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Abstract: This study presents three global precipitation products and their downscaled versions
(CHIRPSv2, TAMSATv3, PERSIANN_CDR, CHIRPS_D, PERSIANNN_CDR_D, and TAMSAT_D)
estimated with observed values from 1983 to 2014. Performance evaluation of global precipitation
products and their downscaled versions is important for accurate use of those measured values in
water resource management, climate, and hydrological applications, particularly in the data-sparse
Wabi Shebelle River Basin, Ethiopia. Categorical and quantitative evaluation index techniques
were applied. The spatial downscaled global precipitation products outperformed raw spatial
resolution estimates in all statistical indicators. TAMSAT-D had acceptable performance ratings
in terms of RMSE, CC, and scatter plots (R2). CHIRPSv2 showed the least performance at a daily
timestep. Performance of global precipitation products and their downscaled versions increased when
daily data were aggregated to the monthly data. CHIRPS-D performed better than other products
with a minimum error value (RMSE) and higher CC at a monthly timestep. On the other hand,
PERSIANN_CDR_D showed a relatively good performance with a lower, positive Pbias and higher
POD values compared to other products for daily and monthly timescales. For spatial mismatch
analysis, the bias and RMSE from reference data (individual rain gauge station vs. the average of
all available eight stations) against satellite rainfall estimates (PERSIANN_CDR) had a significantly
different weight, which could be related to the position of the gauge station to provide the “true”
spatial rainfall amount. Overall, TAMSATv3 and CHIRPSv2 and their downscaled version satellite
estimates showed good performance at daily and monthly timesteps, respectively. PERSIANN_CDR
performed best with low Pbias and the highest POD values. Thus, this study decided that the
downscaled version of CHIRPSv2 and PERSIANN_CDR-D satellite estimates could be applicable
as an alternative to gauge data on a monthly timestep for hydrological and drought-monitoring
applications, respectively.

Keywords: satellite; product; precipitation; rain gauge; evaluation; downscaling

1. Introduction

Ranfall is an essential and fundamental primary input for the hydrologic cycle, as
well as for hydro-meteorological modeling [1–4]. On the other hand, rainfall data are
constrained by poor networks and uneven distribution because of the insufficient budget
for operation and installation of rain gauge networks for most parts of the developing
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world [5]. The current meteorological network are inadequate and have poor mainte-
nance for water resource assessment and climate studies in most tropical regions including
Ethiopia [6]. The Wabi Shebelle River Basin (hereinafter WSRB) suffers from the scarce and
uneven distribution of the gauge network, inadequate and low-accuracy precipitation, and
incoherence of rainfall records [7]. The study area also experienced sociopolitical instability
during the civil war in the region, resulting in precipitation measurements not being taken
continuously. The gauge network spatial distribution is below the World Meteorological
Organization (WMO) recommendations as a guideline for checking the adequacy of a me-
teorological network for the different physiographic units (one station per 575 km2 interior
plains and 250 km2 for the mountainous regions) [8]. Therefore, satellite precipitation
products are considered a significant alternative source for obtaining precipitation datasets
for the nonexistence of observed data in filling spatiotemporal gaps [9,10]. Several higher
global precipitation products exist at the regional and global level, including Tropical
Applications of Meteorology using SATellite version three (hereinafter TAMSATv3) [11],
Climate Hazards Group Infrared Precipitation with station data version two (hereinafter
CHIRPSv2) [12], and Multisource and Precipitation Estimation from Remotely Sensed
Information using Artificial Neutral Network Climate Data Record (PERSIANN-CDR) [13].
However, the products from these algorithms and assimilation models need to be evaluated
as their precision is impacted by gauge density, orography, rainfall regime, temporal and
spatial resolution, and algorithms used [14]. Global precipitation products (hereinafter
GPPs) are impacted by exposure to important errors [15]. Such errors can be due to
upscaling/downscaling the raw spatial resolution of global precipitation products with
complicated terrain [16–21] and temporal sampling constraints [22]. Before being used
as input for the hydro-meteorological modeling, global precipitation products and their
downscaled versions need to be evaluated against ground measurements. For investiga-
tions of climate extremes, climate change, and water potential assessment for local-scale
applications, global precipitation data with fine spatial and temporal resolution going back
in time (30+ years) are required for data-scarce local basins. The Wabi Shebelle river basin is
Ethiopian’s largest river basin in terms of its catchment area, but the surface water potential
resource was reported as the minimum of all river basins in the master plan study [23].
The issue with this basin is that no compressive research has been conducted to determine
water potential using accurate spatial and temporal rainfall datasets.

Several studies have been undertaken to evaluate the performance of global precipita-
tion estimates, which were concentrated in the Blue Nile Basin (for instance, [6,10,24–33])
and central parts of the country [22,34–38], with a coarser resolution and limited time
period. The performance of the global precipitation product is highly affected by spatial
resolution, which is largely uncertain because of the scale discrepancy with point mea-
surements. The authors of [39] validated 10 satellite precipitation estimates across 120
relatively dense gauge network highlands of Ethiopia. TAMSAT, CMORPH, and TRMM-3B
42 from the first (high-resolution) group had a strong performance. The authors of [40]
evaluated CHIRPSv2, TRMM 3B43v7, CMORPH, ARC2, and TAMSAT across various
rainfall regimes (eastern, central, western, and southern) of Ethiopia. The CHIRPSv2
precipitation products at a monthly timescale performed comparatively better across all
rainfall regimes. In addition, eight satellite-based rainfall estimates were assessed over
the Tekeze-Atbara Transboundary River Basin. TRMM, RFEv2, and CHIRPS precipitation
products had superior performance to other products at all spatial resolutions (basin, sub-
basin, and point) [14]. Similar research focused mainly on a grid-to-point technique in
data-sparse regions [22,25,34,41,42]. Furthermore, this method can induce uncertainty in
the performance of global precipitation products due to the comparison of two datasets on
different spatial scales regardless of the location of gauges in the pixel. Uncertainty due
to the mismatch of satellite-based spatial resolution scale with point measurements may
affect the application of GPPs for climate study and hydrological modeling [43]. Although
global precipitation products exist at a coarser resolution (larger pixel size) than required by
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climate studies and hydrological applications, they have to be downscaled to fine resolution
for matching the sampling of GPPs with gauge data [44].

A comprehensive evaluation of global precipitation products and their downscaled
versions, particularly with a spatial mismatch at different timescales, is needed for a better
understanding of watershed hydrology; however, this has not been performed for the Wabi
Shebelle River Basin to the best of our knowledge. Uncertainty related to the grid-to-point
method can be addressed by avoiding the spatial mismatch between the global precipitation
product and corresponding station measurement by downscaling the coarse resolution to a
fine resolution.

Therefore, this study attempted (i) a comprehensive evaluation of native and down-
scaled global precipitation products against ground reference rainfall data, and (ii) a
quantification of the uncertainty associated with a grid-to-point approach for the spatial
scale of global precipitation products at a selected pixel scale.

2. Study Area Description and Dataset
2.1. Study Area Description

The Wabi Shebelle River Basin (WSRB) is one of the largest basins in Ethiopia, located
in the southeastern part of the country. It originates from the Arsi and Bale Mountain
ranges 4000 m above sea level and drains to the Indian Ocean after crossing Somalia. The
basin’s absolute location is within the latitudes 4◦45′–9◦45′ N and longitudes 38◦45′–45◦30′

E. The WSRB is characterized by bimodal rainfall seasons due to the southern and northern
movement of the intertropical convergence zone (ITCZ) from March to May and from July
to September. According to the master plan hydrology report, the highest mean annual
rainfall recorded is 1467 mm in Seru Wereda of the Arsi Zone. The lowest mean annual
rainfall recorded is 220 mm in the Kelafo Area of the Somali Region [23]. In general, the
spatial and temporal distribution of rainfall is not evenly distributed; it is clustered in
the upper and urban areas of the basin, and tends to decrease with decreasing altitude as
shown in Figure 1.
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2.2. Datasets
2.2.1. Rain Gauge Data

There are about 74 meteorological stations within and around the basin which are not
evenly distributed spatially, clustered in upper and urban areas. The rainfall dataset for
WSRB was taken from the National Mereological Agency (NMA), covering the period 1983
to 2014. Long-term meteorological data for the WSRB are more complete in upstream parts
of the basin, and these stations were taken to analyze precipitation in the area as shown
(Figure 2) below.
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Rain gauge stations for this study were carefully chosen on the basis of their quality
control process for climate data (verification of in situ station’s geographical coordinates,
checking for false zeros, checking for the presence of outliers, and homogeneity testing)
using the Climate Data Tool (CDT) https://github.com/rijaf-iri/CDT (accessed on 27 June
2020). Twenty-seven out of 74 gauging stations with a percentage of available (non-missing)
and continuous data greater than 80% were selected for the comparison of different GPPs
in the study area.

2.2.2. Global Precipitation Products

Global precipitation data with fine spatial and temporal resolution provide optional
homogeneous timeseries information for data-scarce areas, going back in time (30+ years)
as far as possible for hydrological applications and climate studies [45]. Global precipitation
data are a combined product of reanalysis, rain gauge data, and remote sensing estimates.

For this desired specific objective, three global precipitation products and their down-
scaled versions, with different temporal and spatial scales, were taken as inputs (Table 1).
The selection of the GPPs was based on public availability, ease of estimation, global
coverage, multiyear period, and previous record of estimate performance.

https://github.com/rijaf-iri/CDT
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Table 1. Global precipitation products used for Wabi Shebelle River Bain.

Category Input Data Spatial Res.
(Degree) Temporal Res. Start Date Designation

Raw GPPs
CHIRPSv3 0.05 1 day 1981 CHIRPSv3

PERSIANN_CDR 0.25 3 h 1983 PERSIANN_CDR
TAMSATv3 0.04 1 day 1983 TAMSATv3

Downscaled GPPs
CHIRPSv3-Downscale 0.01 * 1 day 1981 CHIRPS_D

PERSIANN_CDR_Downscale 0.01 * 3 h 1983 PERSIANN_CDR_D
TAMSATv3-Downscale 0.01 * 1 day 1983 TAMSAT_D

* The raw spatial resolution of the selected GPPs was downscaled to 1 km.

The Climate Hazards Group Infrared Precipitation with station data version two
(hereinafter CHIRPSv2) was developed by the United States Geological Survey (USGS) and
University of California, Santa Barbara (USCB); it merges estimates using blending satellite,
global climatology, and gauge observation data from the Global Telecommunication System
(GTS). The CHIRPSv2 dataset incorporates 0.05◦ spatial resolution with ground reference
measurements to generate a daily sequence of data points for an area coverage of 50◦ S–50◦

N since 1981 [12].
The Tropical Applications of Meteorology using SATellite version three (hereinafter

TAMSATv3) estimate, developed by Reading University in the UK, features Meteosat
thermal infrared (TIR) fine-resolution observations on a daily timescale employing attuned
cold cloud duration (CCD) data measurements for Africa by downscaling pentadal total
measurements. The TAMSATv3 estimate incorporates 0.0375◦ spatial resolution through
ground rainfall measurements to generate timeseries for all of Africa from January 1983 to
date [11].

The Precipitation Estimation from Remotely Sensed Information using Artificial Neu-
tral Network Climate Data Record (PERSIANN-CDR) system was developed by the Center
for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine
(UCI); it uses a neutral function classification procedure to determine the product of pre-
cipitation amount for each 0.25◦ × 0.25◦ grid in an IR temperature spectrum offered by
a geostationary satellite. The rainfall product features an area coverage of 60◦ S–60◦ N
globally from 1983 to 2015 [13].

3. Methodology

This study evaluated the performance of three global precipitation product and their
downscaled versions (CHIRPSv2, TAMSATv3, PERSIANN_CDR, CHIRPS_D, TAMSAT_D,
and PERSIANN_CDR_D) at different spatial and temporal scales against 27 ground gauge
stations from 1983 to 2014. Categorical and quantitative evaluation index techniques were
applied to WSRB, Ethiopia.

3.1. Grid-to-Point Approach

There are two typical approaches for evaluating global precipitation products, i.e.,
the grid-to-grid and point-to-grid methods. The first method requires the interpolation
of gauge data to grid data, whereby gauge-gridded data are compared with grid data
from global precipitation estimates; however, converting points to gridded interpolated
data induces an error resulting from the interpolation of an uneven geospatial distribu-
tion [46–50]. The second approach involves an immediate comparison of station rainfall
data to the respective pixel in which the gauges are located [23,34,41,42]. In an area such as
the Wabi Shebelle River Basin, with a scarcely and unevenly distributed gauge network, a
pixel-to-point approach is the first choice to assess the GPPs independently, considering the
gauge network as representative measurements irrespective of grids from nominated GPP,
without considering the location of the station in the grid. Although global precipitation
products exist at coarser resolution (larger pixel size) than required by climate studies and
hydrological applications, they have to be downscaled to 1 km fine spatial resolution for
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evaluation with point gauge rainfall in the desired application. The spatial downscaling
method and satellite rainfall estimate are the two most critical aspects in determining the
accuracy of downscaled findings. In the Upper Tekezie River Basin, bilinear downscal-
ing performed marginally better than the nearest-neighbor method to integrate satellite
products with observed rainfall [51]. Other studies also preferred the bilinear downscal-
ing method for smooth interpolated satellite-derived rainfall [52,53]. Therefore, bilinear
downscaling was the approach chosen to downscale the spatial resolution of pixels for this
study area.

The downscaled global precipitation product is more accurate than the original coarser
resolution [54,55]. Therefore, the pixel value of raw spatial resolution GPPs in their down-
scaled version (0.01◦ × 0.01◦) was compared to gauge measurements.

The grid-to-point method can induce uncertainty in the performance of global satellite
precipitation products due to the comparison of two datasets on different spatial scales
regardless of the location of gauges in the pixel. The PERSIANN_CDR (0.25◦ × 0.25◦)
pixel contains multiple rain gauge stations (greater than 3), which allows investigating the
spatial mismatch global precipitation products against station observations for the eastern
upper course (blue-colored grid box in study area map.

3.2. Evaluation Performance Indices

The quantitative and categorical evaluation indicator methods were carefully selected
according to robustness, common usage, and recommendation in previous studies [39]. These
performance indicators are described at https://www.cawcr.gov.au/projects/verification/
(accessed on 12 May 2017), implemented within the Climate Data Tool (CDT). Performance
was assessed through quantitative evaluation indicators such as the coefficient of determina-
tion (R2) (Equation (1)), percentage bias (Pbias) (Equation (3)), bias (Equation (4)), Pearson’s
correlation coefficient (CC) (Equation (2)), and root-mean-square error (RMSE) (Equation
(5)). CC justifies the relationship between the exact values of two variables (independent
and dependent). Values range between zero (no correlation) and one (perfect correlation).
R2 measures how well the independent variables explain the dependent variable in a
regression. Values range between zero (no correlation) and one (perfect correlation). Bias
describes the extent to which the observed value is underestimated or overestimated. The
RMSE represents how closely the satellite observation predicts the measured value.

R2= 1− ∑n
i=1 (S i−Gi)

2

∑n
i=1 (S i− S

)2 , (1)

CC =
∑n

i=1(S i− S
)
(G i− G

)√
∑n

i=1 (S i− S
)2. (G i− S

)2
, (2)

Pbias =
∑n

i=1(S i−Gi)

∑n
i=1 Gi

× 100%, (3)

Bias =
∑n

i=1(S i−Gi)

∑n
i=1 Gi

, (4)

RMSE =

√
∑n

i=1 (S i−Gi)
2

n
, (5)

where Gi and Si represent the gauge and global precipitation data on the i-th day, i is the
index, and S & G are the average values of Si and Gi, respectively.

The ability of global precipitation estimates to determine the existence of precipitation
rates was tested using the probability of detection (POD) (Equation (6)). POD was employed
to evaluate the likelihood of the observed precipitation event being correctly detected by
the satellite estimate. A dichotomous estimate that says “yes, an event will happen” or “no,
an event will not happen” was used to quantify the metrics, as shown in Table 2. For this

https://www.cawcr.gov.au/projects/verification/
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application, a rainfall threshold value of 1 mm was applied to decide the occurrence of a
rainy or non-rainy day [25,33].

POD =
hits

hits + misses
, (6)

where the absolute score of POD varies from 0–1.

Table 2. Contingency table of ainy and non-rainy event prediction by global precipitation products.

GPPs

Station
measurement

Yes No Total
No Misses Correct negative Observed no
Yes Hit False alarm Observed yes

Total Estimate yes Estimate no Total

4. Result and Discussion
4.1. Comparison of Global Precipitation Products at Temporal Scale

This section presents a comparison of three global precipitation products and their
downscaled versions vs. station data measurements according to the essential subject
of gauge representativeness to identify the most reliable products for water resource
assessment, climate studies, and hydrological applications across the data-scarce WSRB at
different temporal scales for the period from 1983 to 2014.

4.1.1. Daily Comparison

The raw and downscaled global precipitation data were evaluated with observed
rainfall at a daily timescale. Global precipitation products and their downscaled versions
presented weak performance according to the majority of statistical indicator indices. The
downscaled GPPs outperformed the original coarser resolutions as can be seen in Table 3.
This result is similar to previous findings [54,55]. This might be due to the accuracy of
the original precipitation product and the spatial downscaling method [39]. The RMSE in
global precipitation products and their downscaled versions was highest in the southern
and northeastern parts of the basin, with values ranging from 4 to 13 mm, as can be seen
in Figure 3b. TAMSAT-D performed better than other products with a minimum RMSE
for a value of 6.926 mm. The value of Pearson’s correlation coefficient (CC) showed a poor
relationship for all global precipitation products, but the CC value was relatively higher
in the southern and northern parts of the basin, with values between 0.05 and 0.5, as can
be seen from Figure 3a. TAMSAT-D showed the best agreement with a higher CC (0.332).
The highest coefficient (R2 = 0.039) was obtained by TAMSTAv3 and TAMSAT_D, as can
be seen Figure 5a. The high performance of daily rainfall estimates from TAMSTAv3 and
its downscaled version could be due to the loss of localized convective precipitation with
the specified threshold value of the study area. This discovery is in line with the findings
of previous investigations. CHIRPSv2 and its downscaled version showed the worst
performance, as can be seen in Table 3. This could be attributed to the areal discrepancy
of gauge observations and satellite estimates, as well as of the retrieval algorithms in
disaggregating pentadal data to daily values [56]. On the other hand, PERSIANN_CDR_D
showed a relatively good performance with a lower, positive Pbias compared to other
products (underestimate), with a value of 3.09%, as presented in Table 3. The spatial
distribution of Pbias for PERSIANN_CDR_D (Figure 3c) showed better performance than
most stations.
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Table 3. Daily statistical indicators of validation.

Product CHIRPSv2 PERSIANN-
CDR TAMSATv3 CHIRPS_D TAMSAT_D PERSIANN-

CDR_CDR

Correlation 0.245 0.298 0.33 0.25 0.331 0.307
Pbias −6.739 3.3 −4.974 −7.064 −4.92 3.09
RMSE 8.297 7.183 6.948 8.141 6.926 7.027
POD 0.334 0.684 0.569 0.363 0.575 0.691

The ability of GPPs to detect the occurrence of precipitation events was also evaluated.
In general, the downscaled products had better rainfall capability detection than the raw
spatial resolution products in terms of the POD categorical statistical indicator. In this
context, PERSIANN_CDR-D revealed a higher POD (0.691) than the PERSIANN_CDR
precipitation product, as presented in Table 3. Both the raw and the downscaled precip-
itation products provided reasonably good PODs, varying between 0.25 and 0.893, as
shown in Figure 4a. The highest POD and low Pbias indicate that PERSIANN_CDR-D is
suitable for capturing the behavior of extreme precipitation events in the Wabi Shebelle
River Basin, Ethiopia. The same result was also confirmed by [57]. This could be due to
the adjustment of PERSIANN_CDR using GPCP monthly 2.50 precipitation products [13].
CHIRPSv3 showed extremely poor performance according to the categorical statistical
indicator values.
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It can be observed that, in general, the downscaled and raw products presented poor
agreement with the ground reference data (r < 0.5). The scatter plots and cumulative
distribution functions using the average daily timeseries gauge rainfall data against the
GPPs were examined (Figure 5a,b). A relatively high coefficient (R2 = 0.039) was ob-
tained by TAMSTAv3 and TAMSAT_D, and whereas CHIRPSv2 scored the lowest value.
PERSIANN_CDR (downscaled and raw) showed reasonable agreement with the ground
reference (R2 = 0.03). Furthermore, all products were comparatively symmetric to a 45◦

inclination. According to the CDFs (Figure 5b), all products were not comparatively denser
for a 45◦ inclination. Furthermore, TAMSAT_D and PERSIANN_CDR_D revealed the worst
correspondence with the station CDFs. This shows that these products underestimated the
distribution for rainfall ≤ 10 mm/day, whereas CHIRPSv2 and CHIRPS_D overestimated
the distribution for rainfall ≤ 10 mm/day.

4.1.2. Monthly Comparison

The accuracy of the global precipitation products in replicating precipitation was
further investigated at a monthly timescale, as shown in Figure 6 and Table 4. The results
indicate that the performance of GPPs and their downscaled versions increased when daily
data were aggregated to monthly data. These findings were also confirmed by [10,58],
which evaluated the performance accuracy of aggregated global precipitation products
toward a coarser temporal resolution. For example, one study [36] investigated several
global precipitation products over Burkina Faso with different temporal resolutions. The
results indicated that the categorical and volumetric indicators significantly increased upon
aggregating the timescale. Similarly, the authors of [59] evaluated the CHIRPS satellite
precipitation estimates over eastern parts of the continent. In the comparison of CHIRPS
estimates with ARC2 and TAMSTA, the findings exhibited reasonably better reference
estimates at decadal and monthly timescales, with a better skill of detection and lower bias,
while TAMSAT performed better at a daily timescale.
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Figure 5. (a) Scatter plot of cumulative distribution function; (b) plots of observed rainfall against the
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Table 4. Monthly statistical indicators of GPPs evaluated.

Product CHIRPSv2 PERSIANN-CDR TAMSATv3 CHIRPS_D TAMSAT_D PERSIANN-CDR_D

Correlation 0.745 0.659 0.699 0.748 0.709 0.664
PBIAS −6.729 2.388 −6.066 −7.055 −3179 1.999
RMSE 53.958 63.739 58.894 53.734 57.884 62.0345
POD 0.984 0.986 0.897 0.986 0.897 0.993

The downscaled GPPs outperformed their original coarser-resolution counterparts ac-
cording to all statistical indicators of accuracy. CHIRPS-D performed better than other prod-
ucts with a minimum error value (RMSE = 53.734 mm) and higher correlation (CC = 0.748).
The value of Pearson’s correlation coefficient (CC) showed a good relationship for raw and
downscaled global precipitation products. Scatter plots using average monthly timeseries
gauge rainfall data against the three GPPs and their downscaled versions were generated.
The highest coefficient (R2 = 0.418) was obtained by CHIRPS_D. As the time resolution
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increased from days to months, the rainfall amount estimated by CHIRPSv2 became in-
creasingly accurate. The best performance of CHIRPSv2 and its downscaled version could
be due to the elimination of error as the data were aggregated to a coarser timescale. These
findings are consistent with earlier investigations of CHIRPSv2 rainfall data at a monthly
timescale [59,60].

PERSIANN-CDR showed the lowest values for RMSE, CC, and R2, as can be seen
from Table 4 and Figure 6, on the daily timescale. PERSIANN_CDR_D showed relatively
good performance with a lower, positive Pbias compared to other products (overesti-
mate), with a value of 1.999%. PERSIANN_CDR_D resulted in the highest POD value of
0.993. CHIRPS_D and PERSIANN_CDR had the second better probability of detection
(POD), whereas the TAMSAT group had the lowest value (Table 4). This implies that the
performance of satellite estimates was influenced by the algorism and data source used.

4.2. Uncertainty Associated with a Pixel-To-To Point Method

In addition to the spatiotemporal investigation, the significant effect of the position of
the stations in a pixel on the evaluation of the global precipitation product was analyzed, as
shown in Figure 1 (blue-colored grid box). Furthermore, attempts were made to compare a
pixel of selected GPPs (PERSIANN_CDR) against reference data, using the spatial average
of all existing station data versus individual gauge stations within a pixel. Findings show
that the minimum RMSE was obtained for PERSIANN_CDR when comparing the spatial
average over each gauge station in the blue-colored box, with an average value of 4.667, as
presented in Table 5.

Table 5. Statistical indicators of global precipitation products and station measurements within
the grid.

STATION
PERSIANN_CDR

LON STATS/LAT BIAS RMSE

Average over the
pixel 1.126 4.667

Girawa 41.83 9.13 0.938 7.86
Gursum 42.38 9.35 1.223 7.962

Fedis 42.08 9.13 1.317 6.897
Kulubi 41.68 9.42 1.026 7.519

Alemaya 42.03 9.4 1.314 6.557
Bisidimo 42.2 9.2 1.404 6.924

Deder 41.43 9.32 0.991 7.676
Bedeno 41.63 9.12 0.967 7.223

PERSIANN_CDR achieved a reasonable maximum bias (overestimated by 12.6%) for
the spatial average in the comparison of two datasets at the pixel level. On the other hand,
the maximum bias ranged from, 40% and 31% using individual gauge stations Bisidimo
and Fedis, respectively. In the comparison between the spatial average and the individual
stations, Deder exhibited the smallest bias, while other stations changed the direction of
the bias, with the exception of the Grawa and Bedeno gauge stations.

Generally, in terms of bias and RMSE, spatial averages estimated using rainfall data
(eight stations) exhibited considerably different values to the referenced individual rain
gauges in terms of magnitude. This magnitude difference may be related to the positions
of the gauge stations and the uncertainty due to the representativeness of an individual
rain gauge in providing the “true” spatial rainfall amount. Furthermore, the authors
of [17,20,22,61] examined the variability and gauge representativeness of rainfall retrieved
from the global precipitation product and showed the effect of network density on per-
formance assessment. Therefore, it is essential to apply appropriate representative gauge
data for the evaluation of products. Uncertainty related to the grid-to-point method can be
addressed by avoiding the spatial mismatch between global precipitation products and
the corresponding station measurements by downscaling the coarse resolution to a fine



Hydrology 2022, 9, 66 14 of 17

resolution [44]. In addition, installing additional rain gauges is strongly recommended
within the grid [25].

5. Conclusions

In the current study, a total of six GPPs, three from raw global precipitation prod-
ucts (CHIRPSv2, TAMSATv3, and PERSIANN_CDR) and three from downscaled global
precipitation products (CHIRPS_D, TAMSAT_D, and PERSIANN_CDR_D), were used. A
bilinear method was applied to downscale the coarse spatial resolution of GPPs to 1 km
resolution pixels. Categorical and quantitative evaluation index techniques were applied to
WSRB, Ethiopia. The primary objective of the study was to assess the performance of the
global precipitation products and their downscaled versions at different temporal scales
compared to ground gauge stations.

The results indicated that the performance of global precipitation products is affected
by factors such as the gauge density, spatiotemporal scale, and type of satellite algorithm.
The daily evaluations were executed poorly in the majority of gauge stations. According
to the evaluation parameters at the daily timescale, the downscaled GPPs performed
best in terms of all statistical indicators. The evaluation assessment clearly indicated that
TAMSAT_D was the best performer in terms of RMSE, CC, and scatter plots (R2). On
the other hand, PERSIANN_CDR_D showed a relatively good performance with a lower,
positive Pbias and higher POD values compared to other products. CHIRPSv2 showed
the worst performance at a daily timescale. The results indicated that the performance of
the GPPs and their downscaled versions increased when daily data were aggregated to
monthly data. Therefore, CHIRPS-D performed better than other products with a minimum
error value (RMSE) and higher CC and R2. However, PERSIANN_CDR_D presented a low
Pbias and the highest POD values on daily and monthly timescales. In spatial mismatch
analysis, the bias and RMSE estimated using rainfall data from individual rain gauges
exhibited different magnitudes over the spatial average for PERSIANN_CDR, indicating
that individual gauge data could not accurately estimate the product.

Overall, the performance of downscaled global precipitation products was better than
that of the coarser-resolution products according to all statistical parameters. TAMSAT-D
and CHIRPS-D products were the best-performing GPPs in reproducing the daily and
monthly rainfall data, respectively. PERSIANN_CDR also accurately captured the extreme
rainfall over the study area. This study provides a relatively long consistent and homoge-
neous timeseries rainfall dataset for climatology analysis and hydrological applications
with a 1 km resolution for the study area. Although satellite precipitation products provide
information at a high spatial resolution, they are lower in precision. On the other hand,
gauges provide accurate point measurements but have limited spatial representativity.
Therefore, for future studies, we recommend merging the downscaled product to improve
the data availability in terms of accuracy, spatial distribution, and accumulated rainfall
volume over the data-scarce Wabi Shebelle River Basin, Ethiopia, with a complex terrain,
as well as other regions with a similar climate and topographical location.
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