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Abstract: We compared five regression approaches, namely, ordinary least squares, major axis,
reduced major axis, robust, and Prais–Winsten to estimate δ18O–δ2H relationships in four water types
(precipitation, surface water, groundwater collected in wells from lowlands, and groundwater from
low-yield springs) from the northern Italian Apennines. Differences in terms of slopes and intercepts
of the different regressions were quantified and investigated by means of univariate, bivariate, and
multivariate statistical analyses. We found that magnitudes of such differences were significant
for water types surface water and groundwater (both in the case of wells and springs), and were
related to robustness of regressions (i.e., standard deviations of the estimates and sensitiveness to
outliers). With reference to surface water, we found the young water fraction was significant in
inducing changes of slopes and intercepts, leading us to suppose a certain role of kinetic fractionation
processes as well (i.e., modification of former water isotopes from both snow cover in the upper part
of the catchments and precipitation linked to pre-infiltrative evaporation and evapotranspiration
processes). As final remarks, due to the usefulness of δ18O–δ2H relationships in hydrological and
hydrogeological studies, we provide some recommendations that should be followed when assessing
the abovementioned water types from the northern Italian Apennines.

Keywords: stable water isotopes; young water fraction; global meteoric water line; northern
Italian Apennines

1. Introduction

Oxygen (18O and 16O) and hydrogen isotopes (2H and 1H) of water are commonly used
in surface and subsurface hydrology [1–3]. They are considered environmental tracers in the

form of δ18O and δ2H, where δ(‰) =
[( Rsample

Rstandard
− 1
)
× 1000

]
and R is the corresponding

isotopic ratio (18O/16O or 2H/1H) in the water sample or in the standard (usually V-SMOW,
i.e., the Vienna Standard Mean Oceanic Water). If a multitude of water samples is collected
from the same source (a rain gauge, a river, a spring, or a well), the corresponding δ18O–δ2H
pairs in a Cartesian graph will be aligned along a regression line in the form of y = mx + q,
where y is δ2H, x is δ18O, m is the slope, and q the intercept. This fact was first noted by [4]
when reporting several δ18O and δ2H values from precipitation waters worldwide, which
allowed definition of the so-called “global meteorological water line” (GMWL) equal to
δ2H(‰) = 8.0 · δ18O + 10.0. The authors of [5] have substantially confirmed this slope and
intercept by processing more recent data. Although this relationship is valid everywhere,
more accurate regression lines (with different slope and intercept) can be obtained by
selecting δ18O and δ2H values from restricted areas. This is due to the specific isotopic
fractionation processes (i.e., vapour pressure and temperature conditions) controlling
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precipitation over each area. Moreover, since further post-condensation and temperature-
driven processes such as evaporation and evapotranspiration could act prior to infiltration
and/or during runoff, δ18O–δ2H regressions from rivers (river water lines, RWLs) and
groundwater (groundwater lines, GWLs) may also differ from that of the precipitation
occurring in their recharge areas (meteoric water lines, MWLs). In fact, evaporation and
evapotranspiration lead to a fractionation between the different isotopologues of water,
with lighter water molecules (1H2

16O) vaporising faster than heavier ones (2H2
18O) and

inducing an enrichment of the latter into the liquid residual. In this case, as a water parcel
evaporates, its isotopic composition usually evolves with a δ18O–δ2H regression line whose
slope is lower than those of MWLs.

It is evident that such changes in slopes from RWLs and GWLs concerning those of
MWLs can be used to infer information on the hydrological processes occurring at the
slope and the catchment scales. As an example, and without claiming to be exhaustive, the
following studies highlighted that a change in slope from RWLs and GWLs concerning
those of MWL can be used to:

• Display the role of the riparian zone in feeding base flow in low-relief and forested
catchments [6];

• Highlight pre-infiltrative evaporation/evapotranspiration that acted by modifying the
waters before their infiltration towards the aquifer and, subsequently, to the base flow
of rivers [7];

• Demonstrate that groundwater may be fossil (related to other climate recharge con-
dition) or actually recharged by losses from the streambed or even a mixing among
these two components [8];

• Reveal instream or lake evaporation in a nonarid environment [9,10];
• Elucidate which component (precipitation or losses from the streambeds) is exclusive

or prevalent in recharging alluvial aquifers [11].

Starting with the pioneering works by [4,12] regarding meteoric water and up to
this day, δ18O–δ2H regression lines are usually carried out by means of the ordinary least
squares (OLS) method, i.e., an approach that minimises the sum of the squared vertical
distances between the y data values and the corresponding y values on the fitted line (the
predictions). Thus, the OLS design assumes that there is no variation in the independent
variable (x) and is considered as the simplest method among the several available linear
regression models. By focusing on the aforementioned isotopes of water, we should also
take care of the variations associated with variable (x) as the same or different isotopic
fractionation processes, which may have developed even at different rates and may have
affected both δ-values.

For this reason, [13] proposed a more complex linear regression approach for obtaining
MWLs lines that consider associated errors with both dependent (y) and independent
variables (x), such as the reduced major axis (RMA) and the major axis (MA). In the end, it is
found that MA approaches usually led to the smallest discrepancies between the estimated
and predicted values (a measure of goodness of fit usually described with the well-known
coefficient of determination R2, i.e., smallest discrepancies are identified by higher values
of R2) and larger slopes in MWLs calculation than those obtained with RMA and OLS [14].
The recent attempt made by [15] on several water types (river water, groundwater, soil
water) confirmed that RWLs and GWLs were also characterised by larger slopes in the case
of MA regression while the lowest values were noted when using OLS. The same authors
found that in all cases (MWLs, RWLs, GWLs), the higher the R2 between δ18O and δ2H
values, the smaller were the differences in the slopes obtained by MA, RMA, and OLS. This
was due to the different sensitiveness of the linear regression approaches to outliers and
large measurement errors rather than temperature-driven post-condensation processes.
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This study aims to verify whether such discrepancies in slopes and intercepts from
different regression methods are present (thus significant) or not in four water types (pre-
cipitation, surface water, groundwater collected in wells from the lowlands, groundwater
from low-yield springs) from the northern Italian Apennines. For this reason, we exploited
datasets already published in the literature, e.g., [7,11,16–18], and we carried out visual
inspection (heat maps) and statistical comparison of results from the three aforementioned
approaches (OLS, RMA, MA) already tested in [15]. With reference to OLS approach, we
further verified whether preliminary weighting of the isotopic data to the corresponding
values of discharge or precipitation may have induced changes to our results or not. In
addition, we tested two methods, namely, Prais–Winsten (PW) and robust (R), to investigate
possible influence on the final δ18O–δ2H alignments of nonstationary processes (here, we
recall that the OLS, RMA, and MA approaches are based on the assumption that data
are not serially correlated, thus a δ18O–δ2H pair from a determined time period is not
correlated with the earlier one, while properties as mean, variance, and autocorrelation
are constant over time, i.e., stationary, while recent papers in the literature highlighted the
possible nonstationary behaviour of such series of isotopic data [19]) or even outliers (i.e.,
anomalous isotopic values) within the series of isotopes.

Furthermore, we provided a possible explanation for the geographic and climatic
factors (i.e., catchment descriptors) influencing the several regressions and finally we made
some considerations concerning their applicability in the context of mountainous areas
such as the northern Italian Apennines.

2. Overview of the Climatic, Geomorphological, and Hydrogeological Features of the
Study Area

The study area is located in the northern Italian Apennines and belongs to the Emilia–
Romagna Region (Figure 1). It includes nine catchments between the Trebbia River and the
Savio River, with river gauges (in which the samples were collected) located close to the
foothills of the mountain chain. The area has an overall extension of 6261 km2. Maximum
altitudes are in the southern sectors, where the main watershed divide lies (with main
peaks showing elevations higher than 2000 m a.s.l., such as Mt. Cimone with its 2165 m
a.s.l.) is the southern border of the Emilia–Romagna Region. Elevation decreases towards
the NE direction to approximately 40 m a.s.l. at the Savio River gauge.

All the nine rivers originate from the main watershed divide and flow towards the NE.
Six rivers (namely, Trebbia, Nure, Taro, Enza, Secchia, and Panaro) are tributaries of the Po
River while the other three (Reno, Lamone, and Savio) enter the Adriatic Sea. Catchment
areas are between 193 km2 (Lamone) and 1300 km2 (Secchia), while flow lengths range from
28 km (Enza) to 85.2 km (Secchia). Mean annual discharges during the period 2006–2016
are included between 8.4 m3 s−1 (Savio) and 30.4 m3 s−1 (Secchia).

From a hydrogeological point of view, a report [20] grouped bedrock outcrops in the
aforementioned catchments into six main classes (or hydrogeological complexes, namely:
clay, marl, flysch, foreland flysch, ophiolite, and limestone). Those composed of poorly
permeable or impermeable materials (clay, marl, and flysch hydrogeological complexes;
see Figure 1) are the most represented in terms of areal coverage, leading to a runoff
response of rivers that closely follows the rainfall distribution during the year (pluvial
discharge regime). Rivers originating from the most elevated parts of the main watershed
divide (Secchia, Panaro) are characterised by a nival–pluvial discharge regime as they are
influenced by the melting of snow cover accumulated during the winter months in the
upper parts of their catchments [21].
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Figure 1. Sketch map of the area (modified after [7]) with locations where sampling has been carried 
out by previous studies for precipitation (rain gauges with letters a to d), surficial water (rivers 
numbered 1 to 9), groundwater from springs (Greek letters α and β), and groundwater from wells 
(located in the alluvial fans with capital letters A to D). Hydrogeological complexes are reported 
following [20]; GC: clay; GM: marl; GF: flysch; GFF: foreland flysch; GL: limestone; GO: ophiolite. For 
further details, see Table 1. 

Table 1. Main features of the sampling points from which isotopic data were derived. For the 
corresponding map locations, readers are referred to Figure 1. 
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Samples 
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Sampling 

Length of Time Reference
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Parma Precipitation a 41 Monthly 3 January–6 December [7,16] 
Lodesana Precipitation b 18 Monthly 3 December–5 May [7,16] 

Langhirano Precipitation c 18 Monthly 3 December–5 May [7,16] 
Berceto Precipitation d 14 Monthly 4 September–5 October  [7,16] 
Trebbia Surface water 1 36 Monthly 5 January–7 December  [16] 

Nure Surface water 2 24 Monthly 6 January–7 December  [16] 
Taro Surface water 3 36 Monthly 5 January–7 December  [16] 
Enza Surface water 4 24 Monthly 6 January–7 December  [16] 

Secchia Surface water 5 24 Monthly 6 January–7 December  [16] 
Panaro Surface water 6 36 Monthly 5 January–7 December  [16] 
Reno Surface water 7 24 Monthly 6 January–7 December  [16] 

Lamone Surface water 8 24 Monthly 6 January–7 December  [16] 

Figure 1. Sketch map of the area (modified after [7]) with locations where sampling has been carried
out by previous studies for precipitation (rain gauges with letters a to d), surficial water (rivers
numbered 1 to 9), groundwater from springs (Greek letters α and β), and groundwater from wells
(located in the alluvial fans with capital letters A to D). Hydrogeological complexes are reported
following [20]; GC: clay; GM: marl; GF: flysch; GFF: foreland flysch; GL: limestone; GO: ophiolite. For
further details, see Table 1.

Table 1. Main features of the sampling points from which isotopic data were derived. For the
corresponding map locations, readers are referred to Figure 1.

Location Type Code Number of
Samples

Timing of
Sampling Length of Time References

Parma Precipitation a 41 Monthly 3 January–6 December [7,16]

Lodesana Precipitation b 18 Monthly 3 December–5 May [7,16]

Langhirano Precipitation c 18 Monthly 3 December–5 May [7,16]

Berceto Precipitation d 14 Monthly 4 September–5 October [7,16]

Trebbia Surface water 1 36 Monthly 5 January–7 December [16]

Nure Surface water 2 24 Monthly 6 January–7 December [16]

Taro Surface water 3 36 Monthly 5 January–7 December [16]

Enza Surface water 4 24 Monthly 6 January–7 December [16]

Secchia Surface water 5 24 Monthly 6 January–7 December [16]

Panaro Surface water 6 36 Monthly 5 January–7 December [16]
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Table 1. Cont.

Location Type Code Number of
Samples

Timing of
Sampling Length of Time References

Reno Surface water 7 24 Monthly 6 January–7 December [16]

Lamone Surface water 8 24 Monthly 6 January–7 December [16]

Savio Surface water 9 36 Monthly 5 January–7 December [16]

Trebbia Groundwater
from wells A 66 Four-Monthly 4 January–7 December [16]

Taro Groundwater
from wells B 23 Four-Monthly 4 January–7 December [16]

Enza Groundwater
from wells C 23 Four-Monthly 4 January–7 December [16]

Secchia Groundwater
from wells D 33 Four-Monthly 4 January–7 December [16]

Pietra di
Bismantova

Groundwater
from springs α 32

Monthly
Two-Monthly

Three-Monthly
14 January–15 December [17]

Montecagno Groundwater
from springs β 21

Monthly
Two-Monthly

Three-Monthly
14 March–15 December [18]

In the vicinity of the foothills (therefore close to the corresponding river gauges),
several wells drilled in the alluvial fans of the Trebbia, Taro, Enza, and Secchia rivers
continuously pump groundwater for both agricultural and drinking purposes. As pre-
viously highlighted by [11], by exploiting water stable isotopes, wells pumping water
from confined aquifers in Trebbia and Taro alluvial fans are also likely to be recharged by
zenithal precipitation infiltrating through gravels and sands that outcrop at the foothills of
the northern Apennines (i.e., apical part of the alluvial fans). On the contrary, an important
quota of recharge also occurs from streambed dispersion (focused on the apical part of
their alluvial fans, see [22]) seems to affect wells located in the alluvial fans of the Enza and
Secchia rivers. Two groups of low-yield springs from the Secchia River catchment (namely,
Pietra di Bismantova and Montecagno) were also considered. These springs should be
considered as representative of the common ones in the northern Italian Apennines, whose
discharges are closely related to the rainfall pattern while outflows are strongly reduced
(often in the order of 1 L·s–1 or less) at the end of the summer periods (shallow groundwater
flow paths; for more details see [20,23,24]).

From the climatic point of view, and as already reported in [25], the mean annual rain-
fall distribution during the period 1990–2015 exceeds 2200 mm/y near the main watershed
divide and progressively decreases to about 900 mm/y in the foothills. The rainfall distribu-
tion during the year is characterised by a marked minimum in the summer season and two
maxima during autumn (the main one) and spring. Close to the main watershed divide,
the cumulative annual snow cover can reach 2–3 m at the end of the winter season [21].
Potential evapotranspiration ranges from about 500 up to 650 mm/y in the lowlands and is
mainly active during the summer months [25].

3. Methodology

The methodology used in this study consists of five steps involving data inspection
and statistical comparison on datasets, including rainfall (4 rain gauges, namely: Parma,
Lodesana, Langhirano, Berceto), surface water (9 rivers, namely: Trebbia, Nure, Taro,
Enza, Secchia, Panaro, Reno, Lamone, Savio) groundwater from wells (aggregated isotopic
values from wells belonging to 4 alluvial fans, namely: Trebbia—4 wells, Taro—5 wells,
Enza—3 wells, and Secchia—5 wells), and groundwater from springs (aggregated isotopic
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values from springs belonging to 2 areas from the Secchia catchment, namely: Pietra di
Bismantova and Montecagno). Firstly, a check on the assumption of stationary behaviour
of each series of stable isotopes was carried out by means of conventional statistical tests
coupled with inspection of standardised residuals.

Secondly, slopes and intercepts from δ2H–δ18O alignments were obtained by using
5 different regression approaches. Moreover, we further considered 2 different regressions
applied to δ-values from rain gauges and rivers that had been preliminary weighted to
the corresponding quota of precipitation and discharge, respectively. Thirdly, slopes and
intercepts were visually inspected by means of heat maps to identify discrepancies among
the several regression methods. Fourthly, slopes and intercepts were compared through
bivariate (correlation matrices) and multivariate analyses (hierarchic clustering, i.e., dendro-
grams) to identify linear correlations and similarities. Fifthly, and with reference to the only
surface water, we made a comparison between differences in slopes and intercepts with
some selected catchments to verify linear or nonlinear correlations among these variables.

For convenience (see Figure 1 for location of the sampling points and Table 1 for
further details), we report below rain gauges signified by letters (from a to d: “a”—Parma,
“b”—Lodesana, “c”—Langhirano, “d”—Berceto); surface water locations as numbers
(from 1 to 9: “1”—Trebbia, “2”—Nure, “3”—Taro, “4”—Enza, “5”—Secchia, “6”—Panaro,
“7”—Reno, “8”—Lamone, “9”—Savio); groundwater from wells as capital letters
(“A”—Trebbia, “B”—Taro, “C”—Enza, “D”—Secchia); and groundwater from springs
as Greek letters (“α”—Pietra di Bismantova, “β”—Montecagno).

3.1. Isotopic Datasets

The dataset from 4 rain gauges and 9 rivers consists of monthly isotopic data while
17 water wells were characterised by grabbed four-monthly samples. All the data are
derived from [7,16]. With reference to rain gauges, isotopic datasets lasted over the period
from January 2003 to December 2006. Isotopic data from surface water and groundwater
covered the period from January 2004 to December 2007. Further monthly, two-monthly,
and three-monthly isotopic data from 2 groups of nearby low-yield springs were con-
sidered. These data were published in [17,18] and included the period January 2014 to
December 2016.

The final dataset consists of 553 isotopic values, of which 91 are from precipitation,
264 from surface water, 145 from groundwater collected in wells, and 53 from groundwater
collected in springs. Precipitation and river discharge that were used for further weighting
procedures (see Section 3.3, “Linear Regression Types”) come from [26].

As reported in the previous works of [7,11,16], the isotopic analyses were carried out
by using isotope ratio mass spectrometry (IRMS) while instrument precision (1σ) was on
the order of ±0.05‰ for δ18O and ±0.7‰ for δ2H. With reference to groundwater from
springs [17,18], the corresponding isotopic analyses were carried out by mixed technique
involving IRMS for δ18O and cavity ring-down spectroscopy (CRDS) for δ2H. Instrument
precision (1σ) was assessed as ±0.1‰ for δ18O and ±1.0‰ for δ2H.

3.2. Verifying the Stationary Behaviour of Isotopic Data Series

As anticipated in the introduction, three of the five linear regression approaches are
considered in this study, namely, ordinary least squares (OLS), reduced major axis (RMA)
and major axis (MA), which are based on the assumption that a series of stable isotopes
are stationary [27,28]. This means that statistical properties as mean and variance remain
constant along each δ18O–δ2H alignment, i.e., modelling errors are normally distributed
and homoscedastic. Moreover, the closest pairs of δ18O–δ2H must not be affected by
autocorrelation phenomena as the modelling errors (i.e., residuals) from the regressions
must be independent [27].

The presence of outliers or heteroscedasticity (i.e., modelling errors have not the
same variance over the alignment) or autocorrelation lead the assumption of stationarity
to be violated, thus slopes and intercepts from the abovementioned regression may not
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be meaningful. In this work, we exploited conventional statistical tests for verifying
multivariate normality (i.e., presence of outliers inducing non-normality; Doornik–Hansen
test [28,29]) heteroscedasticity (Breusch–Pagan test [30]), and autocorrelation (Durbin–
Watson [31]).

All of the abovementioned tests are based on a comparison of the corresponding
statistics’ p-value results with a threshold value (level of significance α set at 0.01) to decide
whether the null hypotheses have to be rejected (p < 0.01) or not (p > 0.01). The following
null hypotheses were selected: multivariate normality (Doornik–Hansen), homoscedasticity
(Breusch–Pagan), no autocorrelation (at a lag of 1) in the residuals (Durbin–Watson). With
reference to the Durbin–Watson test, it must be specified that values are included between
0 and 4. Values close to 0 indicate almost total positive autocorrelation while results in the
proximity of 4 indicate a total negative autocorrelation. Values between 1.5 and 2.5 show
there is no autocorrelation in the data.

As suggested by [27], in the case of rejection of the null hypothesis of multivariate
normality or homoscedasticity, we further verified the standardised residuals for identifying
outliers (i.e., those values for which standardised residuals fall outside the interval from
−4 to 4). Moreover and always following [27], if residuals were found to be serially
correlated, we made autocorrelation functions of the standardised residuals to further
confirm the lag length of autocorrelation.

3.3. Linear Regression Types

In this work, 5 types of linear regressions were tested, namely, ordinary least squares
(OLS), reduced major axis (RMA), major axis (MA), robust (R), and Prais–Winsten (PW). To
avoid excessive mathematical details, we provide a cursory examination of the methods
and the reader is referred to more specific literature [14,15,27,32]. For convenience, we
report all the corresponding equations by replacing δ18O with x and δ2H with y, while n is
the number of samples and r is the Pearson correlation coefficient.

The OLS regression assumes that the x values are fixed (i.e., it is commonly used when
x values have very few associated errors) and finds the line that minimises the squared
errors in the y values. The slope of the linear regression (slopeOLS) is calculated as follows:

slopeOLS = r×
sdy

sdx
(1)

where sd represents standard deviations calculated for x variables (sdx) and y variables (sdy).
Unlike OLS, RMA and MA try to minimise both the x and the y errors [33]. In the case of
RMA, the corresponding slopeRMA can be obtained with:

slopeRMA = sign[r]×
sdy

sdx
(2)

where sign[r] is the algebraic sign of the Pearson coefficient. The slopeMA is calculated by:

slopeMA = −A +

√
r2 + A2

r
(3)

where A can be obtained as:

A = 0.5×
(

sdx

sdy
−

sdy

sdx

)
(4)

As anticipated in introduction, the PW regression [34] has never been used for devel-
oping δ18O–δ2H alignments, as series of isotopic data have always been considered to the
present as time-invariant (i.e., stationary). Recently, [19,35] highlighted that multiannual se-
ries of such isotopic data may be affected by nonstationary processes (such as, for example,
trends in the means or presence of far-off values). In this case (nonstationary multiannual
series of δ18O–δ2H pairs), the use of common regression methods such as OLS, RMA, and
MA could induce residuals to be larger and characterised by stronger serial correlations.
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PW is commonly used for data with serially correlated residuals of the estimates [36].
As a matter of fact, this approach takes into account AR1 (i.e., autoregression of the first
order) serial correlation of the errors in a linear regression model. The procedure recur-
sively estimates the coefficients and the error autocorrelation of the model until sufficient
convergence is reached. All the estimates are obtained by the abovementioned OLS.

As in the case of PW approach, the R method has also never been tested for δ18O–δ2H
regressions. This method is an advanced Model I (in which x is always the independent
variable) regression which is less sensitive to outliers than OLS estimates. Having less
restrictive assumptions, R is recognised to provide much better regression coefficient
estimates than OLS when outliers are present in the data. In particular, this approach
has proven to be successful in the case of “almost” normally distributed errors but with
some far-off values. This happens as outliers usually violate the assumption of normally
distributed residual in OLS method. The algorithm is “least trimmed squares” reported
by [37], in which the method consists of finding that subset of x–y pairs whose deletion
from the entire dataset would lead to the regression having the smallest residual sum of
squares. As in the case of PW approach, estimates of each subset are calculated owing to
the OLS method. It must be added that, depending on the size and number of outliers, R
regression conducts its own residual analysis and downweight or even these x–y pairs;
this fact deserves an accurate inspection of the outliers made by the operator prior to any
removal in order to decide whether these x–y pairs have to be considered or not.

For all 5 different regression approaches, the corresponding intercept is obtained with
the following:

intercept = ∑n
i=1 yi

n
− slope ∑n

i=1 xi

N
(5)

In all the abovementioned linear regressions, each observation has an equal influence
of the orientation of the fitted line. As a matter of fact, it is well recognised that some
isotopic data may be more important than others as related to a higher amount of water
(for example, a flood in the case of a river or a high discharge event of a spring or high
rainfall amount during a storm event). In this case, greater influence in the regression
should be given to these isotopic data. In order to also take this effect into account, OLS
were applied to isotopic datasets that had been previously weighted on the corresponding
monthly amount of precipitation (rainwater) and discharge (freshwater and river water)
by means of two different methods, i.e., the classical one that simply involves multiplying
each yi by the water amount (see [28] for further details; hereafter called W) and as reported
in [38] (see [7] for the formulation; hereafter called B).

3.4. Comparison among Regressions

Initially, slopes and intercepts from all the regressions were compared by means
of heat maps. The heat maps are matrices of fixed cell size showing the magnitude of
difference among values with a selected binary colour ramp (in our case from red to green,
respectively, indicating the lowest value and highest value within the isotopic dataset), in
which the colour intensities provide visual cues to the reader about discrepancies between
the data. The goal was to verify any presence of clusters to be further investigated by
means of bivariate and hierarchical cluster analyses.

As a bivariate analysis, we carried out scatterplot matrices to determine if linear
correlation between multiple variables (slopes and intercepts obtained by the different
regression approaches) were present or not. Tests were carried out highlighting the level of
significance, which was set as p < 0.01.

Furthermore, a hierarchical cluster analysis was performed to identify similarities
among the series of slopes and intercepts from the whole datasets. Clustering was done
according to the unweighted pair–group average (or centroid) method, in which each group
consisted of slopes (or intercepts) from a determined regression approach. The method was
based on a step-by-step procedure in which series of slopes (or intercepts) were grouped
into branched clusters (dendrogram) based on their similarities to one another. As a result,
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the two most similar series of slopes (or intercepts) were selected and linked based on the
smallest average distance among the values of all slopes (or intercepts). Progressively more
dissimilar series were linked at greater distances; in the end, they all were joined to one
single cluster. The cophenetic coefficient was used as a measure of similarity between each
pair of clusters; more than 2 time series being analysed, the dendrogram was supported by
a cophenetic distance matrix. Further details on this method can be found in [28].

3.5. A Focus on the Differences among Regression Approach from River Water: Comparison with
Catchment Characteristics

As suggested by [15], we investigated whether some selected catchment characteris-
tics (also called descriptors) could have affected differences among values of slopes and
intercepts as obtained by the different approaches reported in Section 3.3. In order to make
all slopes and intercepts comparable, we followed the approach proposed by [15] that con-
sisted of prior computed differences in the slopes (as slopeOLS–slopeRMA/MA/R/PW/W/B)
and intercepts (as interceptOLS–interceptRMA/MA/R/PW/W/B). Then, and following again
the procedure reported in [15], we applied the Spearman ranking correlation matrix in
which the abovementioned differences in slopes and intercepts were compared with 9 catch-
ment characteristics. It should be added that this approach is a nonparametric measure
of rank correlation that provides a statistical dependence between the rankings of two
variables at a time. Unlike the Pearson coefficient, the Spearman ranking assesses how well
the relationship between two variables can be described using a monotonic function, even
if their relationship is not linear [27]. In particular, several authors have highlighted that
many hydrological processing occurring at both slope and catchment scales are nonlinear
(see for instance [38,39]) and such behaviour was in turn seen in some descriptors calculated
by means of time series of stable isotopes of water [7,40–42].

In order to take into account the linearity among the variables, we also considered the
linear correlation by providing the Pearson correlation coefficients. Here, we recall that
Pearson and Spearman matrices reflect the magnitude of similarity among the parameters
by means of r (the Pearson correlation coefficient described in Section 3.3) and rs coefficients,
respectively. Both correlation coefficients (r and rs) describe the strength and direction
between the two variables and return a closer value to 1 (or −1) when the two different
datasets have a strong positive (or negative) relationship. The significance probability
(p-value) for both the Spearman and Pearson correlation coefficients calculated in this study
was set at 0.01, meaning that p-values lower than 0.01 represented statistically significant
relationships. Readers are referred to [28] for further details on statistical formulations.

The 9 catchment characteristics (or descriptors, see Table 2 and Supplementary Materi-
als Table S1 for further details) were those already considered by [7], namely: catchment
area (A); elevation (H); precipitation (P); flow length (F); specific mean annual runoff (q);
specific river runoff exceeded for 95% of the observation period (q95; this is a well-known
low flow index that is used worldwide for the regionalisation procedure and can be esti-
mated even from a relatively short time series of daily runoffs [43]); and the young water
fraction (Fyw proposed by [42]; this is considered the percentage proportion of catchment
outflow younger than approximately 2–3 months and was estimated from the amplitudes
of seasonal cycles of stable water isotopes in precipitation and stream flow that had been
already calculated in [7]).

It should be noted that 4 descriptors (P, q, q95, Fyw) were obtained by processing
daily precipitation (42 rain gauges homogeneously distributed over the study area for
P), discharges (for both q and q95), and water isotopes time series (for Fyw) lasting over
the same time period. Moreover, flow length (F) was derived from a 5 × 5 m gridded
digital terrain model created by the digitalisation and linear interpolation of contour lines
represented in the regional topography map at a scale of 1:5000.
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Table 2. The 9 catchment characteristics included in the analysis. For further details on the catchment
characteristics from a single catchment, see Table S1 in Supplementary Materials.

Acronym Variable Units Minimum Mean Maximum

A Catchment area km2 193 696 1303

Hmin Altitude of stream gauge m 43 171 421

Hmax Maximum altitude m 1158 1784 2165

Hmean Mean altitude m 526 754 944

P Precipitation mm 924 1090 1304

F Flow length km 20.9 55.5 85.2

q Specific mean annual runoff L s−1 km−2 2.2 15.0 36.3

q95 Specific runoff exceeded for
95% of the time L s−1 km−2 0.0 1.0 1.7

Fyw Young water fraction % 9.3 13.7 22.9

4. Results
4.1. Stationary Behaviour of Isotopic Data Series

Table 3 summarises the results from the three statistical tests (Doornik–Hansen for
multivariate normality, Breusch–Pagan for homoscedasticity, and Durbin–Watson for auto-
correlation) used for assessing the compliance with the stationary assumption. Isotopic
series from rivers were those mainly affected by problems of non-normal behaviour (rivers
“5,6,9”) and autocorrelation at a lag of 1 (rivers “1,4,6,7”). The latter were positive (we
recall here that values closer to 0 identify positive autocorrelation phenomena) and more
intense in the case of rivers “4,6”. Moreover, the Breusch–Pagan test suggested residual
homoscedasticity for river “8”. By considering the plots of standardised residuals (see
Figure S1 in Supplementary Materials), the presence of outliers was further confirmed
for rivers “5,6,9” (river “5”, 3 outliers; river “6”, 4 outliers; river “9”, 1 outlier) as well as
the increase of variance of standardised residuals along estimates for river “1” (i.e., het-
eroscedasticity). Autocorrelation functions carried on standardised residuals (see Figure S2
in Supplementary Materials) allowed for demonstrating the presence of serial correlations,
although with different lag lengths (river “1”, 2 lags; river “4”, 2 lags; river “6”, 3 lags; river
“7”, 2 lags).

4.2. Slopes and Intercepts

The δ18O–δ2H relationships are summarised in in Supplementary Materials containing
slopes (a; see Table S2), intercepts (b; see Table S3), standard deviation of the estimates (c;
see Table S4), standard deviations of the estimates and coefficient of determinations (d: see
Table S5) coefficient of determinations R2. By viewing all the results reported in the form of
heat maps (see Figure S3 in Supplementary Materials), the substantial invariance of slopes
(from 6.9 to 13.1) and intercepts (from 7.2 to 8.4) from rain gauges located at lower altitudes
(a, b, c), with high performance of the regression (R2 always close to 0.99) was noticed.
These results are in agreement with the GMWL (we recall that this line is characterised
by slope and intercept equal to 8.0 and 10.0, respectively; see Figure S4 in Supplementary
Materials) with no evidence of outliers. When the two weighting approaches were taken
into account, no changes among the unweighted values of slope and intercept were found
with the exception of intercepts in the rain gauge “a“ (intercepts remarkably lower in the
case of weighting procedures in the order of +4.0).
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Table 3. Results from the three statistical tests aimed at verifying the compliance with the stationary
assumption, namely: Doornik–Hansen (multivariate normality), Breusch–Pagan (homoscedasticity),
and Durbin–Watson (autocorrelation). * Null hypotheses rejected as p < 0.01.

Location Type Code Doornik–Hansen Breusch–Pagan Durbin–Watson

Parma Precipitation a 1.81 0.17 1.57

Lodesana Precipitation b 1.54 2.40 3.65 *

Langhirano Precipitation c 1.45 0.76 1.43

Berceto Precipitation d 3.83 0.46 0.84

Trebbia Surface water 1 5.44 7.84 * 1.07 *

Nure Surface water 2 1.50 0.36 1.41

Taro Surface water 3 3.23 0.09 1.31

Enza Surface water 4 1.94 0.90 0.90 *

Secchia Surface water 5 10.30 * 0.19 1.21

Panaro Surface water 6 8.98 * 0.86 0.69 *

Reno Surface water 7 5.89 0.15 1.02 *

Lamone Surface water 8 7.58 6.95 * 1.44

Savio Surface water 9 41.42 * 0.00 2.30

Trebbia Groundwater from wells A 1.30 1.14 2.05

Taro Groundwater from wells B 3.67 0.18 2.28

Enza Groundwater from wells C 8.21 3.74 2.42

Secchia Groundwater from wells D 6.15 0.41 1.41

Pietra di
Bismantova Groundwater from springs α 7.98 2.61 2.17

Montecagno Groundwater from springs β 7.76 0.37 1.21

With reference to the rain gauge “d“, i.e., that located near the main watershed
divide, the R approach provided remarkably higher values of both slope (8.1) and intercept
(11.5) than those obtained with the other regression approach (we recall that all values of
intercepts from “d” were negatives). It must be highlighted that the standard deviations
of the estimates are slightly higher than those obtained with the other regressions (see
Table S2 in Supplementary Materials).

By considering the surface water, the RMA and MA approaches almost provided
slightly higher values of slopes and intercepts (up to 13.0 and 55.2, respectively, in the case
of river “5”). In the case of rivers “1,2,3,4,7,8”, values of slopes are in the range of those
obtained by weighting procedures. On the contrary, intercepts showed a larger variability
among the regression methods investigated. It should be highlighted that in the case of
rivers “5,6,9” the values of slopes remarkably varied as well, in particular if MA and R
were used. As in the case of the abovementioned rain gauge “d”, the δ18O–δ2H alignments
from “5,6,9” were characterised by the lowest values of R2 and the larger values of standard
deviations of the estimates (see Table S4 in Supplementary Materials).

It must be noted that the discrepancies reported for these points (i.e., “5,6,9”) af-
fected water with the presence of several outliers and/or serial correlations of residuals
(see Figures S2 and S3 in Supplementary Materials and Section 4.1), which violated the
stationary assumption.

Akin to the cases of rain gauges and rivers, RMA and MA approaches carried out on
groundwater from wells and springs were characterised by larger values of both slopes and
intercepts than in the case of OLS. With the exception of groundwater from “C” and “D”,
the R and PW approaches induced larger variations in both slopes and intercepts, which
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were particularly marked in the case of groundwater from β (i.e., water whose δ18O–δ2H
alignment was characterised by low values of R2 and large standard deviations of the
estimates, see Table S2 in Supplementary Materials).

In Table 4, the matrix reporting correlation coefficients between pairs of slopes indi-
cated that the largest degree of association was found (p < 0.01) between OLS–PW and W–B.
High values of correlation (with slightly lower degree of association but still p < 0.01) also
characterised the following relations: OLS–W, OLS–RMA, OLS–B, RMA–PW, RMA–MA,
and PW–W. A significant degree of association (p < 0.01) was also found for PW–B. It should
be highlighted that in several cases regarding R and MA, the degree of associations was
very low and, in some cases, even negative (i.e., an increase in the value of slope obtained
with a regression corresponds to a decrease in the series obtained with RMA).

Table 4. Correlation matrix reporting associations among the slopes from different regression ap-
proaches considered in this study (namely: OLS, RMA, MA, R, W, B). Progressively darker green
colour is associated with a higher correlation coefficient. * Significant as p < 0.01.

OLS RMA MA R PW W
RMA 0.86 *
MA 0.35 0.77 *

R 0.50 0.29 −0.06
PW 0.99 * 0.87 * 0.38 0.53
W 0.87 * 0.29 −0.54 0.39 0.79 *
B 0.84 * 0.31 −0.47 0.27 0.74 * 0.97 *

By considering the intercepts (Table 5), the degree of associations already highlighted
for slopes was further confirmed with the exception of OLS–W and OLS–B (here not
significant as p > 0.01). It should be noted that almost all correlations were slightly lower
than the corresponding ones from the slopes.

Table 5. Correlation matrix reporting associations among the intercepts from different regression
approaches considered in this study (namely: OLS, RMA, MA, R, W, B). Progressively darker green
colour is associated with a higher correlation coefficient. * Significant as p < 0.01.

OLS RMA MA R PW W
RMA 0.84 *
MA 0.27 0.74

R 0.44 0.23 −0.13
PW 0.94 * 0.83 * 0.31 0.46
W 0.59 0.60 −0.02 0.62 0.71 *
B 0.61 0.63 −0.01 0.63 * 0.71 * 0.98 *

The hierarchic cluster analysis (see Figure S5 in Supplementary Materials) among
the slope series from the several regression approaches (reported as different branches
composing the dendrogram) demonstrated that MA was associated with none of the other
regression methods, while two main group of pairs were clearly separated: the first is
represented by OLS–PW while the second by W–B. The aforementioned first and second
group were associated with each other while longer branches further linked them to R
and RMA.

With reference to intercepts, the dendrogram confirmed the nonassociation of MA
with the other regression approaches. Moreover, the two closest series were still those of
OLS and PW, which were in turn associated to W. Contrary to the case of slopes, B series
was strictly associated to RMA.
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4.3. Comparison between the Differences in the Slopes and Intercepts with Catchment
Characteristics and Statistics

By taking into account only δ18O–δ2H regressions from surface water, the Pearson
rank correlation matrix (we recall that Pearson assesses linear relationships) comparing
differences in slopes with catchment characteristics (see Table 6) did not provide significant
(p < 0.01) correlations. If the Spearman rank correlation matrix (i.e., assessment of nonlinear
relationships) was considered, we found positive and significant (p < 0.01) correlations
with Fyw (SlopeOLS–RMA and SlopeOLS–MA) while negative ones with Hmin (SlopeOLS–W,
SlopeOLS–B).

Table 6. Matrix of the Pearson (in grey) and Spearman (in green) rank correlation (values as r and rs,
respectively; r value evidenced in grey while rs in green) between the differences in the slopes and
the selected catchment characteristics considered for the 9 rivers. Relationship between differences in
the slopes and coefficient of determination R2 from δ18O–δ2H linear regressions are also reported.
R2 values from regressions were calculated starting from signed values of differences in slopes.
* Significant as p < 0.01.

Descriptor OLS–RMA OLS–MA OLS–R OLS–PW OLS–W OLS–B
Hmin (m asl) 0.03 −0.03 0.05 −0.03 0.37 0.57 0.00 −0.01 −0.41 −0.61 * −0.40 −0.65 *

A (kmq) −0.19 −0.12 −0.22 −0.12 −0.02 −0.01 −0.04 −0.12 0.35 0.15 0.56 0.32
Hmax (m asl) −0.41 −0.42 −0.35 −0.42 0.04 −0.01 −0.02 −0.12 0.08 0.12 0.313 0.05
Hmean (m asl) −0.05 −0.28 −0.02 −0.28 0.38 0.28 −0.09 −0.18 −0.14 −0.19 −0.10 −0.19
q (Ls−1/km2) −0.57 −0.30 −0.57 −0.31 0.05 0.11 0.04 0.05 0.18 −0.05 0.12 −0.03
q95(Ls−1/km2) −0.14 −0.40 −0.10 −0.40 0.24 0.05 −0.21 −0.29 −0.04 −0.10 0.00 −0.04

P (mm) 0.09 0.01 0.08 0.01 0.00 −0.01 0.00 0.01 −0.15 −0.11 −0.14 −0.02
F (km) −0.11 −0.05 −0.13 −0.05 −0.23 −0.25 −0.01 −0.02 0.26 0.34 0.42 0.56

Fyw (%) 0.41 0.70 * 0.32 0.70 * −0.09 −0.10 0.00 0.03 0.00 0.00 0.00 0.01
R2 0.98 * 0.98 * 0.96 * 0.96 * 0.01 0.02 0.10 0.18 −0.46 −0.03 −0.32 −0.06

δ18O range 0.16 0.45 0.13 0.46 −0.38 −0.27 −0.04 0.00 0.05 0.29 0.15 0.19
δ2H range 0.00 0.03 −0.26 0.03 0.25 −0.28 −0.34 −0.34 0.25 0.46 0.36 0.45

n◦of samples 0.04 0.03 0.04 0.03 0.17 0.12 −0.35 −0.27 −0.03 0.00 −0.03 −0.01

In the case of the Pearson rank correlation matrix applied to differences in intercepts,
we did not find significant correlations (see Table 7). On the contrary, and as in the case of
slopes, significant (p < 0.01) nonlinear relationships were found for Fyw (SlopeOLS–RMA and
SlopeOLS–MA) and Hmin (negative correlation for SlopeOLS–B).

Table 7. Matrix of the Pearson (in grey) and Spearman (in green) rank correlation (values as r and rs,
respectively; r value evidenced in grey while rs in green) between the differences in the intercepts and
the selected catchment characteristics considered for the 9 rivers. Relationship between differences in
the slopes and coefficient of determination R2 from δ18O–δ2H linear regressions are also reported.
R2 values from regressions were calculated starting from signed values of differences in intercepts.
* Significant as p < 0.01.

Descriptor OLS–RMA OLS–MA OLS–R OLS–PW OLS–W OLS–B
Hmin (m asl) 0.04 −0.03 0.05 −0.03 0.36 0.56 0.00 −0.01 −0.40 −0.53 −0.48 −0.62 *

A (kmq) −0.19 −0.12 −0.22 −0.12 −0.02 −0.01 −0.04 −0.07 0.35 0.14 0.42 0.28
Hmax (m asl) −0.38 −0.42 −0.35 −0.42 0.04 −0.01 −0.02 −0.11 0.10 0.16 0.04 0.06
Hmean (m asl) −0.04 −0.28 −0.02 −0.28 0.36 0.28 −0.08 −0.20 −0.12 −0.14 −0.18 −0.18
q (Ls−1/km2) −0.53 −0.30 −0.56 −0.30 0.05 0.11 0.04 0.06 0.20 −0.05 0.10 −0.03
q95(Ls−1/km2) −0.12 −0.40 −0.08 −0.40 0.24 0.05 −0.20 −0.28 −0.02 −0.06 −0.05 −0.03

P (mm) 0.10 0.01 0.09 0.01 0.00 −0.01 0.00 0.01 −0.13 −0.12 −0.08 −0.02
F (km) −0.32 −0.05 −0.12 −0.05 −0.22 −0.25 −0.01 0.00 0.27 0.30 0.46 0.53

Fyw (%) 0.36 0.70 * 0.30 0.70 * −0.09 −0.10 0.00 0.01 0.01 0.00 0.00 0.00
R2 0.98 * 0.98 * 0.96 * 0.96 * 0.01 0.00 0.02 0.15 −0.57 −0.12 −0.67 * −0.21

δ18O range 0.13 0.45 0.12 0.45 −0.41 −0.27 −0.04 0.01 0.03 0.27 0.14 0.18
δ2H range 0.00 0.03 0.00 0.03 −0.30 −0.28 −0.34 −0.23 0.22 0.45 0.34 0.46

n◦of samples 0.04 0.03 0.04 0.03 0.15 0.12 0.31 0.27 0.03 0.00 0.03 0.01
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In all cases, the largest statistical performance (again significant as p < 0.01) was found
for coefficient of determination R2 from δ18O–δ2H linear regressions (SlopeOLS–RMA and
SlopeOLS–MA; InterceptOLS–RMA and InterceptOLS–MA).

5. Discussion

We did not find significant discrepancies in the slopes and intercepts computed by
the different regression methods in the case of precipitation data. On the contrary, marked
variations were detected in the case of river water and groundwater (both from springs
and wells in lowland aquifers) obtained using specific methods. Among others, such
discrepancies were somehow reduced in the case of OLS, RMA, and PW. Because of
different values of river and spring discharges and the corresponding changes in isotopic
content of water during the year, weighting procedures (W, B) were characterised by
diverse values of slopes and intercepts rather than the aforementioned OLS, RMA, and PW.
Moreover, and as highlighted by both heat maps (Figure S3 in Supplementary Materials)
and correlation matrices (Tables 4 and 5) and dendrograms (Figure S5 in Supplementary
Materials), slopes and intercepts from the MA and R approaches were not comparable to
others (nonsignificant statistical associations). Regardless of water type, the aforementioned
discrepancies were promoted when δ18O–δ2H regressions were characterised by weak
statistical performances (low values of R2 and larger values of standard deviations of
the estimates). With reference to rivers, the weak statistical performances were linked to
the presence of outliers and/or serial correlation of the residuals violating the stationary
assumption of OLS, MA, and RMA approaches.

The investigation carried out on the data solely from rivers highlighted that the
magnitude of the differences in the slopes and intercepts was related in all cases (with the
exception of R and PW) to the coefficient of determination R2 characterising δ18O–δ2H
linear regressions. The largest values of Pearson coefficients (see Tables 6 and 7) led us to
consider R2 as the main causal factor for such differences in slopes and intercepts.

In particular, the larger the correlations between δ18O and δ2H, the smaller the differ-
ences among slopes and intercepts detected by RMA, MA, W, and B within the specific
sampling point (river, well, or spring). This is in agreement with the results reported by [15]
and corroborated the hypothesis that statistical performance of the regression was the
main driver of these slope and intercept variations. In any case, despite finding highly
statistical significance with R2 in our investigated dataset, no relations between differences
of slopes (and intercepts) and the ranges in δ18O (and δ2H) along with the number of
samples composing the dataset were noticed, thus indicating that extreme values of δ18O
(and δ2H) were not significant causal factors.

With reference to RMA and MA, the Spearman rank correlation matrices involving dif-
ferences in slopes and intercepts and catchment descriptors allowed us to find a significant
nonlinear association with Fyw (we recall here that Fyw is the percentage of water younger
than 2–3 months). In both cases (RMA and MA) the association (reported also as plots in
Figure 2) indicated that the magnitude of the differences in the slopes and in the intercepts
decreased along with the quota of young water.

This means that rivers showing low values of Fyw are likely to be more affected by
differences in slopes and intercepts computed by different regression approaches. By
examining the plots reported in Figure 2, it can be evidenced that nonlinearity is driven
by two catchments (namely, the Secchia River “5” and Panaro River “6”). As already
anticipated in Section 2, these two rivers (“5,6”) were the only ones characterised by nival–
pluvial discharges due to the melting of the snow cover in the upper part of the catchments
during the spring months. Moreover, [7] stated that there were evidences of sublimation
in several water samples collected in rivers “5,6” from January 2017 to April 2017. This
was further confirmed by the remarkable number of snowfall events that occurred between
December 2013 and April 2014 over the highest part of the catchments “5,6”. Such events
have allowed the consequent snowpack development alternating with partial snowmelt
for a snow water equivalent higher than 600 mm [21].
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for OLS–RMA and OLS–MA. Values of differences in slopes and intercepts (y-axes) are reported in
modulus form. Codes for rivers (from 1 to 9) are also reported (for further details on river codes,
see Table 1).

There, we recall that sublimation occurring during sunny days can modify the former
isotopic composition of the superficial snow layers, allowing the release of a vapour
phase from the solid skeleton to the atmosphere. In this case, the final snow cover does not
preserve the isotopic composition of the original snowfall from which it was derived [44,45],
a fact that also led differences in slopes and intercepts from δ18O–δ2H regressions to be
enhanced. In detail, sublimation acting on a snow cover can lead to an enrichment of
heaviest isotopes (such as 18O and 2H) within the solid skeleton and can induce a similar
δ18O–δ2H pattern of that charactering the residual liquid subjected to evaporation (slope
decrease of the δ18O–δ2H alignments for snowpack samples if compared to the water
meteoric line (see for field and experimental studies: [46,47])). In particular, the slope
decrease can be much more intense if the only late-season snowpack samples are considered
(a value of 3.7 was found by [48]).

In case the two rivers “5,6” are removed from the analysis, it is still possible to confirm
such alignments, although linear, between y Fyw and differences in slope and intercept pairs.
In this sense, such relations, still identifying an inverse association between differences
in the slopes (and in the intercepts) and quotas of young water, may also be related to
other hydrological processes taking place at the catchment scale. As already pointed
out by [7], by checking both slopes (river water showed slightly lower values than those
characterising rainwater; see Figure S6 in Supplementary Materials) and intercepts (that
were negative compared to those from rainwater), all the river water considered underwent
evaporation/evapotranspiration processes prior to their infiltration towards the aquifer.

Albeit to a lesser extent, these variations also affected groundwater from wells (which
were also fed by streambed dispersion and therefore by water isotopes already modified
in the river water; see [11] and low-yield springs (these potentially characterised by pre-
infiltrative modification as slopes from δ18O–δ2H alignments were slightly lower than those
obtained from precipitation water; see Figure S7 in Supplementary Materials)). On the
contrary, the nonvariability of slopes and intercepts observed in the different δ18O–δ2H
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alignments from precipitation was somehow expected, as these waters were unlikely to be
affected by evaporative/sublimation processes once they had entered the rain gauges.

With reference to the effective role of young water fraction Fyw in influencing the
differences in intercepts and slopes, we believe that further efforts have to be made for such
catchments from the hilly part of the northern Italian Apennines and dominated by higher
quotas of young water (i.e., Fyw > 25%; not analysed in this study for lack of isotopic data).
The latter are characterised by intermittent discharge and wide outcrops of low permeable
soils and bedrocks (prevailing clayey and marls materials; GC and GM in Figure 1). Further
investigations should be isotopic-based in order to verify also the role of pre-infiltrative
evaporation in isotopic deviation and, above all, in the change of slopes and intercepts.

Following [7], these processes were likely to be promoted in the clay-rich bedrock,
where water molecules composing the soil moisture were slowed in percolation and thus
kinetic fractionation processes were enhanced.

However, we can provide some preliminary recommendations for use of the different
regression approaches for the four water types (precipitation, surface water, groundwater
from wells, and low-yield springs) from the northern Italian Apennines:

(i) In the case of δ18O–δ2H alignments from precipitation, and as no remarkable discrep-
ancies were detected among the several investigated methods, the OLS approach
should be preferred.

(ii) For precipitation and surface water, slopes and intercepts from the two weighting
procedures W and B were similar. Moreover, there was no evidence of remarkable
changes among results obtained from such weighting procedures with those from
unweighted OLS. The latter confirms the convenience of using the OLS approach
even if, during the year, rainfall or discharge amounts (and isotopic content too) are
different between the seasons.

(iii) For surface water and groundwater, the MA and R approaches should not be used
in any case as they seem to provide unrealistic values for both slopes and intercepts.
The reason has to be searched in the fact that these two approaches are more sensitive
to the statistical performance of the regressions (i.e., standard deviations), especially
if outliers are present. MA demonstrated to be more sensitive to the statistical perfor-
mance of the regressions (i.e., standard deviations), especially if outliers are present.
Although the R approach was selected to verify its behaviour in the case of outliers, it
did not induce improvements in standardised residuals. Moreover, it was also demon-
strated that kinetic fractionation processes acting on these water types lead to increase
the differences in slopes and intercepts (see, for instance, relationships between differ-
ences in intercepts and slopes with young water fraction Fyw). Slopes and intercepts
from OLS and PW were the closest, with lower standard deviations sometimes asso-
ciated to PW regressions. In addition, and with reference to the surface water, PW
results were not affected by the kinetic fractionation processes (see Tables 6 and 7).

(iv) Surface water may be affected by nonstationary processes induced by both nonmul-
tivariate normality and serial correlations of the residuals. Thus, prior to carrying
out OLS regression on δ18O–δ2H data from surface water (and groundwater), the
presences of outliers, heteroscedasticity, and autocorrelation must be carefully de-
tected by means of both conventional statistical tests and inspections of standardised
residuals. In the case of outliers, their importance on the whole data series composing
the regression should be evaluated (as an instance, in the case of δ18O–δ2H pairs
from surface water collected during the late summer through the beginning of the
autumn period, the strong reduction in discharges may induce their removal from the
dataset prior to carrying out the regression). In the event of dealing with time series of
stable isotopes affected by autocorrelation, we believe it is convenient to use the PW
approach, which, in our case, has proven to solve the serial correlations of residuals.
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6. Conclusions

We presented the comparison of five different regression approaches applied to δ18O–
δ2H data from four different water types collected in the northern Italian Apennines. We
found that all the tested approaches converged towards similar values of slopes and inter-
cepts for only stable water isotopes from precipitation. Conversely, differences in slopes and
intercepts from surface water and groundwater (collected from wells and low-yield springs)
were often significant and related to the robustness of the regressions (i.e., standard devia-
tions of the estimates) and their sensitiveness to outliers and autocorrelation. Moreover, and
with reference to surface water, we found evidence of a relationship between young water
fraction and the magnitudes in differences of slopes and intercepts, suggesting the control
of kinetic fractionation processes (mainly related to sublimation acting on snow cover
and, secondary, to active pre-infiltrative evaporation and evapotranspiration processes)
on such discrepancies. These results allowed us to provide some recommendations for
hydrological and hydrogeological studies involving δ18O–δ2H from the abovementioned
water types collected in the northern Italian Apennines. Firstly, as no discrepancies were
noticed between slopes and intercepts from all the methods applied to precipitation, the
OLS approach is preferred. Secondly, and with reference to the other water types (surface
water and groundwater from wells and springs), we warmly suggest carrying out conven-
tional statistical tests coupled with inspection of standardised residuals for a preliminary
check on the presence of outliers and autocorrelation phenomena. In the case of managing
outliers, the MA and R approaches should be avoided as they are more sensitive to the
statistical performance of the regressions and often provide unrealistic values of both slopes
and intercepts. Thirdly, for surface water and groundwater, the OLS and PW approaches
still showed the highest degree of robustness and produced the closest values of slopes and
intercepts, thus resulting as the methods preferable for δ18O–δ2H regressions. PW would
be more reliable in the presence of serial correlations of the residuals (which, in our case,
often affected surface water). In the case of managing outliers, the possibility of removing
them will have to be considered (as an example in the case of δ18O–δ2H pairs from marked
low-flow periods).

Lastly, despite the presence of marked differences in the amounts of rainfall and their
isotopic contents during the year, the convenience of using weighing approaches before
applying OLS was not found.
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determinations from δ18O–δ2H regressions, Figure S1: Plots of standardised residuals for surface
water affected by nonstationary processes, Figure S2: Autocorrelation functions of standardised
residuals for surface water affected by serial correlations, Figure S3: Heat maps reporting slopes and
intercepts values, Figure S4: δ18O–δ2H pairs from rain gauges, Figure S5: Dendrogram for slopes
and intercepts series, Figure S6: δ18O–δ2H pairs from surface water, Figure S7: δ18O–δ2H pairs
from groundwater.
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