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Abstract: Changing water supplies and demands, inherent to climate fluctuations and human activi-
ties, are pushing for a paradigm shift in water management worldwide. The occurrence of extreme
hydrometeorological and climate events such as extended wet periods and droughts, compounded
with contaminants, impair the access to water resources, demanding novel designs, construction, and
management across multiple hydrologic scales and biogeochemical processes. A constraint to study-
ing hydrologic and biogeochemical disturbances and improving best management practices for water
quantity and quality at the watershed scale resides in the suitable monitoring, data availability, and
the creation of frameworks. We hypothesize that streamflow and contaminants, simulated by the hy-
drologic model Soil and Water Assessment Tool (SWAT) and evaluated during drought and extended
wet periods, capture the nonlinearities of contaminants of multiple biogeochemical complexities,
indicating the adaptive abilities of watersheds. Our objectives are to (1) use rain gauge and radar data
and linear regression to consolidate long-term precipitation data to simulate streamflow and water
quality using the SWAT model in the Shell Creek (SC) watershed, Nebraska, U.S.; (2) use drought and
extended wet events analytics on observed and simulated hydroclimate and water quality variables
to identify SWAT’s performance; and (3) identify the temporal attributions of streamflow and water
quality to complex biogeochemical patterns of variability. We implement a watershed modeling
approach using the SWAT model forced with rain gauge and radar to simulate the intraseasonal and
interannual variability streamflow, sediments, nutrients, and atrazine loads in the SC watershed.
SWAT performance uses a calibration period between 2000 and 2005 and a validation period between
2005 and 2007. We examine the model’s ability to simulate hydrologic and biogeochemical variables
in response to dry and extended wet flow regimes. The hydrologic model forced by either radar
or rain gages performs similarly in the calibration (NSE = 0.6) and validation (NSE = 0.92) periods.
It reproduces medium flows closer to the observations, although it overestimates low–flows up to
0.1 m3/s while underestimates high flows by 1 m3/s. The water quality model shows higher NSE for
streamflow and sediments followed by nutrients, whereas it poorly reproduces atrazine. We conclude
that seasonal changes and hydroclimate conditions led to the emergence of patterns of variability
associated to the nonlinearities and coupling between processes of natural and human-origin sources.
As climate change propels the occurrence of hydroclimate extremes, the simulation of water quantity
and quality nonlinearities—as properties of complex adaptive hydrologic systems—can contribute to
improve the predictability of climate-resilient water resources.

Keywords: water quality; water quantity; adaptive complex systems; SWAT model; hydroclimate;
atrazine; streamflow
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1. Introduction

The rising frequency and intensity of extreme hydrometeorological and climate events
(EHCEs) attributed to climate change [1–3] evidence the need for paradigm shifts in water
resources management [4,5]. Changes in hydrologic regimes [6–9] and water quality [10–14]
triggered by climate fluctuations also require more integrative resilience and sustainability
frameworks [15–18]. Our goal is to set the basis for predicting hydrologic resilience to
EHCEs such as droughts and extended wet periods, identifying the ability of modeling to
simulate water quantity and quality in a watershed dominated by human activities.

Watersheds’ rainfall-runoff processes contribute to the mobilization of sediments,
nutrients, and organic matter from croplands. Such transport by streamflow and other
fluxes within the water cycle is extended to chemicals such as pesticides and emerging
contaminants [13,19,20]. The use of watershed models to evaluate hydrologic consequences
of volatile climate conditions represents a valuable opportunity to improve our understand-
ing of their functionalities and mitigate monitoring gaps [21]. These models rely on the
quality of forcings and parameters for accurate simulations and predictions. Long-term
precipitation, a critical forcing in hydrologic modeling, has been monitored using rain gages
at specific locations expanding records across multiple locations. Yet only 10.2% out of
5948 stations worldwide recorded at least 80% of daily values in the past century [3]. With
constrained periods and resolutions, although geospatially distributed, remote sensing
products (radar and satellite) have improved the spatial representation of precipitation
gradients. Also, rain gage and radar products have been successfully used for water-
shed modeling [22–24]. Though, recommended long-term records to assess streamflow
responses to EHCEs conditions [3,25] and the lack of hydroclimate data remain challenging
for hydrologic modeling. The integration of monitoring precipitation techniques (radar and
rain gages) represents an alternative to improve the performance of hydrologic simulations
and extend the records of hydrologic responses to EHCEs [12,26–28].

On the other hand, agricultural runoff is the largest non–point source of pollution
of water bodies as it transports sediments, nutrients, organic matter, and chemicals from
croplands [29]. Contamination of surface waters affects aquatic biota and flora across
multiple hydrologic scales. Nutrients and organic matter reduce dissolved oxygen and
lead to eutrophication [30]. Contaminants of exclusive human origin, such as atrazine, are
used as synthetic herbicides in cropping systems, primarily evident in the United States
of America’s agricultural watersheds [31,32]. The adverse effects on aquatic life include
bioaccumulation, reduction in reproduction, tissue abnormalities [33], sex changes [34],
and photosynthesis inhibition [35]. The simulation and monitoring of this “cocktail” of con-
taminants [14] represent a challenge for identifying watersheds’ functioning and resilience.
As with water quantity, shortages of water quality observations [10,36–38] limit the model’s
ability to simulate the fate and transport of pollutants in the aquatic environment. This
factor in water quality and quantity studies also limits our understanding of the patterns
of temporal variability in climate and the hydrologic responses, which can be site-specific
and complex [39]. Some of these complexities reside in the nonlinear relationships between
hydrometeorological processes and the lagged effects of the water quantity/quality. Thus,
integrating theoretical, lab, and numerical approaches [40] becomes a need to diagnose and
predict the hydrologic systems’ ability to adapt to a changing environment.

As a property of socioenvironmental complex adaptive systems, nonlinearity is de-
scribed by [41], together with aggregation, hierarchy, and biodiversity. These properties
represent a shred of theoretical evidence to identify the temporal adaptive patterns through
the underlying water quality and quantity variation and their effects on hydrologic systems
in particular and the Earth system in general [13,40,42]. Hence, our scientific question
is: Can a hydrologic model such as Soil and Water Assessment Tool (SWAT) capture
the temporality of the nonlinear responses of contaminants in streamflow simulated dur-
ing drought and extended wet periods? We hypothesize that the simulated streamflow
and contaminants, parameterized by the hydrologic model SWAT and evaluated during
drought and extended wet periods, follow the nonlinearities of contaminants of multiple
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biogeochemical complexities, indicating the adaptive abilities of watersheds. To test this
hypothesis, we formulate three objectives: (1) use rain gauge and radar data and linear
regression to consolidate long-term precipitation to simulate streamflow and water quality
using the SWAT model in the Shell Creek (SC) Watershed, Nebraska, U.S.; (2) use drought
and extended wet events analytics on observed and simulated hydroclimate and water
quality variables to identify SWAT’s performance; and (3) identify the temporal attributions
of streamflow and water quality to complex biogeochemical patterns of variability.

Thus, in rural settings, highly diverted, contaminated, and ungauged watersheds ex-
perience poor continuity or lack of water quantity and quality monitoring. This data-deficit
scenario precludes the identification of the nonlinearities in streamflow and contaminant,
together with the design and implementation of better water management practices. Fur-
thermore, the lack of data and understanding of nonlinearities in changes in water quantity
and quality opaque the identification of the compounded attributions of streamflow, sedi-
ments, nutrients, and pesticides to EHCEs, land use/land cover changes, and contaminants
of human origin [14,43–45].

2. Materials and Methods
2.1. Study Area

The Shell Creek (SC) watershed drains approximately 1200 km2 in east-central Ne-
braska and is located primarily in Boone, Madison, Platte, and Colfax counties of Nebraska.
The towns of Schuyler, Platte Center, Lindsay, and Newman Grove are in the watershed,
and the city of Columbus is directly to the south. SC has three major tributaries in the
watershed: Elm Creek, Loseke Creek, and Taylor Creek (Figure 1a). The five towns in the
watershed combined have a population of 1675 people [46]. The daily discharge at the
United States Geological Survey (USGS) gage station averaged 1.40 ± 5.13 m3/s between
1947 and 2014, and the average annual precipitation was 671 ± 159 mm/year between 1910
and 2014.
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[47]. Manure from livestock facilities is typically collected and land applied to agricultural 
fields as a soil conditioner and fertilizer. In this region, antibiotics are commonly admin-
istered prophylactically for disease prevention as well as for disease treatment. Animals 
are typically raised in confined animal feeding operations (CAFO) where they are con-
fined to production barns (swine and poultry) or feedlots (cattle). 

2.2. Data 
2.2.1. Rain Gauge Precipitation 

We used data from rain gages outside the SC watershed since no instruments follow-
ing the World Meteorological Organization guidelines were found. Radar estimates to 
characterize the temporal variation and spatial distribution of precipitation were obtained 
from the National Oceanic and Atmospheric Administration (NOAA) Next Generation 
Weather Radar (NEXRAD). A total of 12 rain gages were identified with at least 100 year-
long records (1910 to 2014). Ten stations belong to the National Climatic Data Center 
(NCDC) from the Global Historical Climatology Network (GHCN)–Daily database [48] 
and two to the High Plains Regional Climate Center (HPRCC). After screening quality 
data, stations with more than 90% of daily observations were kept, or otherwise 
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The watershed is home to heavily agricultural activities. Land cover types include
cultivated (78.2%), herbaceous (14.6%), and forest (1.85%); while developed urban areas
cover only 4.4% of the watershed. Corn (49%) and soybean (27%) dominates land use,
with a high percentage of the cropland for irrigated row crops (46%) (Figure 1b and
Supplementary Materials, Table S1). SC crop season onsets in spring–summer and depends
on deep aquifer recharge or rainfed irrigation. The counties comprising the watershed
include approximately 1550 farms with over 1,050,000 head of swine, cattle, and poultry [47].
Manure from livestock facilities is typically collected and land applied to agricultural fields
as a soil conditioner and fertilizer. In this region, antibiotics are commonly administered
prophylactically for disease prevention as well as for disease treatment. Animals are
typically raised in confined animal feeding operations (CAFO) where they are confined to
production barns (swine and poultry) or feedlots (cattle).

2.2. Data
2.2.1. Rain Gauge Precipitation

We used data from rain gages outside the SC watershed since no instruments following
the World Meteorological Organization guidelines were found. Radar estimates to charac-
terize the temporal variation and spatial distribution of precipitation were obtained from
the National Oceanic and Atmospheric Administration (NOAA) Next Generation Weather
Radar (NEXRAD). A total of 12 rain gages were identified with at least 100 year-long
records (1910 to 2014). Ten stations belong to the National Climatic Data Center (NCDC)
from the Global Historical Climatology Network (GHCN)–Daily database [48] and two to
the High Plains Regional Climate Center (HPRCC). After screening quality data, stations
with more than 90% of daily observations were kept, or otherwise disregarded. This process
led to the selection of eight stations (Supplementary Materials, Figure S1).

2.2.2. Radar Precipitation

The National Centers for Environmental Prediction Stage IV product is a nationwide
mosaic of multi-sensor (radar and gages) precipitation analyses (MPEs), produced by the
12 River Forecast Centers (RFC). It has offered real-time, hourly/six-hourly precipitation
analyses since 2002 with a 4 km resolution [49]. Daily values are summed up from the
six-hourly analysis and the data might have manual quality control.

2.2.3. Streamflows and Pollutant Loads

We accessed the National Water Information System repository of the [50] USGS 2012
using the R package “dataRetrieval” [51] to download the streamflow and water quality
records for SC. The availability of records varies from streamflow daily records since 1947.
However, water quality variables have less than sixty daily observations constraining the
calibration and eventual performance of the model described below. Watershed models
cannot be calibrated properly for a wide range of hydrologic conditions, sediments, and
nutrients loads when watershed lacks monitoring data [36–38].

The disparity in the observations and the need for continuous time series of contami-
nants for the sensitivity analysis and the discussion on contaminant complexity led to the
use of a linear regression to create a long-term synthetic time series. Initially, correlations
between the predictor variable (streamflow) and response variables (e.g., sediments load)
were implemented when data were available, between 1992 and 1994 and 2008 and 2009.
The pollutant loads were calculated as the product of streamflow times its concentration.
A logarithmic transformation was identified to describe the correlation (Equation (1)).
Secondly, a linear model was fit to the Log10 of sediments, nutrients, and atrazine loads.
The performance of the regression was evaluated by the multiple R2 and the p-value of
F-statistics. With multivariate regression, each response variable follows its regression
equation, as well as the covariance that exists among each pairwise response variables. For
instance, multivariate regression would consider the relationship between the nitrogen and
phosphorus levels in the water, if one exists. The flows observed in the monitoring periods



Hydrology 2022, 9, 80 5 of 19

of water quality (Table 1) were randomly selected as a representative sample of streamflow
in SC, ranging from 0.23 to 200 m3/s.

log10(Y) = Bo + B1 × log10(X), (1)

Table 1. Shell Creek water quantity and quality data synthesis for two periods between 1992–2009.

Variable Units
1992–1994 2008–2009

Observations Max. Value Observations Max. Value

Flow m3/s 1096 96 738 218
Sediments mg/L 26 20,150 26 4090

Total nitrogen mg/L 28 13 13 12
Total phosphorus mg/L 28 8.70 27 3.25

Atrazine mg/L 28 0.055 24 0.015
Source: USGS National Water Information System [50].

2.3. The Shell Creek Model

SWAT is a semi-distributed and physically based model that simulates hydrologic
processes (i.e., infiltration, overland flow, evapotranspiration, shallow and groundwater),
crop growth, and fate and transport of nutrients and chemicals in soils and surface wa-
ters [52–54]. We used ArcSWAT, the ArcGIS–ArcView extension, and a graphical user
interface for the Soil and Water Assessment Tool–SWAT2012, Revision 637 under the Ar-
cGIS version 10.2.2. SC watershed was discretized in Hydrological Response Units (HRU),
overlapping soil physical properties, land use, management practices, and topography.
After a precipitation event, similar hydrologic response units (HRU) generate the same
amount of runoff to route throughout the sub-basin streams.

SWAT can simulate the physicochemical processes before water runoff from land-
scapes. Nitrogen and phosphorus cycles are represented like soil processes where elements
move in and out of pools. These include nitrification mineralization of nitrogen or adsorp-
tion, phosphorus fixation, and plant uptake. Inputs can be point and non–point sources.
Nutrient cycles are simulated after the Environmental Policy Integrated Climate (EPIC)
model [55,56]. On the other hand, soil erosion is estimated using the Modified Univer-
sal Soil Loss Equation (MUSLE) [57], which is a modification of the Universal Soil Loss
Equation (USLE) [58].

Fate and transport of pesticides involve degradation, infiltration, and volatilization,
whose algorithms in SWAT were taken from the EPIC model. Pesticides can be moved in
the solid (soil phase) or dissolved in the solution (liquid phase). SWAT model transports
soluble pesticides via surface runoff, lateral flow, or infiltration as a sorbed pesticide is
moved by surface runoff only to the main channel. SWAT simulates crop rotation and best
management practices.

Additionally, SWAT simulates the in-stream processes of nutrients, pesticides, bacteria,
and heavy metals using the Enhanced Stream Water Quality Model (QUAL2E) model [59].
The algorithm estimates 1–D longitudinal and temporal variation of water quality in–stream.
We use an adaptation of GLEMS FOR SWAT for the simulation of agricultural chemicals,
according to [60]. Refer to SWAT’s documentation for a more detailed description of the
process and equations for water quality [54].

2.3.1. Input Data

The SC model was forced independently with rain gage and radar precipitation
estimates. The spatial and temporal attributions of radar-based and rain gauge precipitation
estimates, respectively, are used to validate the spatial and the long-term temporal patterns
of variability. Since SWAT assigns the weather station closer to the mass centroid of each
subbasin for water balance calculations, six rain gages and 40 grid centroids—treated as
“virtual rain gages”—were used. A global sensitivity analysis and the calibration–validation
of the two models were compared.
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Spatially distributed soil types, land use, topography, and climate data were input
to the model. Soil types were obtained from the digital US General Soil Map called the
STATSGO2 database, which is pre–installed in ArcSWAT. Land use—at a spatial resolution
of 30 m cell size raster—was downloaded from the United States Department of Agriculture
(USDA)—National Agricultural Statistics Service Information (NASS) [47]. We also used
the USGS National Elevation Dataset (NED) at 1 arc–second (30 m) [61,62], the USGS
National Hydrography Dataset (NHD), and the USDA-Natural Resources Conservation
Service’s (NRCS) Watershed Boundary Dataset (WBD), downloaded from The National
Map [63]. The NHD and WBD guided the SC streamflow network delineation. The thresh-
old for flow accumulation was set to 2231 ha, which equals 30,000 upslope grid cells. A total
of 54 sub–basins were delineated with an area mean of 22.3 km2 (Figure 1). Meteorological
records—since 1988—including relative humidity, solar radiation, air temperatures, and
wind speed, and were obtained from the two HPRCC stations. The Soil Conservation
Service (SCS) curve number method [64], an empirical model commonly used in the U.S.A.
since the 1950s, estimated the surface runoff. The channel routing and evapotranspira-
tion flow were calculated by the Muskingum method [55] and the Penman–Monteith
approach [65], respectively.

In Equation (2), Qsur f is the accumulated runoff in millimeters (mm), Rday is the
daily rainfall depth, Ia is the initial abstraction including surface storage, interception, and
infiltration prior runoff, and S is the retention parameter, shown in Equation (3). The S
parameter depends on soils, land use, management, and slope and soil water content.

Qsur f =

(
Rday − Ia

)2(
Rday − Ia + S

) , (2)

S = 25.4
(

1000
CN

− 10
)

, (3)

where CN is the curve number.

2.3.2. Crop Management

Terracing was set as a management practice in SC. Irrigated crops and dryland are
distributed equally across the watershed (38%) (Supplementary Materials, Table S1). The
auto-irrigation was assumed from a deep aquifer after [39] and set randomly to the crop-
lands in half of the subbasins, whereas the other land use was set as drylands. Table 2
presents the management operations set up to preserve the distribution of corn (49%)
and soybean (27%) in the SC model, estimated from the 2005 Nebraska land-use patterns
map at 30-m cell size resolution according to the Center for Advanced Land Management
Information Technologies [66]. A common conservation practice in the US corn–belt is crop
rotation that might involve corn-soybean or wheat–corn [67]. Corn was allocated randomly
to 24 subbasins, corn-soybean rotation in 30 subbasins (27%), and soybean exclusively
rotated to corn in 30 sub-basins (27%). Liquid manure from feeding animal lots (CAFO),
commonly applied to cultivated land, was used on any cropland in SC. The application
rates of fertilization on corn and soybean ranged between 15 and 90 kg/ha, and the atrazine
application rate was 1 kg/ha after previous studies [10,39,67]. The pesticide was assumed
to be homogeneously applied across the study area.

2.3.3. Parameter Selection

We performed a global sensitivity analysis (GSA) of the SC model using the sequential
Uncertainty Fitting ver. 2 (SUFI–2) algorithm in the SWAT–CUP software version 5.1.6 [68].
A t-test estimates the parameter sensitivity, while the p-value is used for the significance.
The most sensitive parameters had larger t-test absolute values and significant sensitivity
(p-value ≤ 0.1). SUFI–2 identifies the sources of uncertainty using two factors: the P–factor
that quantifies the 95% prediction uncertainty (95PPU); the d–factor that estimates the
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mean thickness—from 0 to infinity—of the 95PPU band divided by the standard deviation
of the observed data. If the P–factor and d–factor tend to be one and zero, respectively,
it also indicates that simulations match observations. We examined the sensitivity of
31 parameters associated with streamflow generation (Supplementary Materials, Table S1).
A Latin Hypercube Sampling (LHS) generated 150 parameter combinations within initial
ranges for a year-long simulation.

Table 2. Scheduled management operations in the Shell Creek model.

Year Month Day Operation Description

Corn
1 4 10 Tillage operation Tandem Disk, Plw Le 13 ft.
1 4 28 Plant/begin growing season
1 5 1 Pesticide application Atrazine, 1 kg/ha
1 6 28 Auto-irrigation initialization *
1 10 18 Harvest and kill operation

1 10 25 Fertilizer application Swine-fresh manure,
50 kg/ha

1 11 1 Fertilizer application Anhydrous Ammonia,
90 kg/ha

1 11 15 Fertilizer application Elemental Phosphorus,
15 kg/ha

Soybean
2 4 10 Tillage operation Tandem Disk, Plw Le 13 ft.
2 5 1 Pesticide application Atrazine, 1 kg/ha
2 5 10 Plant/begin growing season
2 7 10 Auto-irrigation initialization *
2 9 20 Harvest and kill operation

2 10 15 Fertilizer application Swine-fresh manure,
50 kg/ha

2 11 15 Fertilizer application Elemental Phosphorus,
15 kg/ha

* Water stress threshold = 0.95; irrigation efficiency = 0.85; water applied = 0.25 mm.

2.3.4. Calibration and Validation

Following the GSA, the hydrologic model was calibrated and validated in SUFI–2.
We used radar data from 2002 to 2013; the 12 year-long records were split into seven-year
(2002–2008) and five-year (2009–2013) periods for calibration and validation, respectively.
Studies suggest a proper streamflow calibration to ensure a better water quality simu-
lation [36,37]. The water quality model was calibrated for 2002–2010 using the SUFI–2
procedure in SWAT–CUP. Since runoff influences the fate and transport of sediments, this
was first calibrated, followed by nutrients, and atrazine loads. Calibration started with
parameter selection reported in the literature [10,29,36–39,67–70] and SWAT documenta-
tion [53]. A total of 400 parameter combinations were generated using the LHS for each
variable. The use of the SUFI-2 procedure followed two steps. First, an LHS generated a set
of 400 parameter combinations within the initial ranges of the most sensitive parameters.
After the simulations ran, the SUFI-2 procedure narrowed the range limits, which reduced
the uncertainty associated with the value of parameters. Since the new ranges might
fall beyond the initial values, these were visually checked and manually adjusted when
needed. The target objective function was the NSE, which identified the best simulation.
Second, the “best” ranges set another iteration. Next, we generated another 400 parameter
combinations and ran the respective simulations. Here, if the NSE improved at least 5%,
iterations would continue passing the “best” ranges to the next iteration. Otherwise, itera-
tions should stop, and the ranges kept for the validation without further change. In the
validation step, another precipitation time frame was input. We again used 400 parameter
combinations within the “best” ranges from the last iteration of the calibration step and ran
the model. These steps continued for nutrients and atrazine. No validation was performed
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for water quality estimates. Once the most sensitive parameters were fitted using the linear
regression, the SC model was forced into a long-term simulation (1910 to 2010).

To evaluate the model performance, the Nash–Sutcliffe efficiency (NSE) coefficient [71]
compared monthly observed and simulated streamflow. NSE can range from −∞ to 1. A
model performs better if it tends to or equals 1, but the performance decreases when it
falls below 0. Complementary metrics of efficiency include the root mean square error
(RMSE) and the standard deviation estimated for observed streamflow. Also, the percent
bias (PBIAS) and the ratio of the root mean square error (RMSE) and the standard deviation
(RSR) were also calculated. For the simulation i, time steps t varies from 1 to n; O and S are
the observed and simulated streamflow, respectively; and O is the O average. A negative
or positive PBIAS (%) evidence an overestimated or underestimated streamflow, and its
absolute value quantifies the bias magnitude. RSR can become any positive number from
zero, with lower values suggesting a better model.

2.4. Hydrologic Model Implementation and Analyses

Once the model was calibrated, including expanding the water quality time series, we
ran long-term simulations of streamflow and water quality variables. Then, using the simu-
lations we identified the drought and extended wet spells on water quantity and quality in
SC. Next, we provided a synthesis of the model implementation process, the description of
the estimations of EHCEs, and the development of the complexity framework.

2.4.1. Hydrologic and Water Quality Simulations

The SC flows have complete records since 1950, suitable to validate long-term simu-
lations. After rain gauge data and the associated simulations were validated for the S.C.
watershed, the model was forced into long-term simulation (1950 to 2010). The “best” cali-
brated ranges were kept similar to the validation step, and the 400 parameters-combinations
were reused. Then, the simulation was run and model performance was evaluated.

2.4.2. Drought and Extended Wet Conditions

The three-month Standard Precipitation Index (SPI) identified years with extreme
hydrometeorological and climate conditions: drought and extended wet periods in SC [62].
We used rain gauge data since they offer time frame records longer than radar. SPI values
below zero indicate dry conditions, ranging from mild (−0.99 to 0) to moderate (−1.49
to −1.00) to severe (−1.99 to −1.50) to extreme (≤−2) drought [72]. Conversely, one can
consider SPI values greater than zero from mild (>0 to 0.99) to extreme (>2) wet conditions.
This study assumed a very wet condition when SPI was above 1 and with a very dry
condition below −1.

On the other hand, a statistical approach was used to analyze the flow conditions
of the SC watershed. We fitted the streamflow data into a gamma distribution, and the
probability density function was estimated using the observed and the simulated flows.
The flow percentiles were also estimated using the inverse gamma cumulative distribution
function in MATLAB. Flow conditions were identified as high flows assumed to be equal
to or greater than the 90th percentile flow; the medium flows ranging between the 20th and
80th percentile, and low flows those lower than the 10th percentile.

3. Results and Discussion

The data and information analyses in this section are organized and synthesized to
support the thesis that extended wet and drought conditions in the SC watershed ex-
pand/diminish the concentrations of contaminants associated with agricultural activities.
We started reviewing rainfall’s monthly and seasonal climatologies as evidence of rain
gauge and radar suitability for the assessment of the temporal and geospatial patterns of
variability, respectively. Then, we assessed the consolidation of long-term time series and
SWAT’s parameter sensitivity and performance analyses simulating long-term streamflow
and water quality. In each section is discussed the temporal patterns of streamflow vari-
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ability and water quality in response to drought and extended wet events and whether the
nonlinear biogeochemical attributions unveil SC as a complex adaptive watershed.

3.1. Hydroclimate Variability

This study identified 12 rain gages with records at least 100 years long (1910 to 2014).
Ten stations belong to the NCDC from the GHCN–Daily database [48] and two to the
HPRCC. As a watershed dominated by agriculture (>75%), SC is located within the wettest
of four hydroclimate regions in Nebraska [73], where rainfed agriculture relies on the
precipitation onset in April, considered the month with the lowest variance, and the peak
of precipitation in June (Figure 2). The author in [73] identified a similar monthly hydro-
climatology with a monthly high of June, indicating a consistent temporal hydroclimate
pattern of variability in Elkhorn River Basin’s watersheds such as SC.
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The regionalization of precipitation along the Platte River basin captures a series
of large-scale patterns of variability, but reports unclear evidence of the occurrence and
alteration of watershed hydrologic processes due to the low resolution of gridded products
or the absence of rain gauges. Figure 1b shows constrained biodiversity, also evidenced by
the intense agricultural activity for a drainage area of approximately 1200 km2 (49 and 27%
of the surface used to grow corn and soybean, respectively). Furthermore, Figure 3 shows a
homogeneous distribution of spring and summer radar-based precipitation, reflecting the
lack of emerging patterns in response to aggregation in SC. Biodiversity and aggregation are
properties of complex adaptive systems, as [41] suggests. Yet, there was a clear difference
between wet and dry years (Table 3). Wet-summer precipitation is almost 40% larger than
the dry-summer precipitation, representing an incentive to improve sub-seal to seasonal
forecasts of drought and extended wet conditions. Further, the estimation of SPI for the
SC indicates that summers are wetter and winters drier based on the SPI’s trend analysis
(Figure 4).



Hydrology 2022, 9, 80 10 of 19Hydrology 2022, 9, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 3. Spatial distribution of seasonal precipitation [mm/day] in the Shell Creek watershed be-
tween 2002 and 2013 for (a) winter, (b) spring, (c) summer, and (d) fall. Data were obtained from 
NEXRAD. 

Table 3. Shell Creek seasonal mean precipitation in years with extreme hydrometeorological and 
climate conditions. 

Years Mean 
[mm/day] 

Standard Deviation 
[mm/day] 

Historical 1.82 6.47 
Wet summer 2.16 7.30 
Dry summer 1.36 5.18 

 
Figure 4. Shell Creek mean SPI in (a) winter and (b) summer months between 1910 and 2014. Blue and 
red lines indicate the negative and positive trends, respectively. Just two locations within SC observed 
significant trends at 7 and 10%, respectively, based on the Mann–Kendall test [74,75] (Supplemen-
tary Materials, Tables S2 and S3). Source of precipitation data: NOAA [48]. 

3.2. Sensitivity Analysis and Model Calibration 
We contrasted radar-based and rain gage-based precipitation data to validate the 

long-term time series of the latter (Supplementary Materials, Figure S1). The implementa-
tion of this approach led to two findings. The first emerged from SWAT’s global sensitiv-
ity analysis of both digital resources. In Figure 5, the most sensitive parameters (p < 0.10) 

Figure 3. Spatial distribution of seasonal precipitation [mm/day] in the Shell Creek watershed
between 2002 and 2013 for (a) winter, (b) spring, (c) summer, and (d) fall. Data were obtained
from NEXRAD.

Table 3. Shell Creek seasonal mean precipitation in years with extreme hydrometeorological and
climate conditions.

Years Mean
[mm/Day]

Standard Deviation
[mm/Day]

Historical 1.82 6.47
Wet summer 2.16 7.30
Dry summer 1.36 5.18
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3.2. Sensitivity Analysis and Model Calibration

We contrasted radar-based and rain gage-based precipitation data to validate the long-
term time series of the latter (Supplementary Materials, Figure S1). The implementation
of this approach led to two findings. The first emerged from SWAT’s global sensitivity
analysis of both digital resources. In Figure 5, the most sensitive parameters (p < 0.10) were
the runoff curve number (CN2), the fraction of field capacity water content (FCB), effective
hydraulic conductivity in the main channel alluvium (CH K2), and the average slope of
tributary channels (CH S1) for both, radar and rain gauge-based forcings. Since the runoff
volume strongly depends on the selected method for calculation and the SCS curve number,
one can expect the CN2 to be a very sensitive parameter. The authors in [12,26] reported
similar SWAT sensitivities to CN2 for both radar and rain gauge-based forcings. Further,
the sensitivity of the radar–based forced model to ESCO led to an annual ET lower than that
simulated by the rain gage-forced model (Figure 5c,d). While the average ET was similar
for both, some hydrologic units for rain gauge-based forcings were 10 to 20 mm higher
than those for radar. Also, more radar-based hydrologic units experience low ETs, which
might be due to the homogeneous distribution of rainfall and irrigation practices across the
watershed (Figure 3b,c and Figure 5d). Infiltration and subsurface storage have been found
to be sensitive parameters to adjust water budgets [76]. Thus, calibrating the ESCO and
FFCB parameters balanced the evaporative demands in SC from deeper soil layers to match
the simulated and observed streamflow. The second finding is how the consistency in the
sensitive parameters captures the nonlinearities in lumped hydrologic processes, whether
spatially distributed or punctual forcings force them. Yet, the disaggregated expression
of radar-based forcings might indicate multiple geospatial attributions of the underlying
hydrologic processes [75]. In agriculturally dominated landscapes, refs. [73,77] identified
shorter recovery times of remote sensing-based leaf area index values after the incidence of
droughts and extended wet events.
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The performance of the SWAT model to the forcings confirms the scenario of parameter
consistency in the sensitivity analyses. The efficiency metrics for the calibration/validation
for radar and rain gauge-based forcings were similar. The ability of SWAT to simulate
streamflow was practically the same (Supplementary Materials, Table S4), which also
indicates the reliability of the streamflow simulations. Calibration efficiency indices were
similar to efforts using monthly rain gauge-based data for SWAT [24,28,78] and radar-based
simulations [22,23,26,79,80]; however, the validation efficiency indices were higher than
those for calibration. NSE and RSR metrics for calibration were 0.58 and 0.65, respectively;
for validation, the values were 0.92 and 0.28, respectively. This response was observed in
the reduced streamflow temporal variability during the validation period (2009 to 2013),
the model overestimated low–flows below the tenth percentile, while underestimated
high–flows, especially above the 99th percentile (Figure 6). The SC model improved the
simulation of different flow regimes in a forest–agricultural area (89%) where a rain gage-
forced model constantly underestimated low, medium, and high flows at the 5th, 50th,
and 95th percentiles, respectively [12]. The improved model performance during the
validation might be aligned with shifts in precipitation like those reported by [81]. Further
analyses may indicate whether this watershed is transitioning to another hydrologic regime
attributed to the intensification of agriculture or the intensification of droughts or floods in
the region [44]. Thus, these performance metrics make the SWAT model suitable to capture
the nonlinearities between hydrologic and biogeochemical processes and their response to
hydroclimate spells such as drought and extended wet events.
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3.3. The Statistical Model and the Construction of Long-Term Time Series

The authors in [13,14] identified temporal patterns of variability in water quality and
quantity attributed to contrasting hydroclimate conditions. Their work also evidenced
how droughts and extended wet events regulate the intraseasonal and inter-annual water
quality variations. Such variations follow the periodicity of the underlying hydrological
and biogeochemical processes in some cases. In the SC, as in many ungauged water-
sheds worldwide, the robustness of those records grapples with the lack, discontinuity, or
shortness of time series, constraining the development of integrated water management
plans. We mitigated the conspicuous deficit of water quality data by using a linear re-
gression model (Equation (1)) that enabled the enhancement of the observed sediment,
nitrate, phosphate, and atrazine records in SC’s streamflow. The R2 (p < 0.01), observed
in Table 4, suggests that the logarithmic transformation of the streamflow and the water
quality variables explained between 75 to 89% of the total variability of phosphorous,
nitrogen, phosphorous, and sediments; for atrazine, the model explained 56% of the total
variability (Supplementary Materials, Figure S2). The authors in [14] proposed the term
“chemical cocktails” to describe the hydrological connection of emerging contaminants.
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This conceptualization emulates another property of complex adaptive systems proposed
by [41]: aggregation. The aggregation in ecosystems and “chemical cocktails” can lead to
patterns unseen in compounds individually due to interactions between biogeochemical
or resource management (i.e., fertilization in cropping systems vs. natural occurrence of
nutrients). Following the discussion on SWAT’s ability to capture the nonlinearities of
hydrological and biogeochemical processes, we suggest that the logarithmic regression
model also evidences the gradients of biogeochemical complexity in the SC streamflow.
Thus, [13,14] suggest that the compounding of chemicals and hydroclimate events supports
emerging patterns such as increasing contaminant loads.

Table 4. Multivariate regression of Shell Creek water quality variables, using 1992–1994 and
2008–2009 records.

Variable Bo B1
Multiple

R-Squared p-Value

Sediments 1.41 2.22 0.84 2.5 × 10−16

Nitrogen 2.64 1.09 0.89 <2.2 × 10−16

Phosphorus 1.57 1.22 0.75 1.36 × 10−12

Atrazine 1.78 1.85 0.56 3.73 × 10−8

On the other hand, the construction, calibration, and analysis of a long-term time series
of streamflow and water quality variables simulated by the SWAT model can provide some
insights into SWAT’s ability to simulate water quality, the biogeochemical responses to
drought, and extended wet events, and ultimately, provide some insights to whether SC is
a climate-resilient complex system. SWAT’s model calibration parameters (Supplementary
Materials, Tables S5 and S6) led to NSE values for streamflow, sediments, nitrogen, phos-
phorus, and atrazine (0.78, 0.82, 0.61, 0.72, and 0.01, respectively). These values coincide
with those reported by [10,34,39] for streamflow and sediment simulations in watersheds
across the Northern High Plains. Once again, the gradient of biogeochemical complexity
based on the NSE values may illustrate the interdependency of the contaminants with
the natural and the human origin sources and the alterations of the water and biogeo-
chemical cycles in SC waters. Further, the reduced performance for contaminants of a
single human origin source can be attributed to unknown processes (e.g., chemical trans-
port), socioenvironmental processes (e.g., landslides, irrigation, and water diversion), or
constrained model parameterizations, which lead to the propagation of uncertainties in
the model outputs [36,67–69]. Hence, droughts and extended wet events can make more
evident the contrasting hydrological and biogeochemical patterns of temporal variability
and their origin.

3.4. Extreme Conditions

Section 3.1 used the SPI to identify the interannual trends of drought and extended
wet events during summer and winter (Figure 4). In this section, we characterize the
drought and extended wet months by fitting the long-term precipitation records into a
gamma distribution function (Figure 7). Thus, months with percentiles above 90% and
below 10% were considered under drought and extended wet months, and the criteria used
to select water quality values in any given month. We applied the Tukey–Kramer honest
significant difference to test differences between summer and winter and whether wet and
dry conditions were different for streamflow and loading pollutants (Figure 8). Consistent
with the sensitivity and calibration/validation results, three patterns emerged from the
aggregation and nonlinearity associated with streamflow and the biogeochemical gradient
(see the letters at the bottom of each plot in Figure 8). In the first pattern, precipitation is
the driver of intraseasonal variability of streamflow. Given the size of the watershed and
the strong irrigation activity, streamflow presents the largest variability and magnitude.
In the second pattern, sediments, nitrogen, and phosphorous present similar patterns
differentiating wet summers from the rest of the conditions. Yet, the conspicuous high ni-
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trogen and phosphorous loads during the wet summers are likely attributed to fertilization
practices and other biogeochemical and hydrologic processes that foster the transport of
contaminants in the streams. The third pattern is based on atrazine’s lack of response to
intraseasonal climate variability (i.e., the wet and dry or the winter and summer periods).
This scenario evidences two potential drivers of the temporal patterns of variability that
could also be interdependent. The first driver emerges from the non-significant intrasea-
sonal differences in the atrazine loads, which could be attributed to the ability of SWAT to
simulate atrazine based on the parameters used for this study (Supplementary Materials,
Table S5—parameters for SWAT). The third driver can be illustrated by the differences
between wet and dry periods (see boxes and whiskers), which may transport the excess
atrazine used before planting corn in the spring and winter wheat.
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4. Conclusions

The thesis presented here states that hydrologic and biogeochemical simulations
using the SWAT model evidence the abilities of the Shell Creek’ watershed’s adaptability
to extended wet and droughts. We supported this thesis on three premises. First, we
suggest that the temporal patterns of variability in the hydroclimate based on long-term
time series of rain gauge-based precipitation aggregate the distribution of radar-based
rainfall. Second, parameter sensitivity, calibration, and validation analytics are used to
improve SWAT’s model performance to simulate temporal changes in hydrologic and
biogeochemical variables (e.g., sediments, nitrogen, phosphorous, and atrazine loads)
those responses from extended wet and drought events. Third, the approaches above and
the resultant hydrologic and biogeochemical simulations evidence the nonlinearity and
aggregation properties of complex adaptive systems defined by [41].

The hydroclimate, sensitivity analyses, and calibration/validation resultant from
the comparison of rain-gauge and radar-based time series data indicate that both digital
resources are comparable. Since the latter spans a significantly larger time series, it was
selected to calibrate the SWAT model and used as forcing for long-term hydrologic and
biogeochemical simulations.

We used a log-transformed regression model to enhance a short-term time series of
biogeochemical variables to calibrate the SWAT model and create long-term simulations of
sediments, nitrogen, phosphorous, and atrazine loads in SC. The results were encouraging
for all but atrazine.

The hydrologic and biogeochemical simulations were aggregated for wet and dry
conditions during the summer and winter. The simulations identified three patterns
attributed to agriculture’s intensification and extent in the area: water availability for
irrigation (during dry periods), the absence of a growing season, and the decrease of
agronomic activities during the winter. The first pattern evidenced the influence of the
rainy season and irrigation on the summer streamflow, with large flows in both, the wet
and dry summers. During the winter, the lowest flows were observed. The second pattern
is illustrated by the difference between wet summers and the rest of the seasons and dry
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conditions, likely produced by decreased cropping activities and the constrained use of
fertilizers during droughts. The third pattern evidences the low SWAT model performance
simulating atrazine based on the parameter estimation and selection proposed in this study
(not the architecture and parameterizations of the model per se).

Finally, we used the shreds of evidence above in Section 3 to support the conceptual-
ization of SC as a complex adaptive system based on [41] properties of aggregation and
nonlinearity. The consistency in the sensitivity analysis, indicating that both radar and
rain-gauge-based forcings led to the similar temporal variability of streamflow, but the
different distribution of ETs indicates the relevance of seasonal changes and aggregation of
spatial distribution patterns. Furthermore, the biogeochemical complexity gradient built
upon the differences among sediments, nitrogen, phosphorous, and atrazine simulations
and model performances indicates the gradual increase of human activities from sediment
load to nitrogen and phosphorous to atrazine.

Future work on properties of complex adaptive systems such as hierarchy and biodi-
versity my lead us to identify potential sources of predictability for hydrologic shifts [82]
and management practices and policies that favor hydrologic resilience [17] across multiple
scales [73].
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www.mdpi.com/article/10.3390/hydrology9050080/s1. Figure S1. Rain gage stations and radar grid
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between sediments, nutrients, and atrazine, and streamflow in Shell Creek. The black line is the
fitted regression. Red dashed lines display the 95% confidence band. Sed: sediments; Atrazine; TN:
total nitrogen; TP: total phosphorus; Q: streamflow; Table S1. Distribution of irrigation and land
use in Shell Creek; Table S2: Periods considered for trend analysis in summer (S) and winter (W)
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