obtain Ws = 6.67 cm/s.
Based on the explicit equation developed from the ANN1 model, the result shows the

absolute relative error = abs((7.3 − 6.67)/7.3) = 8.61%.
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For the application of Formula ANN2, the predicted settling velocity Wsp can be
estimated using Equation (8) with coefficients in Table 4 and normalized parameters from
Equation (22). The detailed calculation can be described as follows:

Normalized parameter

X1 = (0.90 × log(0.59)) + 0.09971 = −0.106568
X2 = (0.05 × 20)− 1 = 0
X3 = (5 × 0.62)− 3.5 = −0.4

Predict the settling velocity:

Log(Ws) = Ws,k=1 + Ws,k=2 + Ws,k=3 + Ws,k=4 + B (29)

Ws,k=1 = 0.0623× tanh((1.0431×−0.106568) + (1.2349× 0)− (0.0188×−0.4) + 2.0878)

Ws,k=2 = 0.0123× tanh((−0.2999×−0.106568)− (1.6478× 0) + (1.8649×−0.4) + 1.5139)

Ws,k=3 = −0.5145× tanh((−0.7134×−0.106568) + (0.0237× 0)− ( 0.2138×−0.4) + 0.784)

Ws,k=4 = 2.2831× tanh((0.8745×−0.106568) + (0.0731× 0)− (0.0041×−0.4) + 2.2831)

B = −0.5864

Thus, we obtain log(Ws) = 0.832508 and Ws = 100.832508 = 6.80 cm/s

The explicit formula developed from model ANN2 produces the absolute relative
error = abs((7.3−6.8)/7.3) = 6.84%. The relatively low relative error is shown for both formulas.

5. Conclusions

This study develops five explicit ANN formulas, ANN1 to ANN5, to predict the set-
tling velocity of sediment particles with variations in grain size, particle shape factor, and
water temperature using the ANN procedure. The process involved in developing the ANN
models consists of using the data obtained from digitizing the Interagency Committee’s
charts and additional settling velocity measurement data from several sources. The pro-
posed ANN formulas explicitly express the Interagency Committee’s charts. The proposed
ANN models are compared with three existing equations for predicting settling velocity,
including the equation of Jiménez and Madsen [21], Wu and Wang [11], and Camenen [23],
to evaluate their performances. The simulation results show that all ANN models, ANN1
to ANN5, produce accurate results. However, the ANN using non-dimensional inputs and
outputs, such as ANN3, ANN4, and ANN5 have very satisfactory results. The results show
the quality of ANN2 models is very close to that proposed by Wu and Wang [11]. Moreover,
the equations of ANN4 and ANN5 can be simplified by omitting the two insignificant
coefficients A2 and A3 giving the simpler equation of ANN4, Equation (26) and the simple
equation of ANN5, Equation (27). Both Equation (26) and (27) produce very satisfactory
results, nearly the same as in their full Equation (8). Thus, Equations (26) and (27) have a
high potential to be used in predicting the settling velocity of particle sediment for quartz
with a density around 2650 kg/m3, especially for diameters between 0.05 mm and 10 mm
in water with temperatures between 0 ◦C and 40 ◦C and the shape factor of grains ranging
between 0.5 and 0.95.

This study proposes an explicit expression of an ANN multilayer perceptron (MLP)
consisting of three layers, input, hidden, and output layers. The output layer consists of
a single node. The straightforward equation is defined by Equation (8). Equation (8) is a
series of hyperbolic tangent functions with the sequence number according to the number
of nodes in the hidden layer. Each hyperbolic tangent part contains coefficients with the
number of coefficients equal to the number of input parameters. The MATLAB software
can determine the series coefficient and the initial value for the optimization to obtain the
best coefficients. Removing small values of series coefficients of hyperbolic tangent and
re-optimizing to determine the new series and weight coefficients can simplify Equation (8).
Equation (8) is a general form of explicit expression of an ANN multilayer perceptron with
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three layers and a single output node. Equation (8) can be applied to other cases using the
same ANN approach to find the relationship between input parameters and outputs. For
example, the explicit ANN Equation (8) will be helpful because it can also be applied to
obtain sediment parameters that must be obtained through many graphic interpolations
widely found in sediment transport computation.

It is noted that the ANN model proposed in this study uses data (sediment, fluid prop-
erties, and settling velocity), generally from the results of laboratory experiments obtained
from the literature. Therefore, the proposed ANN model applies to hydrodynamic and
fluid conditions during the investigation. The settling velocity experiment was generally
carried out under stationary flow conditions. However, the settling process in the field is
very complex, with many influencing factors, such as flow velocity, turbulence, sediment
concentration, salinity, viscosity, fluid temperature, etc. Therefore, the development of
advanced methods and tools that can measure the settling velocity in the field along with
the hydrodynamic and fluid conditions during measurement is a challenge. Measurements
are carried out under several hydrodynamic and fluid conditions and locations. Using data
from field measurements (big data), we can build a fall velocity equation that is more in
line with field conditions as a function of hydrodynamic and fluid parameters by using
ANN in the explicit form of Equation (8). The use of an ANN is very suitable because it
can produce an input-output relationship for a nonlinear and complex process, such as a
settling process in the field without knowing the process that occurs.
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