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Abstract: A phenomenon causing instability of soil structure and associated hydraulic properties in
recently tilled soils is aggregate fragmentation induced by wetting and drying cycles. We analyzed
data from three experiments in Puerto Rico, the UK and China measuring fragmentation and resulting
evolution of aggregate size distributions during successive wetting and drying cycles in heavy
textured soils. Aggregate distributions were represented as the cumulative fraction F of aggregates
passing through successively larger sieve sizes X. To a good approximation, all distributions exhibited
similarity in that the aggregate diameter X(F) corresponding to F in a given test distribution was
always a characteristic multiple α of X(F) in a fixed reference distribution, where α for a distribution
was calculated as its mean weight aggregate diameter (MWD) divided by the MWD of the reference
distribution. In most cases, α for a given soil varied inversely with the square of the number of
wetting and drying cycles. For different soils of similar initial aggregate sizes, α for a given wet–dry
cycle decreased with increasing activity coefficient, reflecting the enhancing effect of soil shrink–swell
potential on fragmentation. Results highlight usefulness of the van Bavel mean weight diameter as a
natural scaling parameter for characterizing aggregate distributions.

Keywords: soil tilth; soil hydrology; soil scaling phenomena; van Bavel mean weight diameter;
Atterberg limits; activity coefficient

1. Introduction

Tillage of agricultural soils produces a loose, unstable structure that gradually settles
back to a more stable state, resulting in highly transient soil mechanical and hydraulic
properties [1,2]. Common observation shows that the re-settlement process is largely
determined by soil wetting and drying history following tillage [2–5]. Modern emphasis
on precision soil management requires a better understanding of the dynamics of the
re-settlement process and its effects on soil mechanical and hydraulic properties.

A major cause of structural instability in tilled soils appears to be tensile failure
of soil aggregates, caused by intra-aggregate air compression by infiltrating water [6,7],
and differential soil swelling across the advancing wetting front [4,8]. Another cause
is generalized shear failure or “slumping” of moisture-weakened soil aggregates [3], or
localized shearing or “sintering” at inter-aggregate contact points induced by capillary
forces [5]. Both tensile and shear failure modes are favored by the fact that aggregates in
loose, newly tilled soil enter into contact with neighboring aggregates only at a few points,
as opposed to untilled soils, where a given soil volume element is in contact with adjacent
soil over its entire boundary [4]. The low degree of confinement facilitates aggregate
swelling and shear deformation, transforms inter-aggregate contact forces into intense
deviatoric stresses [3,5], and allows formation of tensile stresses in the material between
opposite contact points [9].
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The focus of this paper is on aggregate tensile failure or “fragmentation” resulting from
wetting and drying cycles. Studies have indicated that such fragmentation increases with
decreasing antecedent moisture content [4,10] and also with higher wetting rates [3,11–13].
The fragmentation effect seems to be most notorious in soils with high shrink–swell po-
tential [2,4]. Fragmentation is typically not completed in a single wetting event, but rather
increases cumulatively with the number of successive wetting and drying cycles [14,15]. A
plausible explanation is that aggregate fragmentation involves growth of crack surfaces, an
extensive process requiring external mechanical energy input approximately proportional
to amount of crack surface area produced [16,17]. In a given wetting event, only a transient,
finite amount of available energy for fracture, roughly proportional to the hydraulic poten-
tial gradient across the wetting front, is delivered to a given point in the soil as the wetting
front passes by, so that only a finite amount of crack growth and associated aggregate
disintegration can occur at that point. Once the wetting front has passed by, the sharp
hydraulic gradient necessary for differential swelling leading to fracture no longer exists,
so that further aggregate disintegration must wait until the soil has dried and the next
wetting event occurs.

Our study examined three experiments describing fragmentation of soil aggregates
under successive wetting and drying cycles. The first experiment was our own study
evaluating breakdown of large (10 cm diameter) soil clods from 11 heavy textured soils
of Puerto Rico (PR) during a sequence of four wetting and drying cycles. The second
experiment, performed by Shiel et al. [14] on whole-soil samples taken from the surface of
a heavy textured pello-alluvial gley soil from Great Britain (UK), evaluated the evolution
of aggregate size distributions during a sequence of eight wetting and drying cycles. The
third study, by Xu et al. [15], evaluated the evolution of aggregate size distributions during
ten wetting and drying cycles parting from a sieved surface sample of a heavy textured
yellow-brown earth from the People’s Republic of China (PRC). Our goal was to investigate
patterns and possible similarities in the shapes of the aggregate distributions and in the
evolution of these distributions as a function of number of wetting and drying cycles.

2. Materials and Methods
2.1. Soils Studied

Given that results for the study in Puerto Rico have not been published elsewhere,
detailed information is given below regarding soil characterization and aggregate analysis
methodology. Analogous information for the Shiel et al. [14] and Xu et al. [15] experiments
is only summarized, since details can be found in their respective publications.

2.1.1. Puerto Rico Study
Soil Sampling and Determination of General Soil Chemical and Physical Properties

Undisturbed soil blocks were cut with a shovel from the surface horizon (0–15 cm)
of 11 heavy textured soils in Puerto Rico. The soils, described in Table 1, varied in clay
mineralogy from predominantly oxidic to smectitic. The soils had remained untilled for
several years prior to sampling. The soil blocks were trimmed by hand leaving roughly
spherical clods of diameter slightly less than 100 mm, which passed through a 100 mm
sieve but were retained on a 50 mm sieve.

Bulk density of the undisturbed soil cores was determined by taking soil core samples
10 cm in diameter and 10 cm deep at the same location as the soil clods used in the
fragmentation study. Texture was determined by the pipette method [18], after oxidizing
soil organic matter with sodium hypochlorite [19]. Atterberg limits were determined
on the <0.25 mm fraction of air-dry soil. The lower plastic limit was determined by the
standard ASTM rolling-out method [20], and the liquid limit was measured using the British
Standard drop cone method [21]. The plasticity index was calculated as the difference
between the liquid and lower plastic limits. The activity coefficient was calculated as the
ratio of plasticity index to percent clay. Soil organic matter was determined using the
Walkley-Black wet combustion method [22].
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The soils studied and their classifications according to the USDA Soil Taxonomy
system are shown in Table 1. Grouped according to soil orders, the set of soils consisted of
three Oxisols, two Ultisols, two Inceptisols, one Mollisol and three Vertisols. Table 2 gives
basic soil data (soil texture, Atterberg limits and bulk density).

Table 1. Classification of soils in Puerto Rico study according to USDA Soil Taxonomy.

Soil Series Classification According to USDA Soil Taxonomy

Coto Very-fine, kaolinitic, isohyperthermic Typic Eutrustox

Catalina Very-fine, ferruginous, isohyperthermic Typic Hapludox

Daguey Very-fine, kaolinitic, isohyperthermic Inceptic Hapludox

Humatas Very-fine, parasesquic, isohyperthermic Typic Haplohumults

Corozal Very-fine, parasesquic, isohyperthermic Typic Hapludults

Alonso Very-fine, parasesquic, isohyperthermic Oxic Dystrudepts

Múcara Coarse-loamy, vermiculitic, isohyperthermic Dystric Eutrudepts

San Antón Fine-loamy, mixed, superactive, isohyperthermic Cumulic Haplustolls

Mabí Very-fine, mixed, active, isohyperthermic Aquic Hapluderts

Fraternidad Fine, smectitic, isohyperthermic Typic Haplusterts

Cartagena Fine, mixed, superactive, isohyperthermic Sodic Haplusterts

Table 2. Basic properties of soils in the Puerto Rico study.

SoilSeries

Soil Particle Size Classes (Percent
by Mass) Bulk

Density(Mg
m−3)

Atterberg Limits
Coefficient
of Activity

Organic
Matter

Content
(Percent)Sand Silt Clay Liquid

Limit
PIasticity

Index

Coto 29 4 67 1.46 49 19 0.28 3.86

Catalina 6 20 74 1.21 66 19 0.25 1.24

Daguey 23 22 55 1.43 62 23 0.42 1.42

Humatas 15 36 50 1.23 49 17 0.33 2.87

Corozal 20 18 61 1.39 58 22 0.35 2.15

Alonso 23 22 55 1.30 58 20 0.36 2.16

Múcara 34 18 48 1.51 55 21 0.44 2.67

San Antón 39 26 34 1.62 40 16 0.47 2.41

Mabí 40 21 39 – 64 32 0.82 2.15

Fraternidad 31 19 50 1.51 62 32 0.64 2.47

Cartagena 24 13 63 1.45 64 31 0.49 2.42

Procedure for Measuring Soil Fragmentation under Wetting and Drying Cycles

Soil clods measuring approximately 10 cm in diameter were placed on a fine mesh
screen overlying a fine gravel layer on perforated plastic trays in a greenhouse, and allowed
to reach air dryness. They were then wetted from above with a fine mist at a water applica-
tion rate of about 7 cm h−1, during a period of about 2 h, ensuring complete saturation of
the soil. Mist-wetting was used to minimize effects of water drop impact energy on soil
fragmentation. Wetting from above, together with a freely draining gravel base under the
clods, promoted one-dimensional wetting with minimal free water accumulation, similar
to what occurs in the tilled layer of soils with deep permeable subsoils.

After wetting, the soil was allowed to air dry, and was then passed through a nest of
sieves with an aperture sequence of 50, 25, 12.5, 6.35, 3.3 and 1.65 mm. The sieves were
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shaken by hand with sufficient vigor to ensure aggregate segregation by size, avoiding
excessive shaking that would cause breakdown of the air-dry aggregates. The mass of
aggregates retained on each sieve size was recorded, and then all fragments were placed on
the trays and subjected to another wetting, drying and sieving cycle. A total of four such
cycles were effected. Measurements were repeated in triplicate for all soils.

2.1.2. Study in the U.K.

The soil studied was sampled near Stamfordham, Northumberland in the UK and
was classified as a pello-alluvial gley soil [14]. Its texture was 61 percent clay, 33 percent
silt and 6 percent sand. Although not classified as a Vertisol, the soil exhibited very high
shrink–swell properties, with a coefficient of linear extensibility of 20 percent, and was
observed in the field to exhibit self-mulching properties characteristic of Vertisols. Four
replicate air-dried 1-kg soil samples, taken from the 3–20-cm-depth layer, were placed on
an absorbent, wet by capillary action, allowed to air dry, and then passed through a sieve
nest with 16, 8, 4, 2, 1, 0.5 and 0.25 mm sieve openings. The fractions on each sieve were
weighed, and the wetting, drying, sieving and weighing cycle was repeated seven more
times for a total of eight cycles.

2.1.3. Study in the PRC

The soil studied was sampled from Gouizhou province in Southern China [15]. It
was classified as a yellow-brown earth, characterized by a shallow regolith transitioning
abruptly to limestone bedrock. Textural composition was 10 percent sand, 47 percent silt,
and 43 percent clay. The clay mineral fraction was dominated by an illite–montmorillonite–
vermiculite complex. The methodology involved crushing the soil so that all passed
through a 10 mm sieve, then subjecting 100 g samples to ten wetting and drying cycles, and
measuring the aggregate masses retained by different sieve sizes after 1, 2, 5 and 10 cycles.
Sieve sizes were 10, 5, 2, 1 0.5 and 0.25 mm.

2.2. Data Representation and Analysis
2.2.1. Cumulative Distributions of Aggregates

The mass fraction of aggregates retained on different sieve sizes after a given wetting
and drying cycle were plotted in cumulative distribution form, as oversize fraction (F(X))
vs. sieve diameter X. Three such hypothetical distribution curves are illustrated in Figure 1,
corresponding to three different aggregate samples passed through a sieve nest with a
maximum sieve size Xmax = 60 mm. The distributions are of two possible types, full or
truncated. Full distributions, illustrated by the blue and orange curves in Figure 1, are those
for which all aggregates are smaller than Xmax. In such cases, the cumulative aggregate
fraction F(X) of the sieved sample span the complete range 1 ≤ F(X) ≤ 0. Truncated
distributions, on the other hand, occur whenever a significant fraction F(Xmax) of the
aggregate sample consists of aggregates larger than the maximum sieve size Xmax. In this
case, only the mass fractions in the range 1 ≤ F(X) ≤ F(Xmax) can be measured by sieving,
with the mass fractions for specific sieve sizes X ≥ Xmax remaining unknown. In the
example of Figure 1, the grey distribution curve is of the truncated type, where a significant
cumulative fraction F(Xmax) ≈ 0.45 of the aggregate sample consists of aggregates larger
than the maximum sieve size Xmax of 60 mm. The distinction between full and truncated
distributions is important, since the experimental aggregate size distributions encountered
in this study were of both types.
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Figure 1. Hypothetical family of similar aggregate distributions conforming to scaling law (1), with
scale factor values of α = 1, 4 and 8, respectively.

2.2.2. Representation of Aggregate Size Distributions as Scale Models of Each Other

To facilitate comparison of experimental aggregate size distributions, we used a scaling
concept to parameterize each curve in terms of a single scale parameter α. The approach
is similar to that used for scaling soil moisture release characteristics [23–26]. The basic
assumption is that all aggregate size distributions form a family of similar distributions,
essentially differing from each other only as if the corresponding aggregate populations
were viewed through lenses of different magnifying power. Mathematically, this can be
expressed by requiring that the aggregate diameter X(F) corresponding to any cumulative
fraction F in a given “test” distribution is a fixed multiple α of the diameter Xo(F) at the
same F in an arbitrarily chosen reference distribution. That is

X(F) = α·Xo(F) (1)

where the scale factor α is assumed constant over the entire interval of F in which the curves
are compared.

In the illustration in Figure 1, the reference distribution (always a full distribution) is
defined by the blue curve. The scale factor α of the reference distribution is arbitrarily set at
unity (α = 1). Based on this reference distribution we can construct a second distribution,
characterized by α = 4, where each aggregate diameter X(F) is obtained by multiplying
Xo(F) in the reference distribution by four. This yields the orange distribution curve in
Figure 1. A third distribution corresponding to α = 8 is obtained by multiplying each
Xo(F) in the reference distribution by eight, yielding the grey curve. Please note that in
this case, the multiplying factor of 8 is so great that it causes many of the X(F) values of
the grey curve to exceed the largest sieve aperture Xmax = 60 mm, resulting in truncation
of the distribution curve at the cumulative fraction F(Xmax) ≈ 0.45. The portion of the
curve for X > Xmax cannot be experimentally measured Only the part of the truncated
distribution corresponding to X < Xmax remains experimentally defined, but nevertheless
it still conforms to scaling law (1). This shows that a set of distributions can be related by
scaling law (1) regardless of whether the distributions are full or truncated.

The values of the scale factors α in a set of similar test distributions are dependent on
the (arbitrary) choice of reference distribution. However, the relative values (i.e., ratios)
of α corresponding to any two distributions are independent of the reference distribution.
This property is sufficient to compare the relative fragmentation behavior of different soils,
which is the main objective of this paper. We will later consider a class of distributions which
can be scaled according to (1) without specifying any particular reference distribution.

A distinguishing characteristic of scaling relation (1) is that division of X(F) into the
scale factor α always returns the reference value Xo(F). This means that for families of
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similar distributions, such as those in Figure 1, transformation of the variables X(F) to X(F)
α

causes all distributions to collapse onto the reference curve (Figure 2).
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Figure 2. Reduction of the family of distributions in Figure 1 to a single distribution of F as a function
of the scaled aggregate diameter X/α.

Equation (1) and Figures 1 and 2 assume an ideal scaling relationship, where the scale
factor α is assumed to be constant for all F. However, in practice, some distortion usually
occurs. That is, when a given test distribution is compared to the designated reference
distribution, the value of α relating X(F) and Xo(F) at one value of F may differ from the
value relating X(F) and Xo(F) at another value of F. In that case, a constant average scale
factor α is assumed, which, multiplied by the reference curve parameter Xo(F) for any
given F, yields an estimate of X(F) accurate to within some acceptable error or “residual”
∆X(F). That is

X(F) = α·Xo(F) + ∆X(F) (2)

where α is constant for all F. This relation reduces to (1) under ideal scaling, where the
error ∆X(F) always vanishes. Dividing the non-ideal scaling approximation (2) by α gives

X(F)
α

= Xo(F) +
∆X(F)

α
(3)

which shows that the scaled distribution function X(F)
α reduces to the reference distribution

plus a distribution of residuals ∆X(F)
α surrounding the reference distribution.

Several methods can be used to estimate the average scale parameter α for a given
distribution. We used an adaptation of the mean weight diameter (MWD), introduced by
Van Bavel [27] as a frequency-weighted average aggregate diameter of a distribution. The
mean weight diameter MWD(F1, F2) corresponding to the cumulative frequency interval
[F1, F2] of a given test distribution is defined as

MWD(F1, F2) ≡
1

(F2 − F1)
·
∫ F2

F1

X(F)dF (4)

where the frequency interval [F1, F2] is equal to [1, F(Xmax)] in the case of truncated distri-
butions and [1, 0] for full distributions. To compare the frequency interval [F1, F2] of the test
distribution to the same frequency interval of the reference distribution, a mean weight
diameter MWDo(F1,F2) for the reference distribution is defined as

MWDo(F1,F2) ≡
1

(F2 − F1)
·
∫ F2

F1

Xo(F)dF (5)
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The mean scale factor α is then defined as the ratio of the two MWD parameters, i.e.,

α ≡ MWD(F1, F2)

MWDo(F1, F2)
=

∫ F2
F1

X(F)dF∫ F2
F1

Xo(F)dF
(6)

In the limiting case of ideal scaling governed by (1), the mean scale factor α reduces to
α. This is easily seen by noting that in the ideal case, Equation (4) becomes

MWD(F1, F2) =
α

(F2 − F1)

∫ F2

F1

Xo(F)dF = α·MWDo(F1, F2) (7)

which, compared to (6), shows that α = α.
The integrals in (4) and (5) were evaluated numerically from sieving data. The integra-

tion interval (F1, F2) was divided into n = 1,2 . . . N finite sub-intervals ∆Fn corresponding
n = 1,2 . . . .N sieve size intervals, and the integrals were approximated as

∫ F2

F1

X(F) dF ≈
N

∑
n=1

X∆Fn ·∆Fn (8)

and ∫ F2

F1

Xo(F) dF ≈
N

∑
n=1

(Xo)∆Fn
)·∆Fn (9)

Here, X∆Fn and (Xo)∆Fn
are the arithmetic means of the X values within the frequency

interval ∆Fn for the test and reference distributions, respectively. The mean X∆Fn for the
interval was calculated as

X∆Fn =
Xn + Xn+1

2
(10)

where Xn+1 and Xn are the sieve sizes bounding the frequency interval ∆Fn above and
below, respectively. Likewise, the mean value (Xo)∆Fn

of the test distribution within the
frequency interval ∆Fn is calculated as

(Xo)∆Fn
=

(Xo)n + (Xo)n+1
2

(11)

2.2.3. Dimensionless Representation of Similarity Relations among Distributions

In the scale model of aggregate size distributions described above (Section 2.2.2),
an arbitrary distribution is chosen from among the set of experimental distributions and
designated as reference distribution. Any other distribution, bounded by a particular
frequency interval (F1, F2), is related to the interval (F1, F2) of the reference distribution
through a scale factor α, This connection to a common reference distribution reduces
comparison of different test distributions to a comparison of the respective scale factors
α, even when the distributions being compared occur over different frequency intervals.
However, the scaling parameter X

α arising in this framework retains dimensions of length
and depends on the choice of reference configuration. From the point of view of generality
and mathematical elegance, a preferable scaling variable is usually one that is dimensionless
and invariant under a change in reference distribution.

A scaling variable X∗(F) with these properties arises in the special case of distributions
with fixed frequency interval (F1, F2), such as full distributions defined over the interval
(1,0). In such cases, a dimensionless parameter X∗(F) may be obtained from the original
scaling variable X

α by dividing the latter into the mean weight diameter MWDo(F1, F2) of
the designated reference distribution, yielding

X∗(F) ≡ X(F)
α·MWDo(F1, F2)

(12)
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Please note that in (12), the reference distribution parameter MWDo(F1, F2) is constant
by virtue of the requirement of constant frequency interval (F1, F2), as opposed to the earlier
case of variably truncated distributions where (F1, F2) and therefore MWDo(F1, F2) vary
across distributions. Since X∗(F) in (12) is simply the original scaling variable X

α divided
by a constant, graphs of F as a function X∗(F) retain the same form as the earlier graphs of
F vs. X

α , such as those in Figure 2, the only difference being one of scale.
The variable X∗(F) is not only dimensionless, but also invariant under a change in

reference distribution. This is seen by combining (12) with the definition of α in (6), showing
that X∗(F) has the dual identity

X∗(F) ≡ X(F)
α·MWDo(F1, F2)

=
X(F)

MWD(F1, F2)
(13)

Both the numerator and denominator of the variable X(F)
MWD(F1,F2)

on the right of (13) are
determined directly from sieving experiments, and are therefore indifferent to the choice of
reference distribution. The mean weight diameter MWD(F1, F2) in the denominator of (13)
assumes the role of a “characteristic length” of the corresponding aggregate distribution,
distinguishing that distribution from its neighbors. It is analogous to the characteristic
structural length λ of similar porous media in the well-known Miller and Miller scaling
theory of capillary phenomena [23].

The dimensionless aggregate diameter X∗(F) ≡ X(F)
MWD(F1,F2)

of a given distribution
does not require specifying a reference distribution, but can be related explicitly to an
arbitrary reference distribution Xo(F) if so desired. This is achieved by substituting the
designated reference distribution Xo(F) into (2), dividing both sides of (2) into MWD(F1, F2)
and combining the result with (6). This gives

X∗(F) = X∗
o (F) + ∆X∗(F) (14)

where X∗(F) ≡ X(F)
MWD(F1,F2)

as before, X∗
o (F) ≡ Xo(F)

MWDo(F1,F2)
is the dimensionless reference

distribution, and ∆X∗(F) ≡ ∆X(F)
MWD(F1,F2)

is the dimensionless “residual” or deviation of
X∗(F) away from X∗

o (F).
Under ideal scaling conditions, ∆X∗(F) vanishes so that ∆X∗(F) and X∗

o (F) coincide,
for all choices of reference distribution. For non-vanishing residuals, (14) shows that a
dimensionless distribution X∗(F) is equivalent to the dimensionless reference distribu-
tion X∗

o (F) plus a distribution of dimensionless residuals ∆X∗(F). The magnitude of the
residuals ∆X∗(F) depends on the degree of non-ideality of the system, and to a certain
extent on the choice of reference distribution. However, (14) imposes that regardless of the
choice of reference distribution, the frequency-weighted sum of residuals ∆X∗(F) must
always vanish. This means that the distribution of residuals will always center around the
designated reference distribution, rather than being displaced systematically to the left or
right of it. To demonstrate this, we write the variables X∗(F), X∗

o (F) and ∆X∗(F) of (14) in
terms of their full definitions, rendering (14) as

X(F)
MWD(F1, F2)

=
Xo(F)

MWDo(F1, F2)
+

∆X(F)
MWD(F1, F2)

(15)

Multiplying both sides of (15) by dF and integrating over the interval (F1, F2) gives

1
MWD(F1,F2)

·
F2∫

F1

X(F)dF

= 1
MWDo(F1,F2)

·
F2∫

F1

Xo(F)dF + 1
MWD(F1,F2)

·
F2∫

F1

∆X(F)dF
(16)
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Substituting the respective definitions (4) and (5) of MWD(F1, F2) and MWDo(F1, F2)
into (16) gives

(F2 − F1) = (F2 − F1) +
1

MWD(F1, F2)
·

F2∫
F1

∆X(F)dF (17)

imposing that

1
MWD(F1, F2)

·
F2∫

F1

∆X(F)dF =

F2∫
F1

∆X∗(F)dF = 0 (18)

In order for condition (18) to be satisfied, the distribution of residuals must have
an equal amount of frequency-weighted positive and negative (or vanishing) residual
values, requiring that a residual distribution must cross over, or coincide with, the reference
distribution, as opposed to existing entirely to the right or left of it.

3. Results
3.1. Experimental Aggregate Size Distributions

The cumulative distributions of F(X) as a function of aggregate diameter X for the
11 different soils in Puerto Rico are shown in Figure 3a–k. Each data point in the curves
represents the mean of three replicate measurements. Standard deviations are represented
by error bars.
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Cumulative distributions for the experiments of Shiel et al. (14) and Xu et al. (15) are
shown in Figures 4 and 5, respectively.

It is evident that the different aggregate size distributions in Figures 3 and 4 include
both full and truncated distributions, whereas in Figure 5, all distributions are full.
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Figure 5. Aggregate size distributions for a yellow brown earth soil from China as a function of the
number (n) of wetting and drying cycles. Graphs are reconstructed from tabular data provided in Xu
et al. [15]. Each data point is the mean of five replications.

3.2. Representation of Aggregate Size Distributions in Terms of the Scaling Parameter X/α

For all three sets of experimental data (PR, UK and PRC), we chose as a common
reference distribution the experimental curve for the first wetting and drying cycle (n = 1)
of the Cartagena soil in the Puerto Rico study (Figure 1). The corresponding reference
scale factor value was set at α = 1. Several reasons lay behind this particular choice of
reference distribution. Firstly, it was an actual experimental distribution, as opposed to
a hypothetical statistical model or the result of some averaging procedure taken over all
experimental data. Secondly, the Cartagena soil, a sodic Vertisol, exhibited the greatest
amount of fragmentation of all Puerto Rico soils, making it a natural reference point for
comparison. Thirdly, the Cartagena aggregate size distribution for n = 1 was very “well
behaved”, in the sense that it was a full (as opposed to truncated) distribution, with the
cumulative fraction F(X) decreasing smoothly and monotonically throughout the entire
experimental sieve size range 0 ≤ X ≤ 50 mm, reaching F(X) = 0 at nearly exactly the upper
experimental sieve size limit X = 50 mm. The latter property avoided the difficulty of
having to extrapolate the experimental curve to estimate its intercept with the X axis. The
reference curve was closely approximated (R2 > 0.99) by the piece-wise analytical function

Xo(P) = 51.74exp(−3.576 P) P < 0.915 (19)

= 19.41 (1 − P) P ≥ 0.915 (20)
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Values of Xo(P) determined analytically with the curve-fitting functions (18) and (19)
were used in the numerical approximation (10) for estimating the mean aggregate diameter
(Xo)∆Fn

corresponding to a given frequency interval ∆Fn of the reference distribution.
Values of the mean scale parameter α obtained for the different soils and numbers of

wetting and drying cycles (n) are listed in Table 3.

Table 3. Scale parameter α for different soils and numbers (n) of wetting and drying cycles.

Soil n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 10

Coto 53.2 13.9 6.02 2.3

Catalina 12.5 2.18 0.617 0.34

Daguey 4.22 1.08 0.5 0.35

Humatas 19.5 7.42 4.38 2.69

Corozal 10.2 2.09 0.62 0.38

Alonso 6.24 2.50 0.92 0.49

Múcara 10.2 2.26 0.83 0.42

San Antón 4.55 1.67 0.65 0.47

Mabí 6.74 1.04 0.46 0.28

Fraternidad 1.1 0.38 0.18 0.16

Cartagena 1 0.298 0.173 0.125

Gley soil (UK) 2.12 0.914 0.4 0.248 0.169 0.141 0.104 0.093

Y.-Br. earth (PRC) 0.178 0.109 0.068 0.044

Normalized distributions constructed by plotting cumulative fractions F(X) against re-
duced aggregate diameters X

α are shown for the three experimental data sets in Figure 6a–c.
It can be noted that the scaled data for all three experiments collapsed reasonably well
around the single Cartagena reference curve, indicated by the orange data points.
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Figure 6. Scaled aggregate size distributions for all soils and numbers of wetting and drying cycles,
obtained by plotting F(X) as a function of X/α. The reference distribution, corresponding to the
Cartagena soil from Puerto Rico after one wetting and drying cycle, is indicated in each graph by the
orange data points.

3.3. Analysis of Factors Influencing the Value of the Scale Parameter α

3.3.1. Variation of α as a Function of Number of Wetting and Drying Cycles

Figure 7 gives log–log plots of the evolution of the scale factor α of the soils in all three
experiments as a function of number n of wetting and drying cycles.
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Figure 7. Log–log plots of scale factor α(n) as a function of number (n) of wetting and drying cycles,
for all soils in the study.

All of the plots were very nearly linear, indicating that the evolution of α could be
approximated by the power law function

α(n) = αonb (21)

where αo is the fitted value of α at n=1, and b is a negative exponent, equal to the slope of
the log–log plots in Figure 7.

Values of αo and b for the different soils, obtained by linear regression of log α(n) vs.
log n, are given in Table 4. The corresponding regression R2 values always exceeded 0.9.

In addition to being approximately linear, the log–log plots for the different soils in
Figure 7 are nearly parallel to each other, showing that the corresponding slope b tended
to remain relatively constant. With the exception of the lower blue curve in Figure 7,
corresponding to the yellow-brown earth soil from PRC, the values of b listed in Table 4
ranged between −1.4 and −2.7, with a mean value of −1.96 (effectively –2) and a coefficient
of variation of 0.22. This allows approximating (21) by the inverse square law

α(n) ∼=
αo

n2 (22)

which states that α(n) varies inversely with the square of the number of wetting and
drying cycles.
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Table 4. Fitted parameters αo and b of Equation (21) listed for different soils.

Soil ¯
αo B

Oto 57.8 −2.2

Catalina 12.8 −2.69

Daguey 4.19 −2.03

Humatas 19.7 −1.41

Corozal 10.4 −2.45

Alonso 7.03 −1.84

Múcara 10.5 −2.30

San Antón 4.73 −1.69

Mabí 6.13 −2.33

Fraternidad 1.06 −1.46

Cartagena 0.94 −1.52

Gley soil (UK) 2.28 −1.57

Y.-Brown earth (PRC) 0.173 −0.59

To examine this idea further, in Figure 8 we plotted values of α(n) estimated with
Equation (22) for all soils and wetting and drying cycles against the corresponding mea-
sured values of α(n) listed in Table 3. The corresponding graph is given by the blue data
points in Figure 8. Superimposed on this curve is the 1:1 line (orange points), which would
be obtained if the predicted α(n) values were equal to actual values. It can be noted that the
values of α(n) predicted by approximation (22) compared well with the 1:1 line for values
of α(n) down to about 0.2, below which Equation (22) tended to systematically predict α(n)
values lower than those observed. Making use of (6), the critical scale value of α = 0.2 can
be converted to an absolute mean weight diameter (MWD(1,0)) by multiplying it times the
mean weight diameter MWDo(1,0) of the Cartagena reference distribution (approximately
15 mm). This gives

MWD(1, 0) = MWDo(1, 0)× α = 15 mm × 0.2 = 3 mm (23)

indicating that the inverse square aggregate size evolution law (22) applied reasonably
well to distributions with MWD(1,0) values of 3 mm or greater, but broke down for smaller
values. At these lower MWD values, much of the sieved material possibly consisted of
primary particles (fine gravel and coarse sand) that no longer broke down under further
wetting and drying cycles, causing erroneous predictions by (22).
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Figure 8. Scale factor α(n) calculated with inverse square law Equation (22) plotted as a function of
measured values of α(n) listed in Table 4. The 1:1 line is indicated by orange data points.
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3.3.2. Variation of α as a Function of Soil Type

In the inverse square law (22) for a given soil, the only soil-dependent parameter
is the scale factor αo, corresponding to α at n = 1. This value will in general depend on
the type of soil and the initial (sampled) aggregate size distribution prior to applying the
first wetting and drying cycle. If the initial aggregate size is constant, as was the case for
the 11 Puerto Rico soils, then the value of αo will only depend on soil type and can be
used as a measure of the relative tendency of different soils to break down under wetting
and drying cycles, with smaller values of αo indicating greater fragmentation tendency.
Following this line of thinking, in Figure 9, we plotted values of αo for the different PR soils
against the corresponding soil activity, a parameter known to correlate positively with soil
shrink–swell behavior. As expected, αo tended to decrease with increasing activity, with
the tendency exhibiting a non-linear character.
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Figure 9. Scale parameter αo for PR soils plotted as a function of soil activity.

3.4. Dimensionless Representation of Similar Aggregate Size Distributions

As described in Section 2.2.3 of the Materials and Methods, given a set of distributions
with constant frequency range (F1, F2), and given an arbitrarily designated reference distri-
bution Xo(F), the dimensionless aggregate size distribution X∗(F) ≡ X(F)

MWD(F1,F2)
is related

to the dimensionless reference distribution X∗
o (F)) ≡ Xo(F)

MWDo(F1,F2)
as

X∗(F) = X∗
o (F) + ∆X∗(F) (24)

where ∆X∗(F) ≡ ∆X
WD(F1,F2)

is the dimensionless distribution of integrally vanishing devia-
tions around X∗

o (F).
To illustrate these concepts, we pooled all the full distributions from the PR, UK and

PRC data sets, with frequency intervals (F1, F2) = (1, 0), and plotted the corresponding
cumulative frequencies F as a function of X∗(F) ≡ X(F)

MWD(1,0) , as shown by the blue data
points in Figure 10. Superimposed on this plot is the distribution of F vs. the dimensionless
parameters X∗

o (F) ≡ Xo(F)
MWDo(1,0) for the Cartagena reference distribution (orange data

points). It can be seen that the distribution of X∗(F) centered quite well around the
dimensionless reference distribution of X∗

o (F), as predicted by theory.
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4. Discussion

The study reported here involved only aggregate size distributions, without address-
ing soil hydraulic properties. Therefore, nothing can be directly concluded from our data
regarding the effects of the scalable aggregate size distributions on soil hydraulic behavior.
However, many studies have indicated close relations between aggregate size distributions
and soil hydraulic properties [28–34], including scaling relationships. Wu et al. [28] mea-
sured aggregate size distributions and water retention curves in loosely packed soils with
widely differing aggregate size distributions. They observed that the shapes of pore-size
distributions inferred from the moisture release curves conformed well to the shapes of the
aggregate size distributions. Nimmo [29] constructed a two-domain (textural and struc-
tural) model of soil water retention, assuming close correspondence between aggregate
size distributions and the distribution of inter-aggregate pore sizes, allowing for variable
packing densities of aggregates. The resulting moisture retention model was in good
agreement with the measured water retention functions. Also noteworthy is the classic
study by Sharma and Uehara [30,31], who observed Miller-type scaling relations between
inter-aggregate water retention and hydraulic conductivity functions obtained in aggregate
populations of different size ranges. The above literature citations are far from exhaustive,
but they illustrate the value of aggregate size distributions as auxiliary data for explaining
soil hydraulic properties encountered in particular situations. Nimmo [29] emphasized
the need for more studies involving both types of measurements. This seems particularly
true for understanding the rapid evolution of soil soil hydraulic properties immediately
following tillage such as observed by Snyder et al. [1] in the plow layer of an Oxisol (Orthic
Ferralsol). A significant observation in that study was the preservation of the scaling
properties of sorptivity and water retention curves, which largely motivated the present
investigation on scaling invariance of evolving aggregate size distributions.

As in the case of soil hydraulic properties, studies on the scaling behavior of aggre-
gate distributions must inevitably deal with deviations from ideal scaling behavior. In
applications of the Miller and Miller capillary theory to scaling of field-measured soil
hydraulic properties, reference functions for water retention and/or hydraulic conductivity
are typically treated as floating variables to be determined statistically by minimizing the
square of residuals [24–26]. Tillotson and Nielsen [35] have cautioned that this runs the risk
of producing mere regression parameters with questionable physical meaning. We there-
fore decided to base all scaling parameters on the physically measurable van Bavel mean
weight diameters (MWD) of the individual distributions, in conjunction with the MWD of
a reference distribution chosen from among the measured distributions of the system.
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