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Abstract: This paper presents a comparative geometric analysis of the conditional bias (CB)-informed
Kalman filter (KF) with the Kalman filter (KF) in the Euclidean space. The CB-informed KFs consid-
ered include the CB-penalized KF (CBPKF) and its ensemble extension, the CB-penalized Ensemble
KF (CBEnKF). The geometric illustration for the CBPKF is given for the bi-state model, composed
of an observable state and an unobservable state. The CBPKF co-minimizes the error variance and
the variance of the Type-II error. As such, CBPKF-updated state error vectors are larger than the
KF-updated, the latter of which is based on minimizing the error variance only. Different error vectors
in the Euclidean space imply different eigenvectors and covariance ellipses in the state space. To
characterize the differences in geometric attributes between the two filters, numerical experiments
were carried out using the Lorenz 63 model. The results show that the CBEnKF yields more accurate
confidence regions for encompassing the truth, smaller errors in the ensemble mean, and larger
norms for Kalman gain and error covariance matrices than the EnKF, particularly when assimilating
highly uncertain observations.

Keywords: geometric analysis; conditional bias; CBPKF; CBEnKF; covariance ellipse

1. Introduction

With highly uncertain observations and model dynamics, KF [1] and EnKF [2] esti-
mates tend to be conditionally biased. The conditional bias (CB)-informed Kalman filter
(KF) is designed to improve the estimation of extreme states in geophysical data assimi-
lation, particularly at the onset of extreme phenomena. The CB-informed KFs developed
to date include the CB-penalized Kalman filter (CBPKF; [3,4]) and its ensemble extension,
the CB-penalized Ensemble Kalman filter (CBEnKF; [5]), and aim at addressing CB [3–5]
to improve estimation of extreme states. With extreme precipitation, droughts, and floods
occurring more frequently in many parts of the globe, the estimation and prediction of
extremes is an increasingly important topic in hydrology. With the increasing availability
of diverse sources of observations, hydrologic data assimilation has a large role to play in
improving state estimation. The CB-informed KF is an effort to help address both.

There are two types of CB, Type I and Type II. The Type-I CB is defined as E[X|X* =
x*] − x* where X, X*, and x* represent the unknown truth, the estimate, and the realization
of X*, respectively. The Type-II CB is defined as E[X*|X = x] − x where x represents
the realization of X. The Type-I CB is associated with false alarms which can be reduced
by calibration. The Type-II CB is associated with failure to detect an event and cannot
be reduced by calibration. The CBPKF minimizes a linearly weighted sum of the error
covariance and the expectation of the Type-II error squared. With skillful specification of
the weight for the latter, the CBPKF improves estimation of extremes over the KF while
slightly increasing the unconditional MSE [3,4].

Though extensively studied in statistics, econometrics, meteorology, and hydrology [6–16],
CB has gained interest only recently in data assimilation. Relevant studies to date include
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the CBPKF [3,4] and the CBEnKF [5]—the CBEnKF application to flood forecasting [5],
adaptive filtering for the CBPKF [17] and the CBEnKF [18], and the variance-inflated
KF-based approximation of the CBPKF for reduced computation [17,18]. Improving un-
derstanding of how the CB-informed KF compares with conventional data assimilation
techniques, such as the KF, is crucial for interpreting and analyzing its application results,
as well as identifying areas for further development. To that end, this study provides a
geometric analysis of the CB-informed KF and compares performance with the EnKF via
numerical experiments.

Stochastic variables may be expressed as vectors in the Euclidean domain, which can
be used to geometrically illustrate vectors of innovation, observation errors, and forecast
and analysis errors in the Euclidean domain [19]. The geometric interpretation of state
estimation thus helps understand how Kalman gain shape to analysis error vectors and
assimilation solutions for observable as well as unobservable states [19]. Error covariance
matrices may also be analyzed geometrically in the state space and characterized with
eigenvalues, eigenvectors, and associated confidence regions.

The purpose of this work is to gain additional insight into intuitive understanding
of how the CBPKF solution differs from the KF, by casting them in error and state spaces
using a bi-state model, and to advance understanding of the comparative performance of
the CBEnKF with the EnKF by identifying and characterizing the representative geometric
attributes in the state space via eigenvalue analysis. The new and significant contributions
of this work are: comparative geometric analysis of the CBPKF solution with the KF, devel-
opment of a set of geometry-based relationships for improved understanding of the CBPKF
solution, and geometric characterization of ensemble analysis for improved understanding
of the comparative performance of the CBEnKF with the EnKF. The comparative perfor-
mance is based on numerical experiments with the Lorenz 63 model, chosen in this study
for familiarity and simplicity. For real-world flood forecasting applications of the CBEnKF,
the interested reader is referred to Lee et al. [5] and Shen et al. [18].

This paper is organized as follows. Section 2 describes the state updating problem,
and the two solution approaches, the KF and the CBPKF. Section 3 presents the geometric
analysis of the CB-informed KF in relation to the KF and the EnKF. First, Section 3.1
describes how to use vectors to represent stochastic variables in the Euclidean domain,
and Section 3.2 expresses the filter equations in terms of state and observation error terms.
Section 3.3 geometrically illustrates the filter equations for a low-order model based on the
visualization of error vectors and their relations to Kalman gain and covariance matrices
in the Euclidean space [19]. Section 3.4 describes geometric analyses in the state-space
with eigenvalues and eigenvectors of error covariance matrices and associated confidence
regions. In Section 3.5, an example is given for geometric analysis in the state space in
which the CBEnKF, the EnKF, and Open Loop (OL) are compared for the Lorenz 63 model
via numerical experiments. Finally, Section 4 describes conclusions.

2. Methodology
2.1. State Updating Problem

The nonlinear dynamical model is written as Equation (1).

Xk = M(Xk−1) + Wk−1 (1)

In the above, Xk denotes the (nc × 1) model state, or control vector, where nc denotes
the number of variables in the control vector, M( ) denotes the dynamical model for state
variables, and Wk−1 denotes the dynamical model error at a time step k − 1 with a mean of
zero and a covariance of Qk. The nonlinear observational model is written as:

Zk = Hk(Xk) + Vk (2)

In the above, Zk denotes the (n × 1) observation vector, where n denotes the total
number of observations. Vk denotes the (n × 1) observation error vector at a time step
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k with a mean of zero and a covariance of Rk. Hk() denotes the nonlinear observation
operator that maps Xk to Zk. This study solves the linear observation model which renders
Hk(Xk) in Equation (2) linear, i.e., HkXk:

Zk = HkXk + Vk (3)

In the case of a nonlinear observation operator, e.g., soil moisture–streamflow transfor-
mation, one can still render Equation (2) linear via state augmentation [5,20,21], which is
beyond the scope of this study. Interested readers are referred to Lee et al. [5], where state
augmentation is used to solve a highly nonlinear flood forecasting problem.

Equation (4) shows the state updating equation where Xk|k, Xk|k−1, and Kk represent
updated state at a time step k, state forecast from k − 1 to k, and Kalman gain, respectively.

Xk|k = Xk|k−1 + Kk

[
Zk − HkXk|k−1

]
(4)

To find Kk, the KF and the EnKF minimize the error variance (ΣEV) in Equation (5).
The CBPKF and the CBEnKF minimize the weighted sum of ΣEV and the expectation of the
Type-II CB squared (ΣCB) in Equation (6), or ΣEV + αΣCB where α is the weight given to
the CB penalty term. The α can be estimated using an iterative method that yields the error
covariance within theoretically expected bounds (see [5] for details). Since the iterative
method is computationally expensive, the adaptive filtering method has been developed,
and the results are reported in Shen et al. [17].

ΣEV = E
[(

Xk − Xk|k

)(
Xk − Xk|k

)T
]

(5)

ΣCB = E[(Xk − EXk|k [Xk|k|Xk])(Xk − EXk|k [Xk|k|Xk])
T ] (6)

The following sections present expressions for Kalman gain (Kk) and covariance (Pk|k)
matrices in the case of the KF and the CBPKF.

2.2. Kalman Filter, KF

Equation (4) is rewritten as Equation (7) but with the superscript K to denote the KF.

XK
k|k = Xk|k−1 + KK

k

[
Zk − HkXk|k−1

]
(7)

Minimizing ΣEV in Equation (5) results in Kalman gain KK
k in Equation (8) and the

covariance analysis matrix Pk|k in Equation (9) [1].

KK
k = Pk|k−1HT

[
HPk|k−1HT + R

]−1
(8)

Pk|k = [1− Kk H]Pk|k−1 = Pk|k−1 − Kk

[
HPk|k−1HT + Rk

]
KT

k (9)

2.3. Conditional Bias-Penalized Kalman Filter, CBPKF

State updating equation (Equation (4)) can be rewritten into Equation (10) with the
superscript C denoting the CBPKF.

XC
k|k = Xk|k−1 + KC

k

[
Zk − HkXk|k−1

]
(10)

Minimizing ΣEV + αΣCB produces the CBPKF gain KC
k in Equation (11) and the covari-

ance matrix Σk|k in Equation (12) [3,4,17].

KC
k = [v1,k Hk + v2,k]

−1v1,k (11)
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Σk|k = [v1,k Hk + v2,k]
−1
(

v1,kRkvT
1,k + v2,kΣk|k−1vT

2,k

)
[v1,k Hk + v2,k]

−1 (12)

In Equations (11) and (12), the (m × n) and (m ×m) weight matrices for the observa-
tions and model prediction, v1,k and v2,k, respectively, are given by:

v1,k = ĤT
k Γ11,k + Γ21,k (13)

v2,k = ĤT
k Γ12,k + Γ22,k (14)

In Equations (13) and (14), the (m × n) modified observation matrix, ĤT
k , and the

(n × n), (n × m), and (m × m) matrices, Γ11,k, Γ12,k

(
= ΓT

21,k

)
, and Γ22,k, respectively, are

given by:
ĤT

k = HT
k + αCT

k (15)

Γ−1
22,k = Λ22,k −Λ21,kΛ−1

11,kΛ12,k (16)

Γ11,k = Λ−1
11,k + Λ−1

11,kΛ12,kΓ22,kΛ21,kΛ−1
11,k (17)

Γ12,k = −Λ−1
11,kΛ12,kΓ22,k (18)

In Equations (15)–(18), the (n ×m) CB gain matrix for the observation vector, Ck, and
the (n× n), (n×m), and (m×m) modified error covariance matrices, Λ11,k, Λ12,k

(
= ΛT

12,k

)
,

and Λ22,k, respectively, are given by:

Ck =
[

HkΣk|k−1G−1
2,k + Rk Hk

][
G−1

2,k Σk|k−1G−1
2,k + 2(HT

k Rk Hk + Σk|k−1

)
]−1G−1

2,k (19)

Λ11,k = Rk + α(1− α)CkΣk|k−1CT
k + Λ12,k HT

k + HkΛ21,k (20)

Λ12,k = −αCkΣk|k−1 (21)

Λ22,k = Σk|k−1 (22)

In Equations (19)–(22), Rk and Σk|k−1 denote the (n × n) observation error covariance
matrix, Cov[Vk, Vk], and the (m × m) forecast error covariance matrix, respectively, and
G−1

2,k = HT
k Hk + I.

If α = 0, the CBPKF solution is reduced to the KF, i.e., Σk|k =
[

HT
k R−1

k Hk + Σ−1
k|k−1

]−1
,

and Kk = Σk|k HT
k R−1

k [5].

3. Geometric Analysis of the CB-Informed KF
3.1. Error Representation of Filter Equations

Since the error covariance of stochastic variables plays the key role in geometric
analyses in the Euclidean space, this section defines errors in states and a residual in
measurement in order to rewrite state updating and observation equations with error terms.

εC
k = Xk − XC

k|k (23)

εK
k = Xk − XK

k|k (24)

εk = Xk − Xk|k−1 (25)

yk = Zk − HkXk|k−1 (26)

In the above, εC
k , εK

k , and εk denote the CBPKF analysis error, the KF analysis error,
and the forecast error, respectively; yk represents innovation; Xk, XC

k|k, XK
k|k, and Xk|k−1

represent the truth, the CBPKF-updated state, the KF-updated state, and the state forecast,
respectively.
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State update equations for the KF and the CBPKF are rewritten into Equations (27)
and (28), assuming the same a priori states used in both filters.

εK
k = εk − KK

k yk (27)

εC
k = εk − KC

k yk (28)

where KK
k and KC

k are Kalman gains from the KF and the CBPKF, respectively.
Updated states from both filters have the following mathematical relationship.

εC
k = εK

k −
(

KC
k − KK

k

)
yk (29)

The observation model in Equation (3) can be rewritten as follows:

yk = Hkεk + Vk (30)

From Equation (3), the covariance matrix of yk, or Dk, can be written as

Dk = HkP−k HT
k + Rk (31)

where P−k is the covariance matrix of the state forecast.

3.2. KF and CBPKF Solutions for a Bi-State Model

A bi-state model (Xk = [x1,k x2,k]
T) is used to illustrate the geometric relation of

errors in states and observations from the CBPKF and the KF. Observation z1,k exists for
a state x1,k but not for x2,k to investigate how state updating can be illustrated in the
two-dimensional (2-D) Euclidean space for observable as well as unobservable states, i.e.,
Zk = [z1,k]; H = [1 0] is used for simplicity. Kronhamn [19] used the same Xk, Zk and H
matrices as those described in this Section for the geometric illustration of the KF, whereas
we focus on the CBPKF in reference to the KF. For the bi-state model with a forecast error

covariance Pf ,k =

[
σ2

1,kσ12,k
σ12,kσ2

2,k

]
and the observation error Rk =

[
σ2

z,k

]
, matrices of Kalman

gain (Equations (32) and (33)), analysis error covariance (Equations (34) and (35)), and
correlation (Equations (36)–(38)) for the CBPKF and the KF are evaluated in the equations
below where σ12,k = ρ12,kσ1,kσ2,k with ρ12,k representing the correlation between x1,k and x2,k.

KC
k =

[
KC

1,k
KC

2,k

]
= KK

k + α


2σ2

1,kσ2
z,k(

σ2
1,k+σ2

z,k

)(
(1+2α)σ2

1,k+σ2
z,k

)
2σ12,kσ2

z,k(
σ2

1,k+σ2
z,k

)(
(1+2α)σ2

1,k+σ2
z,k

)

 (32)

where

KK
k =

[
KK

1,k
KK

2,k

]
=

 σ2
1,k

σ2
1,k+σ2

z,k
σ12,k

σ2
1,k+σ2

z,k

 (33)

Equation (32) indicates that for an observable state x1,k, KC
k is always larger than

KK
k , but for an unobservable state x2,k, the sign of KC

k − KK
k depends on the sign of σ12,k.

The CBPKF covariance matrix PC
a,k and its relation to the KF-equivalent PK

a,k are given in
Equation (34).

PC
a,k = PK

a,k + α


α(2σ2

1,kσ2
z,k)

2(
σ2

1,k+σ2
z,k

)(
(1+2α)σ2

1,k+σ2
z,k

)2
ασ12,k(2σ1,kσ2

z,k)
2(

σ2
1,k+σ2

z,k

)(
(1+2α)σ2

1,k+σ2
z,k

)2

ασ12,k(2σ1,kσ2
z,k)

2(
σ2

1,k+σ2
z,k

)(
(1+2α)σ2

1,k+σ2
z,k

)2
α(2σ12,kσ2

z,k)
2(

σ2
1,k+σ2

z,k

)(
(1+2α)σ2

1,k+σ2
z,k

)2

 (34)
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where

PK
a,k =


σ2

1,kσ2
z,k

σ2
1,k+σ2

z,k

σ12,kσ2
z,k

σ2
1,k+σ2

z,k
σ21,kσ2

z,k
σ2

1,k+σ2
z,k

σ2
2,k −

σ2
12,k

σ2
1,k+σ2

z,k

 (35)

In Equation (34), variances of both updated states x1,k and x2,k are larger than
KF-equivalents, and the sign of covariance terms of PC

a,k − PK
a,k depend on the sign of

σ12,k. Equations (34) and (35) imply that the CBPKF-updated state ensembles have larger
spreads in the state space than the KF-updated, and that the matrix norm of PC

a,k is larger
than that of PK

a,k. From covariance matrices, Pearson product-moment correlation matrix
CC

a,k can be computed by Equation (36).

CC
a,k =

(
diag

(
PC

a,k

))− 1
2 PC

a,k

(
diag

(
PC

a,k

))− 1
2
=

[
1 CC

a,12,k
CC

a,12,k 1

]
(36)

where diag( ) denotes a diagonal matrix. Equation (37) shows that the correlation coefficient
of the CBPKF-updated states CC

a,12,k can be either larger or smaller than the KF-equivalent
CK

a,12,k.

CC
a,12,k =

σ12,kσz,k

√(
(1+2α)2σ2

1,k+σ2
z,k

)
σ1,k

√(
σ2

1,k+σ2
z,k

)(
σ2

2,k

(
σ2

1,k+σ2
z,k

)
−σ2

12,k

)
+4α(1+α)

(
σ2

1,k−σ2
z,k

)(
σ2

1,kσ2
2,k−σ2

12,k

)
= CK

a,12,k

+
σ12,kσz,k

√
A1−A2

σ1,k

√
σ2

2,k

(
σ2

1,k+σ2
z,k

)
−σ2

12,k

√(
σ2

2,k

(
σ2

1,k+σ2
z,k

)
−σ2

12,k

)(
σ2

1,k+σ2
z,k

)
+4α(1+α)

(
σ2

1,k−σ2
z,k

)(
σ2

1,kσ2
2,k−σ2

12,k

)
(37)

where

A1 =
(

σ2
2,k

(
σ2

1,k + σ2
z,k

)
− σ2

12,k

)(
(1 + 2α)2σ2

1,k + σ2
z,k

)
A2 =

(
σ2

2,k

(
σ2

1,k + σ2
z,k

)
− σ2

12,k

)(
σ2

1,k + σ2
z,k

)
+ 4α(1 + α)

(
σ2

1,k − σ2
z,k

)(
σ2

1,kσ2
2,k − σ2

12,k

)
CK

a,12,k =
σ12,kσz,k

σ1,k

√
σ2

2,k

(
σ2

1,k + σ2
z,k

)
− σ2

12,k

(38)

From Equations (32)–(38), if α = 0, then KC
k = KK

k , PC
a,k = PK

a,k, and CC
a,k = CK

a,k.

3.3. Geometric Representation of KF and CBPKF Solutions

This Section begins with describing a relation between stochastic variables and vec-
tors in the Euclidean domain at Equations (39)–(41), and then describes the geometric
representation of KF and CBPKF equations. The covariance of stochastic variables xs and
ys can be used to compute the scalar product of two vectors

→
xE and

→
yE in the Euclidean

domain (Equation (39)). The vector norm ||→xE|| corresponds to the standard deviation of xs

(Equation (40)). The angle of
→
xE and

→
yE can be computed from the correlation of xs and ys

(Equation (41)) [19,22]. Figure 1 shows the vector representation of stochastic variables in
the Euclidean space.

→
xE·
→
yE = ||→xE|| ||

→
yE|| cos θ = Cov[xs, ys] = σxsys (39)

||→xE|| =
√
→
xE·
→
xE =

√
Cov[xs, xs] = σxs (40)

θ = cos−1

( →
xE·
→
yE

||→xE|| ||
→
yE||

)
= cos−1

(
σxsys

σxs σys

)
= cos−1(ρxsys

)
(41)
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Figure 1. Vector representation of stochastic variables in the Euclidean space, where 𝑥  and 𝑦  are 
vectors in the Euclidean space and 𝑥  and 𝑦  are stochastic variables. 

Figure 2 shows the error vectors from (a) the KF and (b) the CBPKF for the observable 
state 𝑥 ,  of the bi-state model, where 𝜀 , = 𝜎 , , 𝑣 , ⃗ = 𝜎 , , and �⃗� , = 𝜎 , +𝜎 , , where the last equality is from Equation (30). In Figure 2a, the state forecast error 
vector 𝜀 ,  is orthogonal to the observation error vector 𝑣 ,  owing to the independence 
assumption. Being a minimum variance solution, 𝜀 ,  is orthogonal to �⃗� ,  [19,23]. Figure 
2a also shows that the forecast error is a vector sum of the gain-weighted innovation and 
the analysis error, i.e., 𝜀 , = 𝐾 , �⃗� , + 𝜀 ,  as expected from Equation (27). The KF anal-
ysis error variance may be obtained in Figure 2a via the Pythagorean theorem as 𝜀 , =𝜀 , − 𝐾 , �⃗� , = 𝜎 , − ,, , 𝜎 , + 𝜎 , = , ,, ,  where 𝐾 , = ,, ,  as 

expected from Equation (35). Since 𝜀 , =𝜀 , − 𝐾 , − 𝐾 , �⃗� , , we may write via the Py-

thagorean theorem 𝜀 , = 𝜀 , + 𝐾 , − 𝐾 , �⃗� , = ( ) , , , ,( ) , ,  

which is expected from Equation (34). In Figure 2, the inequality, 𝐾 , �⃗� , < 𝐾 , �⃗� , , 
arises due to the fact that the CBPKF solution minimizes not the error variance but a 
weighted sum of the error variance and the variance of the Type-II CB. 

Figure 3 is the same as Figure 2 but for the unobservable state 𝑥 ,  where 𝜀 , =𝜎 , ; 𝜀 , = 𝜀 , cos 𝜃 = ,, ; 𝜀 , = 𝜀 , − 𝜀 , = 𝜎 , − ,, ; and 

𝜀 , = 𝜀 , − 𝐾 , �⃗� , = , ,, , , . In Figure 3a, the proportionality, 

𝜀 , : 𝐾 , �⃗� , = 𝜀 , : 𝐾 , �⃗� , , gives 𝐾 , = 𝐾 , ⃗ ,⃗ , = 𝐾 , ⃗ ,⃗ , =𝐾 , ,, ,, , = 𝐾 , ,,  as expected from Equation (33). In Figure 3a, the orthogonality, 𝜀 , ⊥ �⃗� , , and the equality 𝜀 , = 𝜀 , − 𝐾 , �⃗� , , yield 𝜀 , = 𝜀 , − 𝐾 , �⃗� , =𝜎 , − ,, ,  in agreement with Equation (35). In Figure 3b, 𝜀 ,  may be written via 
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Figure 1. Vector representation of stochastic variables in the Euclidean space, where xE and yE are
vectors in the Euclidean space and xS and yS are stochastic variables.

Figure 2 shows the error vectors from (a) the KF and (b) the CBPKF for the observ-

able state x1,k of the bi-state model, where ||→ε 1,k|| = σ1,k, || →v1,k|| = σz,k, and ||→y 1,k||
2
=(

σ2
1,k + σ2

z,k

)
, where the last equality is from Equation (30). In Figure 2a, the state forecast

error vector
→
ε 1,k is orthogonal to the observation error vector v1,k owing to the indepen-

dence assumption. Being a minimum variance solution,
→
ε

K
1,k is orthogonal to

→
y 1,k [19,23].

Figure 2a also shows that the forecast error is a vector sum of the gain-weighted innovation

and the analysis error, i.e.,
→
ε 1,k = KK

1,k
→
y 1,k +

→
ε

K
1,k as expected from Equation (27). The

KF analysis error variance may be obtained in Figure 2a via the Pythagorean theorem

as ||→ε
K
1,k||

2
= ||→ε 1,k||

2
− ||KK

1,k
→
y 1,k||

2
= σ2

1,k −
(

σ2
1,k

σ2
1,k+σ2

z,k

)2(
σ2

1,k + σ2
z,k

)
=

σ2
1,kσ2

z,k
σ2

1,k+σ2
z,k

where

KK
1,k =

σ2
1,k

σ2
1,k+σ2

z,k
as expected from Equation (35). Since

→
ε

C
1,k=

→
ε

K
1,k −

(
KC

1,k − KK
1,k

)→
y 1,k, we

may write via the Pythagorean theorem ||→ε
C
1,k|| =

√
||→ε

K
1,k||

2
+ ||

(
KC

1,k − KK
1,k

)→
y 1,k||

2
=√√√√ (

(1+2α)2σ2
1,k+σ2

z,k

)
σ2

1,kσ2
z,k(

(1+2α)σ2
1,k+σ2

z,k

)2 which is expected from Equation (34). In Figure 2, the inequality,

||KK
1,k
→
y 1,k|| < ||KC

1,k
→
y 1,k||, arises due to the fact that the CBPKF solution minimizes not the

error variance but a weighted sum of the error variance and the variance of the Type-II CB.
Figure 3 is the same as Figure 2 but for the unobservable state x2,k where ||→ε 2,k|| = σ2,k;

||→ε 2p,k|| = ||
→
ε 2,k|| cos θ =

σ12,k
σ1,k

; ||→ε 2o,k|| =
√
||→ε 2,k||

2
− ||→ε 2p,k||

2
=

√
σ2

2,k −
σ2

12,k
σ2

1,k
; and

||→ε 2c,k|| =
√
||→ε 2p,k||

2
− ||KK

2,k
→
y 1,k||

2
=

√
σ2

12,kσ2
z,k

σ2
1,k

(
σ2

1,k+σ2
z,k

) . In Figure 3a, the proportionality,

||→ε 2p,k|| : ||KK
2,k
→
y 1,k|| = ||

→
ε 1,k|| : ||KK

1,k
→
y 1,k||, gives KK

2,k = KK
1,k
||→ε 2p,k ||
||→ε 1,k ||

= KK
1,k
||→ε 2,k || cos θ

||→ε 1,k ||
=

KK
1,k

σ2,k
σ1,k

σ12,k
σ1,kσ2,k

= KK
1,k

σ12,k
σ2

1,k
as expected from Equation (33). In Figure 3a, the orthogo-

nality,
→
ε

K
2,k⊥

→
y 1,k, and the equality

→
ε

K
2,k =

→
ε 2,k − KK

2,k
→
y 1,k, yield ||→ε

K
2,k||

2
= ||→ε 2,k||

2
−

||KK
2,k
→
y 1,k||

2
= σ2

2,k −
σ2

12,k
σ2

1,k+σ2
z,k

in agreement with Equation (35). In Figure 3b, ||→ε
C
2,k||

2
may

be written via the Pythagorean theorem as:

||→ε
C
2,k||

2
= ||→ε

K
2,k||

2
+ ||

(
KC

2,k − KK
2,k

)→
y 1,k||

2
(42)
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Using Equations (35), (32) and (31) for ||→ε
K
2,k||

2
, KC

2,k − KK
2,k, and ||→y 1,k||

2
, respectively,

we may rewrite Equation (42), in agreement with Equation (34), as:

||→ε
C
2,k||

2
= σ2

2,k −
σ2

12,k

σ2
1,k + σ2

z,k
+

(
2ασ12,kσ2

z,k

)2

(
σ2

1,k + σ2
z,k

)(
(1 + 2α)σ2

1,k + σ2
z,k

)2 (43)

Figures 2 and 3 show that the KF- and the CBPKF-updated state error vectors point
to different directions in the state space. Figure 4 shows the updated state error vectors in
Figures 2 and 3 to visually compare the differences in the angle, the magnitude, and the
direction. The angles of the two-state error vectors for the CBPKF (θC in Equation (44))
and the KF (θK in Equation (45)) can be computed from the correlation CC

a,12,k and CK
a,12,k in

Equations (37) and (38), respectively:

θC = cos−1 CC
a,12,k = cos−1

 →
ε

C
1,k·
→
ε

C
2,k

||→ε
C
1,k|| ||

→
ε

C
2,k||

 = cos−1

 σxC
1,k|kxC

2,k|k

σxC
1,k|k

σxC
2,k|k

 (44)
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θK = cos−1 CK
a,12,k = cos−1

 →
ε

K
1,k·
→
ε

K
2,k

||→ε
K
1,k|| ||

→
ε

K
2,k||

 = cos−1

 σxK
1,kxK

2,k

σxK
1,k|k

σxK
2,k|k

 (45)Hydrology 2022, 9, 84 9 of 23 
 

 

 
Figure 3. Geometric illustration of assimilation solutions for the unobservable state 𝑥 ,  for (a) the 
KF (→; after Kronhamn [19]), and (b) the CBPKF (→). 

Figures 2 and 3 show that the KF- and the CBPKF-updated state error vectors point 
to different directions in the state space. Figure 4 shows the updated state error vectors in 
Figures 2 and 3 to visually compare the differences in the angle, the magnitude, and the 
direction. The angles of the two-state error vectors for the CBPKF (𝜃  in Equation (44)) 
and the KF (𝜃  in Equation (45)) can be computed from the correlation 𝐶 , ,  and 𝐶 , ,  
in Equations (37) and (38), respectively: 𝜃 = cos 𝐶 , , = cos 𝜀 , ∙ 𝜀 ,𝜀 , 𝜀 , = cos 𝜎 , | , |𝜎 , | 𝜎 , |  (44)

𝜃 = cos 𝐶 , , = cos 𝜀 , ∙ 𝜀 ,𝜀 , 𝜀 , = cos 𝜎 , ,𝜎 , | 𝜎 , |  (45)

Below, we develop a set of geometric expressions in the 2-D state space for the anal-
ysis error covariance via eigenvalue decomposition (EVD, [24]). 

Figure 3. Geometric illustration of assimilation solutions for the unobservable state x2,k for (a) the KF
(→; after Kronhamn [19]), and (b) the CBPKF (→).

Below, we develop a set of geometric expressions in the 2-D state space for the analysis
error covariance via eigenvalue decomposition (EVD, [24]).

3.4. Geometric Analysis in the State Space

Geometric characteristics of state ensembles in the 2-D state space can be quantified by
confidence regions (CR), eigenvectors, eigenvalues, and the angle between the eigenvector
and the basis vector of the x-axis. Assuming normal distributions for state ensembles in
a 2-D state space, a CR, or so-called a covariance ellipse, can be constructed based on the
EVD of a covariance matrix as well as the Chi-Square probability table. The presence of
the CB results in different variances (eigenvalues) and directions (eigenvectors) of updated
state ensembles in a 2-D state space. The major and minor axis lengths of the covariance
ellipse are 2

√
sλ1 and 2

√
sλ2 where λ1 > λ2 and the value of s is from the Chi-Square

probability table for a given confidence region, e.g., s = 4.605 for a 90% confidence region
given the Chi-Square probability P(s < 4.605) = 0.9 in the case of degrees of freedom of 2.
In a 2-D state space, the error in the orientation of the covariance ellipse with respect to the
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truth can be estimated by the angle, θ, between the largest eigenvector
→
u 1 and the vector

→
a

connecting the truth and the ensemble mean, i.e., θ
(→

u 1,
→
a
)
= cos−1

( →
u 1·
→
a

||→u 1|| ||
→
a ||

)
.
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The EVD of the CBPKF analysis covariance PC
a,k may be written as:

PC
a,k = UEUT (46)

where

U =

[
cos θ sin θ
− sin θ cos θ

]
=
[→

u 1
→
u 2

]
, E =

[
λC

1 0
0 λC

2

]
, (47)

In the above, U is the eigenvector matrix which rotates the white data (W), or uncorre-
lated standard normal variates by θ. The eigenvalue matrix E explains the variance along
the principal error direction, or the direction of the eigenvector. In a 2-D state space,

√
E is

a scale factor applied to W. The dataset (D) resulting from scaling W by
√

E and rotating by
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U, i.e., D = U
√

EW, has the covariance matrix of PC
a,k = U

√
E
(

U
√

E
)T

. Below we apply

EVD to the CBPKF analysis error covariance, PC
a,k, from the bi-state model in Section 3.2.

With λC
1 > λC

2 > 0, and PK
a,k =

[
p2

1,k p12,k
p12,k p2

2,k

]
, PC

a,k in Equation (34) may be rewritten as:

PC
a,k = PK

a,k + ζ

[
σ4

1,k σ12,kσ2
1,k

σ12,kσ2
1,k σ2

12,k

]
where ζ =

(
2ασ2

z,k

)2

(
σ2

1,k + σ2
z,k

)(
(1 + 2α)σ2

1,k + σ2
z,k

)2 (48)

Appendix A describes how eigenvalues and eigenvectors may be evaluated for a 2× 2
covariance matrix. Using Equation (A11) in Appendix A, we have for λC

1 :

λC
1 = 0.5

((
p2

1,k + ζσ4
1,k

)2
+
(

p2
2,k + ζσ2

12,k

)2
)

+0.5

√(
p2

1,k − p2
2,k + ζσ4

1,k − ζσ2
12,k

)2
+ 4
(

p12,k + ζσ12,kσ2
1,k

)2
(49)

The difference in the largest eigenvalue between the KF and the CBPKF analysis error
covariance is given by:

λC
1 − λK

1 = 0.5
(

2p2
1,kζσ4

1,k + 2p2
2,kζσ2

12,k + ζ2σ8
1,k + ζ2σ4

12,k

)
+0.5

√(
p2

1,k − p2
2,k + ζσ4

1,k − ζσ2
12,k

)2
+ 4
(

p12,k + ζσ12,kσ2
1,k

)2

−0.5

√(
p2

1,k − p2
2,k

)2
+ 4(p12,k)

2

(50)

where λK
1 denotes the largest eigenvalue of PK

a,k. Using Equation (A12), we may write λC
2

and λC
2 − λK

2 :

λC
2 = 0.5

((
p2

1,k + ζσ4
1,k

)2
+
(

p2
2,k + ζσ2

12,k

)2
)

−0.5

√(
p2

1,k − p2
2,k + ζσ4

1,k − ζσ2
12,k

)2
+ 4
(

p12,k + ζσ12,kσ2
1,k

)2
(51)

λC
2 − λK

2 = 0.5
(

2p2
1,kζσ4

1,k + 2p2
2,kζσ2

12,k + ζ2σ8
1,k + ζ2σ4

12,k

)
−0.5

√(
p2

1,k − p2
2,k + ζσ4

1,k − ζσ2
12,k

)2
+ 4
(

p12,k + ζσ12,kσ2
1,k

)2

+0.5

√(
p2

1,k − p2
2,k

)2
+ 4(p12,k)

2

(52)

Similarly, using Equation (A14), we may write θC
a,k

(
→
u 1,
→
i
)

and θC
a,k

(
→
u 1,
→
i
)
−

θK
a,k

(
→
u 1,
→
i
)

as:

θC
a,k

(
→
u 1,
→
i
)
=

1
2

tan−1

− 2
(

p12,k + ζσ12,kσ2
1,k

)
p2

1,k + ζσ4
1,k − p2

2,k − ζσ2
12,k

 (53)

θC
a,k

(
→
u 1,
→
i
)
− θK

a,k

(
→
u 1,
→
i
)
=

1
2

tan−1

− 2
(

p12,k + ζσ12,kσ2
1,k

)
p2

1,k + ζσ4
1,k − p2

2,k − ζσ2
12,k

− 1
2

tan−1

(
−

2p12,k

p2
1,k − p2

2,k

)
(54)
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where the vector
→
i is the basis vector of the x-axis and θC

a,k

(
→
u 1,
→
i
)
− θK

a,k

(
→
u 1,
→
i
)

is equal

to θC
a,k

(→
u 1,
→
a
)
− θK

a,k

(→
u 1,
→
a
)

. With the geometric attributes established above, we now
carry out the comparative geometric analysis of the KF and the CBPKF analysis results
using the Lorenz 63 model [25].

With the EVD of PC
a,k and the ensemble mean (x1, x2), the minimum percentage confi-

dence CRMIN to contain the verifying truth (x1,T , x2,T) within the confidence region can be
computed by CRMIN = 100× P(s < s̃), where P(s < s̃) is the Chi-Square probability with
degrees of freedom of 2; s̃ satisfies Equation (55).{

(x1,T − x1) cos θC
a,k + (x2,T − x2) sin θC

a,k

}2

s̃λC
1

+

{
(x1,T − x1) sin θC

a,k − (x2,T − x2) cos θC
a,k

}2

s̃λC
2

= 1 (55)

Figure 5 shows an example of computing
→
a , θ

(→
u 1,
→
a
)

, CRMIN , and eigenvalues and
eigenvectors of a covariance matrix.
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Figure 5. Illustration of geometric characteristics in a 2-D state space. Pink dots represent 2000 en-
semble pairs of states (x1, x2). The red and green dots denote the ensemble mean pair and the truth,
respectively.

→
a is the vector connecting the ensemble mean and the truth.

→
u 1 is the eigenvector of the

covariance matrix P that corresponds to the largest eigenvalue λ1 of P.
√

λ1
→
u 1 represents the vector

along the major axis of covariance ellipses, where
√

λ1 represents a scale factor applied to the white
data. θ is the angle between

→
a and

→
u 1. Assuming normal distributions of state ensembles, the major

axis length of the covariance ellipse, or the confidence region (CR), is 2
√

sλ1, where s = 1.39, 4.605 or
9.21 for 50, 90, or 99% CRs, respectively.

3.5. Numerical Experiment with the Lorenz 63 Model

In the sections above, a linear two-state model was used for theoretical simplicity. In
this section, we use the three-state Lorenz 63 model to illustrate the differences between
the EnKF and the CBEnKF solutions in terms of the geometric attributes introduced above.
In this experiment, synthetically generated observations of all three states in the Lorenz 63
model were assimilated at every time step using the EnKF and the CBEnKF [26]. Prelimi-
nary experiments suggested observation error variances (σ2

z ) of 10 or 400 can be used for the
cases of assimilating less uncertain or largely uncertain observations, respectively, based
on the ensemble spread. To render the assimilation problem more challenging, σ2

z = 400 is
used to compare the performance of the CBEnKF to that of the EnKF in Figures 6–11, where
the ensemble size (nS) used is 2000 to minimize filter performance degradation owing to a
small ensemble size. Figures 12 and 13 compare assimilation results from the two filters in
the case of σ2

z = 10 or 400 as a function of an ensemble size, where nS values used include
10, 20, 30, 50, 70, 100, 200, 300, 500, 700, 1000, and 2000.
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amount of ensemble mean errors on model dynamics, e.g., the larger ensemble mean er-
rors at the extreme—this is also seen in EnKF solutions but less so in the CBEnKF. This 
may be explained by the CBEnKF with a larger weight to observations than the EnKF in 
the case of largely uncertain observations (𝜎 = 400 ), which reduces the reliance of 
CBEnKF solutions on the model dynamics. Based on 𝜆 , CBEnKF covariances are gen-
erally larger than the EnKF at all state spaces. Larger 𝜆  and smaller |�⃗� | and |�⃗� | of 
the CBEnKF than the EnKF yield consistently smaller 𝐶𝑅  than the EnKF at both ex-
tremes and the median of all three variables. This signifies the benefit of using the CB-

Figure 6. State space plot of x1 and x2 of the Lorenz 63 model from the CBEnKF, the EnKF, the Open
Loop and the truth. Note that at the bottom right plot,

→
u 1 is plotted based on EVD results; however,

−→u 1 (not shown) should also be considered to interpret the principal error vector pointing towards
the truth—this is reflected in the shape and the size of covariance ellipses at the plot.
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ditionally less biased. The CBEnKF keeps consistently low 𝐶𝑅  at all exceedance prob-
abilities owing to small |�⃗�| and large 𝜆 , compared to the EnKF or the OL. Since the 
EnKF seeks orthogonal solutions to minimize analysis covariances, its 𝜆  is always 
smaller than the OL’s as well as the CBEnKF’s. On the other hand, the CBEnKF increases 𝜆  to address CBs which helps keep 𝐶𝑅  low to contain the truth. Both 𝜃  and 𝜌 
show no consistent patterns across different state spaces as well as exceedance probabili-
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2000, and 𝜎  = 400 as a function of an exceedance probability. 

In Figure 10, the ensemble mean error time series indicates that among the three var-
iables, CBEnKF’s improvement is the largest for 𝑥 . On the other hand, for the state 𝑥 , 
the CBEnKF mainly remedies the underestimation of 𝑥  compared to the EnKF. In the 
case of 𝑥 , the CBEnKF slightly outperforms the EnKF. These observations may imply the 
different amounts of CBs present in different states, hence the need of applying a separate 
weight α to the CB penalty for the individual state, which warrants a future effort. To 
compare 𝑃 ,  and 𝐾  from the two filters, the time series of Frobenius norm of 𝑃 ,  and 𝐾  is computed by Equations (56) and (57), respectively. Compared to the EnKF, the 
CBEnKF yields 𝐾  and 𝑃 ,  consistently larger at all assimilation cycles, and the 
mean values of 𝐾  and 𝑃 ,  are five and three times larger, respectively. 𝑃 , = ∑ 𝜆   (56)

𝐾 = ∑ 𝜆   (57)

Figure 9. Geometric statistics of 2-D state-space from the CBEnKF and the EnKF in the case of
ns = 2000, and σ2

Z = 400 as a function of an exceedance probability.
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Figure 10. Time series of state ensemble mean errors, 𝐾 , and 𝑃 , . At the top three plots, 
the true state (green line) time series is overlaid for comparison. Inverse Hyperbolic Sine (IHS) trans-
formation is applied to the top three plots to properly view ensemble mean errors, denoted by blue 
and red lines for the EnKF and the CBEnKF, respectively; �̅� denotes the ensemble mean of x; the 
superscript + represents the updated state; the subscript T denotes the truth; 𝐾 , =0.38; 𝐾 , = 0.08; ∑ ,, = 5.1; 𝑃 , = 92; 𝑃 , = 31, and ∑ ,, = 3.1. 

Figure 11 shows mean 𝐾  and 𝑃 ,  as a function of exceedance probabilities. 
At extremes, both the CBEnKF and the EnKF show that mean 𝐾  and 𝑃 ,  are 
larger than those at high exceedance probabilities, and that large differences in mean 𝐾  and 𝑃 ,  between the CBEnKF and the EnKF are consistent across exceedance 
probabilities. 

Figure 10. Time series of state ensemble mean errors, ||Kk||F, and ||Pa,k||F. At the top three plots,
the true state (green line) time series is overlaid for comparison. Inverse Hyperbolic Sine (IHS)
transformation is applied to the top three plots to properly view ensemble mean errors, denoted by
blue and red lines for the EnKF and the CBEnKF, respectively; x denotes the ensemble mean of x; the
superscript + represents the updated state; the subscript T denotes the truth; ||KC
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Figure 11. Frobenius norm of 𝐾  and 𝑃 , , or 𝐾  and 𝑃 , , respectively, as a function of 
exceedance probabilities, where 𝑛  = 2000, and 𝜎  = 400 are used for both the CBEnKF (red line) 
and the EnKF (blue line). 

Figures 6–11 are based on the case of uncertain observations (𝜎 = 400) where the 
CBEnKF may supposedly outperform the EnKF. To explore the CBEnKF performance 
with less uncertain observations (𝜎 = 10) and also to see the sensitivity to the ensemble 
size (𝑛 ), Figure 12 presents results from the combination of 𝑛 =10, 20, 30, 50, 70, 100, 200, 
300, 500, 700, 1000, and 2000, and 𝜎 = 10 and 400. In Figure 12, |�⃗�| plots indicate that 
with 𝜎 = 10, the accuracy of the ensemble mean continuously increases with an increase 
of 𝑛  at both cases of extremes (an exceedance probability of 0.1; red and blue dots for the 
CBEnKF and the EnKF, respectively) and all data (red and blue lines for the CBEnKF and 
the EnKF, respectively). When 𝜎 = 10 , the EnKF’s |�⃗�|  is slightly smaller than the 
CBEnKF’s, but the CBEnKF’s 𝜆  is slightly larger than the EnKF’s. The resulting 𝐶𝑅  
from both filters are very similar. This implies when observations are less uncertain, the 
EnKF solutions are as accurate and as confident as the CBEnKF solutions at extremes as 
well as the whole range. When 𝑛  200 and 𝜎 = 10 , mean 𝐶𝑅  maintains ~1%. 
When 𝑛 < 200 and 𝜎 = 10, 𝐶𝑅  quickly increases with a decrease of 𝑛  because of 
inaccurate error covariance estimates with an insufficient ensemble size. When observa-
tions are largely uncertain (𝜎 = 2000), the CBEnKF clearly shows more accurate ensem-
ble means (smaller |�⃗�|) and higher confidence in covariance estimates (smaller 𝐶𝑅 ) 
than the EnKF, particularly at extremes. Compared to 𝜎 = 10, assimilating largely un-
certain observations (𝜎 = 2000) reduces accuracies in covariance estimates, resulting in 
larger 𝜆  in both filters, although the CBEnKF’s 𝜆  addressing the CB is larger than 
the EnKF’s. When 𝜎 = 2000, |�⃗�| and 𝐶𝑅  tend to be less sensitive to 𝑛  than the case 
of 𝜎 = 10. Both 𝜃 and 𝜌 show neither any consistent patterns nor sensitivities to 𝑛 , 
but are included in Figure 12 for completeness. 

Finally, Figure 13 presents mean 𝐾  and 𝑃 ,  as a function of 𝑛 . Compared 
to the results from 𝜎 = 2000, 𝜎 = 10 results in larger 𝐾  in both filters due to big-
ger weights to the observations. When 𝜎 = 2000, the CBEnKF maintains relatively large 𝐾  to account for the CB; however, the EnKF’s 𝐾  is conspicuously small. Both 𝐾  and 𝑃 ,  tend to be little sensitive to the ensemble size 𝑛 , except the all data 
case of the CBEnKF with 𝜎 = 2000 (pink line). With uncertain observations (𝜎 = 2000), 
the CBEnKF’s 𝑃 ,  becomes large at extremes (pink dots) as well as all data (pink line) 
at all 𝑛  values used to reflect CBs in all states. 

Figure 11. Frobenius norm of Kk and Pa,k, or ||Kk||F and ||Pa,k||F, respectively, as a function of
exceedance probabilities, where ns = 2000, and σ2

Z = 400 are used for both the CBEnKF (red line) and
the EnKF (blue line).
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Figure 12. Geometric statistics of the 2-D state space from the CBEnKF and the EnKF in the case of 𝑛  = 10, 20, 30, 50, 70, 100, 200, 300, 500, 700, 1000, and 2000, and 𝜎  = 10 and 400. Dots (extreme 
1%) denote statistics based on samples with the exceedance probability of 0.01. 

Figure 12. Geometric statistics of the 2-D state space from the CBEnKF and the EnKF in the case of
ns = 10, 20, 30, 50, 70, 100, 200, 300, 500, 700, 1000, and 2000, and σ2

Z = 10 and 400. Dots (extreme 1%)
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Figure 13. Kalman gain norm and analysis covariance norm of the CBEnKF and the EnKF in the 
case of 𝑛  = 10, 20, 30, 50, 70, 100, 200, 300, 500, 700, 1000, and 2000, and 𝜎  = 10 and 400. 

4. Conclusions 
Error covariance and gain matrices of two CB-informed KFs, i.e., the CBPKF and the 

CBEnKF, are geometrically illustrated and compared with the KF equivalents [19] for a 
bi-state model using error vectors in the Euclidean space. Geometric illustration and anal-
ysis offer an intuitive understanding of the relationship between the two filters. Unlike 
the KF, the CBPKF solution is not orthogonal to its error, which renders its error covari-
ances and gains to be larger than the KF’s. The above differences result in different confi-
dence regions and principal error directions in the state space. Synthetic sensitivity exper-
iments with the Lorenz 63 model showed that the CBEnKF solutions have generally 
smaller errors in the ensemble mean, larger eigenvalues in the error covariance matrix, 
more accurate confidence regions for encompassing the truth, and larger Frobenius norms 
of the error covariance and gain matrices than the KF. The above differences are particu-
larly pronounced when the observations are highly uncertain.  

Future research recommendations include applying the CBPKF and the CBEnKF to 
diverse geophysical problems of estimating and predicting extremes, e.g., extreme precip-
itation or floods. The bi-state model was used in this work for a comparative geometric 
analysis of the CBPKF and the KF. Possible extension to an arbitrary number of states 
poses an interesting research topic.  
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Figure 13. Kalman gain norm and analysis covariance norm of the CBEnKF and the EnKF in the case
of ns = 10, 20, 30, 50, 70, 100, 200, 300, 500, 700, 1000, and 2000, and σ2

Z = 10 and 400.
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Figure 6 presents the results for states x1 and x2 of the Lorenz 63 model in a 2-D state
space. The attributes shown include |→a h|, |

→
a v|, CRMIN ,

√
λ1, θ, ρ, and

√
λ1
→
u 1; |→a h|, and

|→a v| reflect errors in the ensemble mean measured along horizontal or vertical directions,
respectively; large dots overlaid in the scatter plots represent mean values of the samples
in each of the ten bins equally dividing the entire state space. Figures 7 and 8 are the same
as Figure 6 but for the state spaces of (x1, x3) and (x2, x3), respectively. The following
summarizes general observations from Figures 6–8. The spread of |→a h| and |→a v| in the
scatter plots shows that the CBEnKF reduces CBs more effectively than the EnKF or the OL,
particularly in the extremes. In some cases, however, their mean values appear similar, e.g.,
|→a h| in the state spaces of (x1, x3) or (x2, x3). The OL results for |→a h| and |→a v| show that
their patterns appearing in the state space are similar to those of the state space plot in the
top left of Figures 6–8; this indicates the notable dependency of the amount of ensemble
mean errors on model dynamics, e.g., the larger ensemble mean errors at the extreme—this
is also seen in EnKF solutions but less so in the CBEnKF. This may be explained by the
CBEnKF with a larger weight to observations than the EnKF in the case of largely uncertain
observations (σ2

z = 400), which reduces the reliance of CBEnKF solutions on the model
dynamics. Based on

√
λ1, CBEnKF covariances are generally larger than the EnKF at all

state spaces. Larger
√

λ1 and smaller |→a h| and |→a v| of the CBEnKF than the EnKF yield
consistently smaller CRMIN than the EnKF at both extremes and the median of all three
variables. This signifies the benefit of using the CB-informed KF for the estimation of
extremes given that the EnKF’s CRMIN quickly increases towards extremes, i.e., the EnKF
is less confident in estimating extremes than the CBEnKF. For example, 3% confidence
regions for selected extreme values presented in the bottom right plots show the truth
(green dots) contained within the CBEnKF’s confidence regions (red ellipses) but not within
the EnKF’s (blue ellipses). At the plots, arrows represent

√
λ1
→
u 1. θ and ρ do not clearly

indicate differences between the two filters.
Figure 9 shows CRMIN , |→a |,

√
λ1, θ, and ρ of Figures 6–8 but as a function of ex-

ceedance probabilities to highlight CB-informed KF performances at extremes. At extremes
with low exceedance probabilities, differences between the CBEnKF and the EnKF are vivid
in the case of |→a | and CRMIN . On the other hand,

√
λ1 of the CBEnKF is consistently larger

than those of the EnKF and the OL across exceedance probabilities. As exceedance probabil-
ities increase, the EnKF’s |→a | becomes similar to the CBEnKF’s, implying unconditionally
less biased. The CBEnKF keeps consistently low CRMIN at all exceedance probabilities
owing to small |→a | and large

√
λ1, compared to the EnKF or the OL. Since the EnKF seeks

orthogonal solutions to minimize analysis covariances, its
√

λ1 is always smaller than the
OL’s as well as the CBEnKF’s. On the other hand, the CBEnKF increases

√
λ1 to address

CBs which helps keep CRMIN low to contain the truth. Both θ and ρ show no consistent
patterns across different state spaces as well as exceedance probabilities.

In Figure 10, the ensemble mean error time series indicates that among the three
variables, CBEnKF’s improvement is the largest for x1. On the other hand, for the state
x3, the CBEnKF mainly remedies the underestimation of x3 compared to the EnKF. In the
case of x2, the CBEnKF slightly outperforms the EnKF. These observations may imply the
different amounts of CBs present in different states, hence the need of applying a separate
weight α to the CB penalty for the individual state, which warrants a future effort. To
compare Pa,k and Kk from the two filters, the time series of Frobenius norm of Pa,k and Kk is
computed by Equations (56) and (57), respectively. Compared to the EnKF, the CBEnKF
yields ||Kk||F and ||Pa,k||F consistently larger at all assimilation cycles, and the mean values
of ||Kk||F and ||Pa,k||F are five and three times larger, respectively.

||Pa,k||F =
√

∑3
i=1 λ2

i (56)

||Kk||F =
√

∑3
i=1 λ2

i (57)
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Figure 11 shows mean ||Kk||F, and ||Pa,k||F as a function of exceedance probabilities.
At extremes, both the CBEnKF and the EnKF show that mean ||Kk||F and ||Pa,k||F are larger
than those at high exceedance probabilities, and that large differences in mean ||Kk||F and
||Pa,k||F between the CBEnKF and the EnKF are consistent across exceedance probabilities.

Figures 6–11 are based on the case of uncertain observations (σ2
z = 400) where the

CBEnKF may supposedly outperform the EnKF. To explore the CBEnKF performance with
less uncertain observations (σ2

z = 10) and also to see the sensitivity to the ensemble size
(nS), Figure 12 presents results from the combination of nS = 10, 20, 30, 50, 70, 100, 200,
300, 500, 700, 1000, and 2000, and σ2

z = 10 and 400. In Figure 12, |→a | plots indicate that
with σ2

z = 10, the accuracy of the ensemble mean continuously increases with an increase
of nS at both cases of extremes (an exceedance probability of 0.1; red and blue dots for
the CBEnKF and the EnKF, respectively) and all data (red and blue lines for the CBEnKF
and the EnKF, respectively). When σ2

z = 10, the EnKF’s |→a | is slightly smaller than the
CBEnKF’s, but the CBEnKF’s

√
λ1 is slightly larger than the EnKF’s. The resulting CRMIN

from both filters are very similar. This implies when observations are less uncertain, the
EnKF solutions are as accurate and as confident as the CBEnKF solutions at extremes as
well as the whole range. When nS ≥ 200 and σ2

z = 10, mean CRMIN maintains ~1%. When
nS < 200 and σ2

z = 10, CRMIN quickly increases with a decrease of nS because of inaccurate
error covariance estimates with an insufficient ensemble size. When observations are largely
uncertain (σ2

z = 2000), the CBEnKF clearly shows more accurate ensemble means (smaller |→a |)
and higher confidence in covariance estimates (smaller CRMIN) than the EnKF, particularly
at extremes. Compared to σ2

z = 10, assimilating largely uncertain observations (σ2
z = 2000)

reduces accuracies in covariance estimates, resulting in larger
√

λ1 in both filters, although
the CBEnKF’s

√
λ1 addressing the CB is larger than the EnKF’s. When σ2

z = 2000, |→a | and
CRMIN tend to be less sensitive to nS than the case of σ2

z = 10. Both θ and ρ show neither any
consistent patterns nor sensitivities to nS, but are included in Figure 12 for completeness.

Finally, Figure 13 presents mean ||Kk||F and ||Pa,k||F as a function of nS. Compared
to the results from σ2

z = 2000, σ2
z = 10 results in larger ||Kk||F in both filters due to bigger

weights to the observations. When σ2
z = 2000, the CBEnKF maintains relatively large

||Kk||F to account for the CB; however, the EnKF’s ||Kk||F is conspicuously small. Both
||Kk||F and ||Pa,k||F tend to be little sensitive to the ensemble size nS, except the all data
case of the CBEnKF with σ2

z = 2000 (pink line). With uncertain observations (σ2
z = 2000),

the CBEnKF’s ||Pa,k||F becomes large at extremes (pink dots) as well as all data (pink line)
at all nS values used to reflect CBs in all states.

4. Conclusions

Error covariance and gain matrices of two CB-informed KFs, i.e., the CBPKF and the
CBEnKF, are geometrically illustrated and compared with the KF equivalents [19] for a bi-
state model using error vectors in the Euclidean space. Geometric illustration and analysis
offer an intuitive understanding of the relationship between the two filters. Unlike the KF,
the CBPKF solution is not orthogonal to its error, which renders its error covariances and
gains to be larger than the KF’s. The above differences result in different confidence regions
and principal error directions in the state space. Synthetic sensitivity experiments with the
Lorenz 63 model showed that the CBEnKF solutions have generally smaller errors in the
ensemble mean, larger eigenvalues in the error covariance matrix, more accurate confidence
regions for encompassing the truth, and larger Frobenius norms of the error covariance
and gain matrices than the KF. The above differences are particularly pronounced when
the observations are highly uncertain.
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Future research recommendations include applying the CBPKF and the CBEnKF
to diverse geophysical problems of estimating and predicting extremes, e.g., extreme
precipitation or floods. The bi-state model was used in this work for a comparative
geometric analysis of the CBPKF and the KF. Possible extension to an arbitrary number of
states poses an interesting research topic.
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Nomenclature

Symbol Description
Superscript
C Conditional bias-penalized Kalman filter (CBPKF)
K Kalman filter (KF)
T Transpose of a matrix
− Forecast
Subscript
a Analysis
E Variable in the Euclidean domain
h Horizontal
k Time step
s Stochastic variable
T Truth
v Vertical
→
a Vector connecting the ensemble mean and the truth
|→a | Magnitude of the vector

→
a

C Pearson product-moment correlation matrix
CR Confidence region
CRMIN Minimum percentage confidence required to contain the verifying truth
E Expected value
H Observation operator that maps model states X to the observation vector Z
→
i Basis vector of the x-axis

K Kalman gain
||K||F Frobenius norm of K
M The dynamical model
n The total number of observations
nc The number of variables in the control vector
ns Ensemble size
P Covariance matrix of state estimate
P− Covariance matrix of state forecast
P(s < p) Chi-Square probability in the case of s smaller than p
Q The covariance of the dynamical model error W
R The covariance of the observation error vector V
s The value in the Chi-Square probability table for a given confidence region
→
u Eigenvector of the covariance matrix P
V The observation error vector
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W The dynamical model error
x Individual model state
||→x || Norm of the vector

→
x

x* Realization of an estimated state X*
X Model state vector
X* The vector of the estimated states
y Innovation
Z The observation vector
α The weight given to the CB penalty term in ΣEV + αΣCB
ε Error in a state
λ Eigenvalue
ρij Correlation between variables i and j
σij Covariance of variables i and j
σ2

i Variance of a variable i
σ2

Z Observation error variance
ΣEV The error variance
ΣCB The expectation of the Type-II CB squared

Appendix A. Eigenvalue Decomposition of a Two-by-Two Covariance Matrix

The eigenvalue decomposition (EVD) of the covariance matrix Pa,k =

[
s2

1,ks12,k
s12,ks2

2,k

]
can

be written as

Pa,k =

[
s2

1,ks12,k
s12,ks2

2,k

]
= UEUT (A1)

U =

[
cos θ sin θ
− sin θ cos θ

]
, E =

[
λ1 0
0 λ2

]
,

U is the eigenvector matrix that can be interpreted as the rotation matrix applied to
white data, or a standard normal and uncorrelated data. E is the eigenvalue matrix that
explains the variance of the principal error direction, or the direction of the eigenvector. In
the case of two-dimensional data,

√
E can be interpreted as a scale factor applied to white

data. In other words, the resulting dataset (D) from scaling white data (W) by
√

E and then

rotating it by U, i.e., D = U
√

EW, will have the covariance matrix of Pa,k = U
√

E
(

U
√

E
)T

.
Let λ1 > λ2 > 0, or Pa,k is positive definite[

s2
1,ks12,k

s12,ks2
2,k

]
=

[
cos θ sin θ
− sin θ cos θ

][
λ1 0
0 λ2

][
cos θ − sin θ
sin θ cos θ

]
=

[
cos θ sin θ
− sin θ cos θ

][
λ1 cos θ − λ1 sin θ
λ2 sin θ λ2 cos θ

]
=

[
λ1 cos2 θ + λ2 sin2 θ − λ1 sin θ cos θ + λ2 sin θ cos θ

−λ1 sin θ cos θ + λ2 sin θ cos θ λ1 sin2 θ + λ2 cos2 θ

] (A2)

s2
1,k= λ1 cos2 θ + λ2 sin2 θ (A3)

s12,k = (λ2 − λ1) sin θ cos θ (A4)

s2
2,k = λ1 sin2 θ + λ2 cos2 θ (A5)

A(3) + A(5), A(3) − A(5), and 2 × (A4) yield (A6), (A7), and (A8), respectively.

s2
1,k + s2

2,k = λ1 + λ2 (A6)

s2
1,k − s2

2,k = λ1

(
cos2 θ − sin2 θ

)
− λ2

(
cos2 θ − sin2 θ

)
= (λ1 − λ2) cos 2θ (A7)

2s12,k =(λ2 − λ1)2 sin θ cos θ =(λ2 − λ1) sin 2θ (A8)
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From (A7) and (A8)

(λ1 − λ2)
2 =

(
s2

1,k − s2
2,k

)2
+ 4s2

12,k (A9)

Since λ1 > λ2,

λ1 − λ2 =

√(
s2

1,k − s2
2,k

)2
+ 4s2

12,k (A10)

(A6) + (A10)

λ1 =
1
2

(
s2

1,k + s2
2,k +

√(
s2

1,k − s2
2,k

)2
+ 4s2

12,k

)
(A11)

λ2 =
1
2

(
s2

1,k + s2
2,k −

√(
s2

1,k − s2
2,k

)2
+ 4s2

12,k

)
(A12)

From (A7) and (A8)

tan 2θ = −
2s12,k

s2
1,k − s2

2,k
(A13)

θ =
1
2

tan−1

(
−

2s12,k

s2
1,k − s2

2,k

)
(A14)
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