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Abstract: Low-lying coastal communities are often threatened by compound flooding (CF), which can
be determined through the joint occurrence of storm surges, rainfall and river discharge, either suc-
cessively or in close succession. The trivariate distribution can demonstrate the risk of the compound
phenomenon more realistically, rather than considering each contributing factor independently or in
pairwise dependency relations. Recently, the vine copula has been recognized as a highly flexible
approach to constructing a higher-dimensional joint density framework. In these, the parametric
class copula with parametric univariate marginals is often involved. Its incorporation can lead to a
lack of flexibility due to parametric functions that have prior distribution assumptions about their
univariate marginal and/or copula joint density. This study introduces the vine copula approach
in a nonparametric setting by introducing Bernstein and Beta kernel copula density in establishing
trivariate flood dependence. The proposed model was applied to 46 years of flood characteristics
collected on the west coast of Canada. The univariate flood marginal distribution was modelled
using nonparametric kernel density estimation (KDE). The 2D Bernstein estimator and beta kernel
copula estimator were tested independently in capturing pairwise dependencies to establish D-vine
structure in a stage-wise nesting approach in three alternative ways, each by permutating the loca-
tion of the conditioning variable. The best-fitted vine structure was selected using goodness-of-fit
(GOF) test statistics. The performance of the nonparametric vine approach was also compared with
those of vines constructed with a parametric and semiparametric fitting procedure. Investigation
revealed that the D-vine copula constructed using a Bernstein copula with normal KDE marginals
performed well nonparametrically in capturing the dependence of the compound events. Finally,
the derived nonparametric model was used in the estimation of trivariate joint return periods, and
further employed in estimating failure probability statistics.

Keywords: compound flooding; D-vine copula; trivariate joint analysis; Bernstein estimator; beta
kernel estimator; parametric copulas; kernel density estimation; return periods

1. Introduction

Compound events (CE) is a multidimensional phenomenon that can be defined by
the joint probability occurrence of two or more extreme or non-extreme events, which
may not be dangerous or devastating if considered individually [1–4]. However, CE can
have severe consequences if their underlying variables co-occur or are in close succes-
sion. On the global scale, the flooding events in low-lying coastal cities or the risk of
extreme compound phenomena have already been recorded and outlined in the previous
literature [5–7]. Climate change has already triggered a rising coastal water level called
sea level rise (SLR), increasing the frequency and severity of flooding, which threatens
coastal communities worldwide [8–10]. Coastal flooding can be significantly defined and
estimated by combining the driving forces, such as storm surge (oceanographic), rainfall
(or pluvial flooding) and river discharge (or fluvial flooding). These events can be inter-
linked through a common forcing mechanism, such as tropical or extra-tropical cyclones
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(or a low-atmospheric-pressure scenario). Among the different coastal flood drivers, a
storm surge event is often considered a significant flood-driving agent [11]. When com-
bined with rainfall (e.g., [2]) or with high river discharge (e.g., [10]), it can result in a
devastating situation.

Different mathematical or statistical frameworks are often pointed out in the demon-
stration of the compound phenomenon but still can lack a consistent or robust approach.
The traditional statistical evaluation of the CEs is usually a multivariate framework that ob-
serves the number of extreme joint episodes by targeting the most justifiable flood drivers.
For instance, take the studies performed by Coles [12], Coles et al. [13], Svensson and
Jones [14], Cooley et al. [15], Zheng et al. [16] and Zheng et al. [17]. In reality, the validity of
the univariate probability or frequency analysis (and return periods) is questionable. Due
to the multidimensional behaviour, it must demand an efficient framework that can reduce
the hydrologic risk much more efficiently.

In recent studies, copula functions gained more popularity than traditional multivari-
ate models and are recognized as highly flexible tools in the bivariate or multivariate joint
distribution analysis of hydro-meteorological observations [18–22]. In the modelling of CE
or flooding, the adequacy of different parametric class 2D copulas is tested by targeting
different contributing variables, for instance, storm surge (or storm tide) and rainfall, or
storm surge (or storm tide) and river discharge [23–28]. Such incorporations are limited
to bivariate joint cases employing 2D parametric class copulas to observe pairwise joint
dependencies. However, the more realistic and practical flood risk can be obtained by com-
pounding the joint distribution behaviour, including more relevant flood-driving agents
(e.g., storm surge, rainfall, and river discharge) simultaneously instead of their pairwise
dependencies. For instance, tropical cyclones in the coastal region can trigger storm surges,
rainfall and possible high-river-discharge events simultaneously; thus, the complex in-
terplay between them can exacerbate flooding in the coastal zones. Therefore, the risk of
coastal flooding can be analysed much more efficiently by considering the above triplet
variable simultaneously instead of just considering bivariate joint dependency.

The application of the 3D (or any higher dimension) copula in hydro-meteorological
modelling is minimal. Few previous works highlighted, for instance, the asymmetric,
fully nested Archimedean copula [29,30].; the meta-elliptical Student’s t copula [31]; the
Plackett copula [32]; and the entropy copula [33]. All such frameworks have some statistical
constraints and limitations when projected into higher dimensions. For example, the 3D
symmetric Archimedean copula models the dependencies between multiple random vari-
ables by employing single-dependence parameters or generator functions and thus cannot
preserve all pairwise dependencies [32,34]. Besides this, an asymmetric or fully nested
Archimedean (FNA) copula can be much more reliable than a symmetric structure. FNA
can individually approximate each random attribute pair through multiple parametric joint
asymmetric functions [35–37]. The faithful preservation of all the lower-level dependen-
cies among the targeted variables is still challenging based on the FNA structure. This
framework is only effective and practical when two correlation structures are identical or
near and lesser than the third correlation structure and are limited to a positive range [31].
Additionally, when considering more variables, the asymmetric FNA structure permits a
narrow range of mutual dependencies [18]. Therefore, to alleviate all such statistical issues,
the vine or pair-copula construction (PCC) approach is highly flexible and is a much more
practical way of constructing any higher-dimensional joint dependence by mixing multiple
2D (bivariate) copulas in a stage-wise hierarchical nesting procedure or conditional mixing
procedure [38–41].

In CE modelling, Bevacqua et al. [42] introduced a 3D vine copula for evaluating flooding
events in Ravenna, Italy. In a recent study, Jane et al. [43] introduced the vine framework in the
trivariate joint analysis of rainfall, ocean-side water-level and groundwater-level observations
in South Florida, USA. Besides the above two, other studies—for instance, Graler et al. [41],
Saghafian and Mehdikhani [44], Tosunoglu et al., [45], Latif and Mustafa [46]—often incor-
porated a vine copula under parametric distribution settings, thereby fitting the parametric-
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class 2D copulas with parametric marginal pdfs in the parametric fitting procedure. In
some previous literature, such as Silverman [47], Moon and Lall [48], Sharma et al. [49],
Kim et al. [50] and Karmakar and Simonovic [51], the performance of nonparametric kernel
density estimation (KDE) has been revealed to be much better than those of parametric
family functions. Due to the absence of any prior distribution assumption about their
marginals probability density function (PDF) type, KDE performed much more reliably,
especially suited for multimodal random samples. However, the copula function eliminates
the restriction to model any marginal distribution from the same family functions. The sub-
jective assumption of the joint PDF type of the fitted parametric copulas in the traditional
vine distribution framework is not much more effective at approximating joint structure,
which would be questionable. In other words, fixing the joint PDF of the dependence
structure to any specific or predefined copula class may fail to fully acknowledge the
flexibility of the copula fitted in the vine tree structure. Parametric copulas are frequently
used because of their simplicity. However, the parameter estimation procedures of the
fitted parametric models are time consuming using standard statistical techniques [52].
Rauf and Zeephongsekul [53] claimed that it could lead to spurious inferences and be
challenging if the underlying assumptions of the fitted parametric distribution are violated.
Fitting an appropriate parametric copula demands much more attention and extra caution,
which might bear the risk of uncertainty in their estimated joint exceedance values if an
inappropriate dependence structure is selected.

To deal with all the above-raised issues, introducing the nonparametric copula density
in the vine copula construction could be a better alternative where the 2D copulas could
adapt to any dependence structure without having any specific or fixed joint PDF form.
To do this, the Bernstein copula estimator and beta kernel copula density could be a good
choice for modelling multivariate copula density in nonparametric settings [54–58] and
reference therein. In reality, the Bernstein copula can provide higher consistency and lack
boundary bias problems [59], resulting in a better estimation of the underlying dependence
structure than an empirical copula estimate. Besides this, there is the performance of
beta kernel density is already proved by Rauf and Zeephongsekul [53] and Latif and
Mustafa [22]. The nonparametric copula density gained more attention in economics but is
rarely accepted in hydro-meteorological studies. Additionally, all the above nonparametric
frameworks are often limited to bivariate cases.

The main contribution of the present work is the first to incorporate the Bernstein
estimator and Beta kernel copula estimator in the nonparametric estimation of the 3D vine
copula density in the trivariate modelling of compound flooding (CF) events on the west
coast of Canada. The objective of the present study is (i) to incorporate and test the efficacy
of above-mentioned nonparametric copula densities in establishing the D-vine structure
and in determining trivariate joint cumulative distribution functions (JCDF),(ii) comparing
the performance with the semiparametric approach in the vine copula density, introducing
parametric copulas with nonparametric marginal pdfs and the parametric approach in the
vine copula. Finally, the selected best-fitted vine copula density is employed to estimate
trivariate joint return periods and in assessing hydrologic risk. Our recent study is the first
that incorporates the Bernstein estimator in flood modelling and confirms that this function
performed well compared to Beta copula density in the bivariate dependence modelling
of storm surge and rainfall events [60]. Our present study extends the previous bivariate
approach by dealing with three variables, integrating the impact of river discharge events
with storm surge and rainfall events in the risk of compound flooding (CF) events.

Pirani and Najafi’s [61] study already shows that the higher risk of compound extreme
on Canada’s west coasts is due to the joint impact of precipitation, extreme water level (also,
storm surge events) and streamflow discharge. Additionally, west or Pacific Canada’s coast
experienced higher coastal instability because of the higher risk of coastal water levels [62].
This paper is organized into four sections. After the introduction, the required theoretical
background of the nonparametric copula density and in development of the 3D vine copula
framework are discussed in Section 2. Section 3 of this manuscript presents the application
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of the developed trivariate distribution framework to a case study in compounding the
joint impact of rainfall, storm surge and river discharge events. This section comprises, for
instance, modelling univariate marginal distribution via nonparametric KDE, constructing
D-vine structure in the nonparametric fitting procedure via Bernstein and Beta copula esti-
mator, D-vine structure under the parametric fitting procedure and in the semiparametric
settings. This section also compares the model adequacy and performance of all three
developed D-vine structures in the trivariate CF dependence. Additionally, the best-fitted
trivariate structure is employed in estimating primary joint return periods for both AND
and OR-joint cases and also employed in the estimation of FP statistics. Finally, Section 4
provided the research summary and conclusions.

2. Methodology
2.1. Nonparametric Copula Density Estimator

Figure 1 illustrates the methodological workflow used in this study. Firstly, compound
flood variables’ marginal distributions are modelled using the nonparametric kernel density
estimation (KDE). The best-fitted parametric family distributions are adapted from our
previous study [63], and their performance is compared with the selected KDE in the present
study. The D-vine copula framework is developed under parametric, semiparametric
and nonparametric settings, and their performance is compared in describing the most
parsimonious flood dependence. The nonparametric vine density comprises multiple 2-D
copulas via the Bernstein and Beta kernel density with kernel density margins without
having any prior assumption about their marginal pdf and joint density function. The
parametric and semiparametric vine copula density defines through parametric class 2-D
copulas (i.e., Archimedean and Extreme value) with parametric and nonparametric via
KDE margins. The best-fitted trivariate structure is employed in the estimation of trivariate
joint return periods for both OR-and AND-joint cases and is further employed in estimating
FP statistics. In this study, the D-vine copula are developed for three different cases, each
defined by permutating the location of the conditioning variable. For instance, in case 1,
the river discharge event is a conditioning variable; in case 2, the storm surge event is a
conditioning variable; in case 3, the rainfall event is a conditioning variable.

Mirror image modification, transformed kernels, boundary kernels, etc., are a few
examples of nonparametric approaches in joint density estimation [64–66]. This study
introduces the beta kernel copula and Bernstein copula estimator for developing the D-vine
structure for the trivariate joint analysis of storm surge, rainfall and river discharge events
in relation to flood risk in the coastal regions. The beta kernel copula density was discussed
earlier by Brown and Chen [67], Harrell and Davis [54] and Chen [68]. It is naturally free
of boundary bias problems which are often encountered in the standard kernel estimator.
The consistency remains in the beta kernel density if the actual density is unbounded at the
boundary [69].

The 1D beta kernel density function for the given univariate variables, A1, A2, . . . , At,
is estimated by:

sh(a) =
1
t ∑t

i=1 K(Ai,
a
h
+ 1,

1− a
h

+ 1) (1)

where “h” is the kernel’s bandwidth.
In Equation (1), the density of the beta kernel function with parameters q and v is

estimated by

K(a, q, v) =
aq(1− a)vΓ(q)Γ(v)

Γ(q + v)
, a ∈ [0, 1] (2)

According to Charpentier et al. [52], multiplying the beta kernel densities can result in
beta copula joint density, known as the beta kernel copula, at point (a, b), as given below.

ch(a, b) =
1

ph2 ∑p
i=1 K(Ai,

a
h
+ 1,

1− a
h

+ 1)×K
(

Bi,
b
h
+ 1,

1− b
h

+ 1
)

(3)
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The bandwidth of Equation (3) is estimated by the rule of thumb (ROT) estimation
procedure, which is based on minimizing the asymptotic mean-integrated-squared error
(AMISE) statistics. For this, Nagler [70] pointed out the applicability of the Frank copula as
the reference copula. The ROT bandwidth estimation for the fitted 2D beta kernel estimator
of Equation (3) is estimated by

h =

(
1

8π
ς(c)
ξ(c)

) 1
3
n
−1
3 (4)

where “c” is assumed to be the Frank copula in Equation (4).
The efficacy of the Bernstein copula estimator is also tested and compared in con-

structing the D-vine structure together with beta kernel density. Lorentz [71] highlighted
that the Bernstein polynomial could be used to approximate any continuous functions
within a range of [0,1]. Tenbush [72] constructed bivariate joint density using the Bernstein
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estimator. Approximation of nonparametric joint density using the Bernstein copula can
provide higher consistency and remove boundary bias problems [57,73]. Additionally, it
can better estimate the underlying mutual correlation and good approximation with an
asymmetric and extreme dependency compared to an empirical copula approach [69].

Mathematically, the n-degree Bernstein polynomial is estimated by [57,69]:

B(n, w, z) =
(

n
w

)
zw(1− z)n−w (5)

In Equation (5), w = 0, 1, 2, . . . , n ∈ N; 0 ≤ z ≤ 1.
Now, if X = (X1, X2) illustrates bivariate observations having a uniform marginal distribu-

tion over Yi = {0, 1, 2, . . . , ni}with grid size ni ∈ N and where i = 1, 2, then

y(w1, w2) = Y(∩2
I=1{Xi = wi}

)
, (w1, w2) ∈ [0, 1]2 (6)

Hence, for the 2D joint distribution case, the Bernstein copula density is estimated by;

c(x1, x2) = ∑n1−1
w1=0 ∑n2−1

w2=0 y(w1, w2)∏2
i=1 niB(ni − 1, wi, xi), (7)

where (x1, x2) ∈ [0, 1]2.

2.2. Univariate Kernel Density Estimation of Flood Margins

Parametric class functions are often restricted to prior distributional assumptions
about their univariate marginal pdfs. However, on the other side, the parametric functions
performed well if the given observation exhibited unimodality or symmetrical behaviour.
A nonparametric kernel density estimation (KDE) is identified as much more robust and
better performing in modelling the probability densities of different hydro-meteorological
characteristics, especially when the given observation departed from the symmetrical
behaviour or, say, bi- or multimodality [48,50,74,75]. Our present study tested the efficacy
of different KDE functions and compared their performance with the selected best-fitted
parametric distributions from our previous study [63].

Mathematically, the 1D kernel function can approximate a probability density structure
having the following statistical property.∫ +∞

−∞
K(x)dx = 1 (8)

Furthermore, the kernel function can be represented by a general function:

Ko(x) =
1
o

K
(x

o

)
(9)

where “o” is the bandwidth of the fitted univariate kernel function.
By taking the average of Equation (9), the univariate kernel density estimator f̂o(x) of

the probability density function is estimated by

f̂o(x) =
1

po ∑p
i=1 Ko

(
x− Xi

o

)
(10)

where “p” is the observation counts. In fitting the kernel density to the given observational
samples, selecting an appropriate way of estimating kernel bandwidth is often essential;
otherwise, it may be attributed to either over-smoothing or under- or insufficient smooth-
ing (also called rough smoothing). For extended details about different statistical proce-
dures in kernel bandwidth estimation, readers are advised to read Sharma et al. [49] and
Jones et al. [76]. In our present analysis, the direct plug-in (DPI) method is used to esti-
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mate the bandwidth of the fitted kernel density [77–79]. Table 1 lists some kernel density
functions which are used in this study.

Table 1. 1-D Kernel density estimation (KDE) tested in the modelling of flood marginals.

SI No. Kernel Density Estimation K(x)

1 Normal =(2π)
−1
2 e−(x2)/2

2 Epanechnikov (or parabolic) = 0.75
(
1− x2), |X| ≤ 1

= 0, otherwise

3 Biweight (or Quartic) = 0.9375
(
1− x2)2, |x| ≤ 1

= 0, otherwise

4 Triweight 1.09375
(
1− x2)3, |x| ≤ 1

= 0, otherwise

2.3. D-Vine Copula Structure in the Trivariate Modelling

The vine or pair-copula construction (pcc) is based on the decomposition of full multi-
variate density into a cascade of local blocks of the best-fitted 2D copulas modelled between
each random pair and their conditional and unconditional functions [38,39]. Two famous
decomposition steps in the vine framework are the canonical or C-vine and drawable or
D-vine [80,81]. The D-vine’s structure is highly flexible, and this is accepted widely [40,41,82].
The traditional approach in the vine framework considers multiple 2D parametric class
copulae in the stagewise hierarchy. A few statistical constraints with parametric copula
joint density are highlighted in Section 1. Therefore, it could be problematic if the vine
copula is constructed using the parametric class copulas. Due to this, we individually tested
the efficacy of the nonparametric method via beta kernel copula density and Bernstein
copula estimator in the 3D vine simulation for the given CF variables. This study also
compares the performances of the parametric and semiparametric approaches in the vine
simulation, where both frameworks are defined through multiple 2D parametric copulas.
The univariate marginal distribution is modelled using the kernel density estimations
(KDE) in both nonparametric and semiparametric and parametric class distributions in the
parametric vine approach.

Due to the involvement of three flood characteristics in characterizing C.F. events in
our study, the present 3D vine framework must demand three 2D copulae and two tree
levels, Tree 1 and Tree 2 (refer to Figure 2). For trivariate variables (A, B, C), the D-vine
structure can be mathematically expressed as

f(a, b, c) = f(a)·f(b|a)·f(c|a, b) (11)

f(b|a) = f(a, b)
f(a)

= cab(F(a), F(b))·f(b) (12)

f(c|a , b) =
f(b, c|a )

f(b|a) = cbc|a(F(b|a), F(c|a))·cac(F(a), F(c))·f(c) (13)

In Equation (11), the conditional cumulative distribution functions f(b|a) and f(c|a, b)
are estimated using the pair-copula densities. Additionally, F(a), F(b) and F(c) are the
fitted univariate margins. In Equation (12), Cab is the best-fitted 2D copula (parametric
class or nonparametric) for variables A and B. Our proposed framework selects the D-vine
with five nodes, three edges and two tree levels (Refer to Figure 2). We constructed a
D-vine copula framework for three cases. Each case was defined based on permutating
the conditioning variables (or variable placed at the centre of the selected D-vine structure;
refer to Figure 2). For instance, the D-vine structure 1 (case-1) was defined by selecting the
river discharge (RD) as a conditioning variable placed between storm surge (SS) and rainfall
(R) events. Similarly, D-vine structure 2 (case 2) and D-vine structure 3 (case 3) are defined
by placing storm surge and rainfall events as conditioning variables (refer to Figure 2). This
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permutation approach to considering each variable of interest as a conditioning variable
and selecting the best-fitted vine structure using the fitness test statistics can provide a
much more practical and flexible way to the vine copula approach.
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Figure 2. Schematic diagram in the 3-D D-vine copula simulation for three different cases [Note: each
case of the D-vine structure is defined by permutating the location of the conditional variable, for
instance, D-vine structure-1 (River discharge as conditioning variable), D-vine structure-2 (Storm
surge as conditioning variable), D-vine structure-3 (Rainfall events as conditioning variable)].

Refer to Figure 2 (consider either case) for illustration; the best-fitted univariate flood
marginal distribution is selected after selecting the conditioning or centred variable (say
B or A or C). In constructing the D-vine framework nonparametrically, kernel density
estimation (KDE), obtained from Section 2.2, is selected to define flood marginal probability
distribution. After that, nonparametric copula density (refer to Section 2.1) is introduced
and tested via the Bernstein estimator and the beta kernel density estimator. Thus best-
fitted models are selected using the fitness test statistics for different tree levels (Tree 1 and
Tree 2, refer to Figure 2).

At first, using the most parsimonious 2D copulas, either parametric class (refer to Latif
and Simonovic [63]) or nonparametric (refer to Section 2.1), are selected for each flood pair,
say CAB and CC.B., the conditional cumulative distribution function (CCDFs), also called
the h-function, is estimated [41,82].

FA|B(a, b) = hA.B. =
∂CA B(F(A), F(B))

∂F(B)
and FC|B(C, B) = hC.B. =

∂CC B(F(C), F(B))
∂F(B)

(14)
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In the second Tree 2 level (refer to Figure 2), the CCDFs statistics estimated from Tree
1 level, using copula CAB and CC.B., is now input to describe another 2D copula in the
modelling of joint dependence of conditional pair (AC|B), such as CAC|B.

In the nonparametric vine copula approach, the 2D Bernstein copula estimator (refer to
Equation (7)) and beta kernel copula density (refer to Equation (3)) are tested individually
in both tree levels in the D-vine structures (for all three cases, refer to Figure 2). Our recent
study tested the adequacy of different parametric copulas, for instance, mono-parametric
Archimedean copulas, mixed or bi-parametric Archimedean copulas and rotated versions
(by 180 degrees) of mixed Archimedean copulas, etc., for the same flood pairs [63]. The
selected best-fitted 2D copulas from our previous study are now employed in fitting
bivariate flood pairs and estimating CCDFs in the first tree level (Tree 1), of the parametric
and semiparametric-based vine framework.

Finally, after selecting the most justifiable copula for each tree level for each D-vine
structure (case 1, case 2 and case 3) finally, the full trivariate joint density is calculated by

CA B C(a, b, c) = CA C|B

(
FA\B(a, b), FC|B(c, b)

)
·CA B ·CC B (15)

2.4. Trivariate Joint Return Periods

Frequency analysis provides a mathematical relationship between extreme events
quantiles and their non-exceedance probabilities (or return period) by fitting the most
justifiable univariate or multivariate probability distribution function [83,84]. The return
period measures the mean or average inter-arrival time between the two design events [85].
The univariate return period’s validity is questionable in multidimensional extremes like
compound flooding due to the joint action of multiple drivers. In our current study, the
developed 3D joint framework is applied to estimate primary return periods, which are
further defined in two cases: OR-joint return period and AND-joint return period [86–89].
Different notations of return periods have their own importance that could depend upon
the nature of the undertaken problem. For example, just considering an OR-joint return
period or either AND-joint return period would be problematic [31]. A practical risk
assessment approach must consider different approaches in the return period estimations;
readers are advised to see Graler et al. [41] and Requena et al. [90].

Consider the trivariate events (A ≥ a OR B ≥ b OR C ≥ c), where either of the events
exceeds a specific threshold value; the OR-joint return periods are estimated using the
trivariate joint exceedance probability given below.

TOR
A, B,C(a, b, c) =

1
P (A ≥ a ∨ B ≥ b ∨C ≥ c)

=
1

(1−C(F(a), F(b), F(c))
(16)

where C(F(a), F(b), F(c)) is the trivariate joint cumulative distribution function (JCDF)
estimated using the best-fitted 3D vine copula structure.

Similarly, consider another trivariate joint dependency case (A ≥ a AND B ≥
b AND C ≥ c) where all the events exceed a specific threshold value simultaneously;
the AND-joint return periods are estimated by considering both trivariate joint cumulative
distribution function (JCDF) and bivariate JCDFs which are defined for each random flood
pair given below.

TAND
A, B, C(a, b, c) =

1
P (A ≥ a ∧ B ≥ b∧ C ≥ c)

=
1

(1− F(a)− F(b)− F(c) + C(F(a), F(b)) + C(F(b), F(c)) + C(F(a), F(c))−C(F(a), F(b), F(c)))
(17)

In Equation (17), C(F(a), F(b)), C(F(b), F(c)) and C(F(a), F(c)) are the bivariates
(JCDFs) obtained by fitting most parsimonious 2D copulas to targeted random pairs, and
C(F(a), F(b), F(c)) is the JCDF using the fitted 3D copula density.
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2.5. Failure Probability in the Hydrologic Risk Evaluation

In the hydrologic risk assessments of CE, consideration of only traditional joint primary
return periods would be ineffective in describing the risk of potential flood events during
the entire project design lifetime [10,91]. In recent studies, a hydrologic risk tool called
failure probability (FP) statistics [92,93] is highlighted and used efficiently. FP usually
defines the chance of potential flood hazards occurring at least once in a given project
design lifetime. FP statistics can define the risk of CF events more appropriately than just
visualizing their joint return periods. Few studies incorporated FP statistics in the bivariate
hydrologic risk assessments [10,94]. This study incorporated FP statistics in the trivariate
compound flood risk assessment, which can be mathematically expressed as

FPT = 1− (1− P)T (18)

where T is the arbitrary project lifetime.
Similarly, for the trivariate flood hazard scenario, the risk of failure for the OR-joint

case can be estimated by;

FPT = 1− (1− P (Rainfall ≥ r OR Storm surge ≥ s OR River discharge ≥ rd)T (19)

3. Application
3.1. Study Area and Defining the Compound Hazard Scenario

The complex interplay between oceanographic, fluvial and pluvial factors increases
the risk of extreme devastation in low-lying coastal communities worldwide. This study
introduces a nonparametric approach to constructing a 3D vine copula framework in
compounding the collective impact of rainfall, storm surge and river discharge in flooding
events. Our work introduces 46 years of selected flood characteristics collected at west
Canada’s coast in the trivariate joint probability analysis. The low-lying regions near
the Pacific coast and Fraser River are highly susceptible to flooding and often encounter
mature and extra-large tropical storms. When these storms are encountered in the coastal
mountains, they can result in devastating disasters, forming the potential for prolonged
impact. Fraser River is the longest river in the south of Metro Vancouver, BC, with an
annual discharge at its river mouth of 3550 m3s−1. This river flows for 1375 km and finally
drains out into the Strait of Georgia. Pirani and Najafi’s [61] study already identified that
the joint combination of tidal water extreme level, precipitation and river discharge can
increase the risk of coastal flooding at the Pacific west coast of Canada. The risk of extreme
water levels increases the risk of storm surge events. The same scenario can result in
devastating hydrologic or compound flooding when combined with high river discharge
and extreme rainfall events. The Environment Ministry of BC report [95] also reported the
expectation of a rise in sea level by about half a meter by the end of this 2050 and one meter
by the end of 2100. Besides this, according to Lemmen et al. [96], the impact of climate
change across Canada significantly increases the risk of extreme events.

This study searches the dependency for the annual maximum 24 h rainfall events
and their associated river discharge and storm surge events observed within a time lag of
±4 days from the date of annual maximum 24 h rainfall events. Our previous study [63] has
already confirmed that more significant dependencies can be observed when considering
the maximum storm surge and river discharge events within a time lag of ±4 days from the
calendar date of the annual maximum 24 h Rainfall events. At first, the coastal water level
(CWL) data were obtained of 1970 to 2018 from the New Westminster tidal gauge station
(station id = 7654) with their geographical coordinates (49.2

◦
N Lat and 122.9

◦
W Lon),

which were delivered by Fisheries and Ocean Canada. Secondly, the storm-surge data were
estimated by differencing observed CWL data and predicted water level or astronomical
tide data, which requires proper time matching between them. Canadian Hydrographic
Services (CHS) delivered the predicted tide data. Similarly, the rainfall data were collected
at by Haney UBC RF Admin gauge station (49

◦
15′52.1′′ N Lat and 122

◦
34′400′′ W Lon).
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Both storm-surge data and rainfall data were collected for the same calendar year. Third,
Environment and Climate Change Canada provided the streamflow discharge data col-
lected at the Fraser River at Hope (49

◦
23′09′′N Lat and 121

◦
27′15′′ W Lon). It should be

noted that the nearest rainfall gauge station and streamflow discharge station were selected
within a radial distance of 50 km centring the selected tidal gauge station.

The annual maximum 24 h rainfall data were defined for each year using the daily-
basis rainfall events. The river discharge and storm surge data were selected by observing
their maximum values within a time lag of ±4 days from the date of annual maximum 24 h
rainfall events. Due to the missing data in the period between the years 1970 to 2018, we
considered 46 years of data in establishing a trivariate compound relationship between
the variable of interest. Supplementary Table S1 lists the descriptive statistics of targeted
compound flood (CF) driving agents. Supplementary Figure S1, S2a–c and S3a–c illustrate
the box plots, histogram plots and normal quantile-quantile (Q-Q) plots. From Figure S3c it
was found that river discharge observations exhibited more deviation from normality (or
straight line) compared to storm surge (Figure S3b) and rainfall events (Figure S3a).

3.2. Nonparametric Estimation in the Univariate Flood Marginals

Modelling the univariate flood marginal is a statistical procedure to infer the popula-
tion based on a finite random sample and is often a mandatory pre-requisite. Our previous
study, using the same dataset, confirmed that annual maximum 24 h rainfall and maximum
river discharge events exhibit no serial correlation and zero monotonic trends within their
time series [63]. Conversely, maximum storm surge (Time interval = ±4 days) events have
zero serial correlation but exhibit monotonic time trend behaviour, which is estimated
using the nonparametric Mann–Kendall (M-K) test [97,98] at 5% significance (or 95% confi-
dence interval). Besides this, homogeneity tests for the given time series were examined to
identify if changes occur within time series of flood characteristics, using Pettitt’s test [99],
the SNHT (standard normal homogeneity test) [100] and Buishand’s test [101]; refer to Sup-
plementary Table S2. It was found that both rainfall and river discharge events exhibited
homogenous behaviour, but storm surge events showed non-homogenous characteristics.
In the second row of Table S2, the estimated p-value for storm surge events is less than 0.05
for both the Pettit and SNHT tests. In conclusion, an independent and identical distribution
(i.i.d.) is required before introducing it into the probability distribution framework. Thus, a
differencing procedure was adopted to remove non-stationarity or de-trend storm surge
observations [63].

Table 1 introduces some frequently used kernel density estimations (KDE), whose
efficacy was tested in this study to model univariate flood margins. The bandwidth of
the fitted KDE was estimated using the direct plug-in (DPI) algorithm; refer to Section 2.2.
Table 2a–c list the fitted KDE and their estimated bandwidth. The adequacy of the fitted non-
parametric KDE models was tested by comparing empirical and theoretical probabilities.
The empirical probabilities were estimated using the Gringorten-based position-plotting
approach for each flood characteristic [102]. The cumulative distribution function (CDF) of
the fitted KDE was estimated via numerical integration technique or empirical approach
because of the lack of a closed form of probability density and cumulative distribution [50].
The goodness-of-fit (GOF) tests, such as mean-square error (MSE), root mean-square er-
ror (RMSE), Akaike information criterion (AIC), Bayesian information criterion (B.I.C.),
Hannan–Quinn information criterion (H.Q.C.) and mean absolute error (MAE), were esti-
mated for each fitted model [103–107] refer to Table 2a–c. It was found that normal KDE
performed best (minimum value of MSE., RMSE, AIC, BIC, HQC and MAE statistics) and
was selected for defining the marginal probability density function (PDF) of the maximum
24 h rainfall, maximum storm surge (Time interval = ±4 days) and maximum storm surge
(Time interval = ±4 days) events. The qualitative or graphical investigation, using the
comparative C.D.F. plots and probability–probability (P-P) plots (refer to Supplementary
Figure S4a–c and S5a–c), confirmed the suitability of the selected normal KDE.
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Table 2. Fitting univariate kernel density estimation (KDE) and their goodness-of-fit (GOF) test for
(a) Annual maximum 24 h Rainfall (mm) (b) Maximum Storm surge (Time interval = ±4 days) (m)
(c) Maximum River discharge (Time interval = ±4 days) (m3s−1).

(a)

Nonparametric
KDE

Estimated
Bandwidth (via
Direct-Plug-in

Method)

MSE
(Mean
Square
Error)

RMSE (Root
Mean Square

Error)

AIC (Akaike
Information

Criterion)

BIC (Bayesian
Information

Criterion)

HQC (Hannan-
Quinn

Information
Criterion)

MAE
(Mean

Absolute
Error)

Normal * 11.25 0.0003 0.0199 −358.22 −356.39 −357.53 0.015

Epanechnikov
(or parabolic) 24.90 0.0007 0.0281 −326.36 −324.53 −325.67 0.023

Biweight (or
Quartic) 29.50 0.0010 0.0316 −315.56 −313.73 −314.88 0.026

Triweight 33.50 0.0011 0.0342 −308.42 −306.59 −307.73 0.027

Parametric
GEV (Latif and

Simonovic
2022a [63]) **

Estimated
parameters via

Maximum
likelihood

estimation (MLE)
0.0009 0.0312 −312.97 −307.48 −310.91 0.024

location(mu = µ )
= 1494.64;

scale (sigma = σ) =
616.37;

shape (xi = ξ) = 0.31

(b)

Nonparametric
KDE

Estimated
Bandwidth (via
Direct-Plug-in

Method)

MSE (Mean
Square Error)

RMSE (Root
Mean Square

Error)

AIC
(Akaike In-
formation
Criterion)

BIC (Bayesian
Information

Criterion)

HQC (Hannan-
Quinn

Information
Criterion)

MAE
(Mean

Absolute
Error)

Normal * 0.07 0.0003 0.0175 −369.83 −368.00 −369.15 0.014

Epanechnikov
(or parabolic) 0.16 0.0007 0.0265 −331.95 −330.12 −331.26 0.020

Biweight (or
Quartic) 0.20 0.0008 0.0288 −324.17 −322.34 −323.48 0.022

Triweight 0.22 0.0009 0.0304 −319.30 −317.47 −318.61 0.023

Parametric
Normal

(Shahid and
Simonovic

2022a [63]) **

Estimated
parameters via

Maximum
likelihood

estimation (MLE) 0.0011 0.034 −306.56 −302.90 −305.19 0.026

mean (mu = µ) =
2.340757e−18;

sd (sigma = σ) =
1.676386e−01
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Table 2. Cont.

(c)

Nonparametric
KDE

Estimated
Bandwidth (via
Direct-Plug-in

Method)

MSE (Mean
Square Error)

RMSE (Root
Mean Square

Error)

AIC
(Akaike In-
formation
Criterion)

BIC (Bayesian
Information

Criterion)

HQC (Hannan-
Quinn

Information
Criterion)

MAE
(Mean

Absolute
Error)

Normal * 340.21 0.0005 0.0223 −347.61 −345.78 −346.93 0.017

Epanechnikov
(or parabolic) 753.16 0.0017 0.0415 −290.65 −288.82 −289.96 0.030

Biweight (or
Quartic) 892.25 0.0019 0.0444 −284.42 −282.60 −283.74 0.033

Triweight 1013.19 0.0022 0.0477 −277.81 −275.99 −277.13 0.037

Parametric
GEV (Shahid

and Simonovic
2022a [63]) **

Estimated
parameters via

Maximum
likelihood

estimation (MLE)
0.0008 0.0291 −319.15 −313.67 −317.10 0.022location (mu = µ )

= 1494.64;
scale (sigma = σ)

616.37;
shape (xi = ξ) = 0.31

(a) Note: Normal KDE (bold letter with single asterisk *) outperformed (minimum value of MSE, RMSE, AIC,
BIC, HQC and MAE), thus selected in defining the univariate marginal distribution of Annual maximum 24 h
Rainfall (mm) events. Additionally, the GEV distribution (double asterisk **) was selected as best-fitted when
comparing the performance of different 1-D parametric family distributions in modelling Annual maximum 24 h
Rainfall (mm) events (Latif and Simonovic 2022a [63]). (b) Note: Normal KDE (bold letter with single asterisk *)
outperformed (minimum value of MSE, RMSE, AIC, BIC, HQC and MAE), thus selected in defining the univariate
marginal distribution of Maximum Storm surge (Time interval = ±4 days). Additionally, Normal distribution
(double asterisk **) selected as best-fitted when comparing the performance of different 1-D parametric family
distributions in modelling storm surge events (Latif and Simonovic 2022a [63]). (c) Note: Normal KDE (bold
letter with single asterisk *) outperformed (minimum value of MSE, RMSE, AIC, BIC, HQC and MAE), thus
selected in defining the univariate marginal distribution of Maximum River discharge (Time interval = ±4 days).
Additionally, GEV distribution (double asterisk **) was best fitted when comparing the performance of different
1-D parametric family distributions in modelling river discharge events (Latif and Simonovic 2022a [63]).

Our previous study selected the generalized extreme value (GEV), normal and GEV
distribution fit that were best for the same dataset tested in the present study [63]). The
nonparametric KDE outperformed the others (refer to Table 2).

3.3. Incorporation of Nonparametric Vine Structure in the Trivariate Flood Dependence

Our previous study [63] already confirmed the existence of positive dependence
between flood attribute pairs, which was measured both parametrically via Pearson corre-
lation coefficient and nonparametric via Kendall’s tau (τ), and Spearman’s rho (ρ) at a 5%
significance level (95% confidence interval). At first, the nonparametric via 2D Bernstein
estimator and beta kernel estimator (refer to Equations (7) and (3)) were employed in the
bivariate dependence modelling of the rainfall–storm-surge, storm surge–river-discharge
and rainfall–river-discharge pairs (refer to Table 3. The beta kernel density and Bernstein
copula estimator can alleviate the risk of boundary bias problems. The Bernstein copula
can facilitate higher consistency and better approximate joint structure than the empirical
copula. The fitted beta kernel density bandwidth was examined using the rule of thumb
(ROT) approach by minimizing the AMISE statistics (refer to Equation (4) of Section 2.1).
Similarly, in fitting the 2D Bernstein copula estimator, their coefficient was adjusted by the
approach discussed by Weiss and Scheffer [58].
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Table 3. Fitting the nonparametric 2-D copula density and their goodness of fit (GOF) test to the
given flood attribute pair.

Flood Attribute Pairs
Nonparametric

2-D Copula
Density

Estimated
Bandwidth
(Only for

Beta
Kernel
Copula

Density)

MSE
(Mean
Square
Error)

RMSE
(Root
Mean

Square
Error)

MAE
(Mean

Absolute
Error)

K-S
(Kolmogorov–

Smirnov)

NSE (Nash–
Sutcliffe

model
Efficiency

Coefficient)

Annual Maximum 24 h
Rainfall (mm)-Maximum

Storm surge (Time
interval = ±4 days) (m)

Bernstein
estimator *

0.11

0.0013 0.0360 0.0290 D = 0.0869,
p-value = 0.99 0.980

Beta kernel
density 0.0014 0.0371 0.0295 D = 0.1521,

p-value = 0.66 0.979

Maximum Storm surge
(Time interval = ±4 days)

(m)-Maximum River
discharge (Time

interval = ±4 days) (m3/s)

Bernstein
estimator *

0.12

0.0012 0.0350 0.0270 D = 0.1521,
p-value = 0.66 0.981

Beta kernel
density 0.0014 0.0375 0.0295

D = 0.1521,
p-value = 0.66 0.978

Annual Maximum 24 h
Rainfall (mm)-Maximum

River discharge (Time
interval = ±4 days) (m3/s)

Bernstein
estimator

0.17

0.0011 0.0338 0.0258 D = 0.1956,
p-value = 0.34 0.981

Beta kernel
density * 0.0008 0.0298 0.0221 D = 0.1521,

p-value = 0.66 0.985

Note: Bernstein copula estimator (bold letter with an asterisk) fitted best for flood pairs rainfall and storm surge,
and storm surge and river discharge. Beta kernel copula density is most parsimonious for flood pair rainfall and
river discharge.

The nonparametric models’ performances were evaluated using various G.O.F. mea-
sures, for instance, MSE, RMSE, MAE, KS (Kolmogorov–Smirnov) [108] and NSE (Nash–
Sutcliffe model efficiency coefficient) [109]; refer to Table 3. The Bernstein copula estimator’s
performance was better for flood pairs (rainfall and storm surge) and (storm surge and
river discharge) (minimum values of MSE, RMSE, MAE and KS test and high NSE test
statistic). However, according to Table 3, the beta kernel density outperformed Bernstein
estimator for the rainfall and river discharge pair.

We constructed the D-vine copula for three cases. Each case defines a D-vine structure
by permutating the locations of conditioning variables. All the computation involved in
the establishment of 3D vine copula (also in fitting 2D nonparametric copula density) was
carried out using R software [110] with the libraries “kdecopula” [111] and “kdevine” [70].

1. D-Vine structure 1 (case 1) considers river discharge observation as a conditioning vari-
able by placing it at the centre of the vine structure (refer to Figure 2 and Tables 3 and 4).
In this structure, at first, the 2D beta kernel copula density and 2D Bernstein copula
estimator, which were selected as best-fitted from Table 3 for flood pair rainfall–river-
discharge and storm surge–river-discharge in the first tree level (Tree 1), were now
employed in the estimation of conditional cumulative distribution functions (CCDFs);
hRAIN RIVER DISCHARGE and hSTORM SURGE RIVER DISCHARGE (refer to Equation (14)).
The copula in the second tree level (Tree 2) was then identified using the above
estimated CCDDFs values as input. It was found that the Bernstein copula estimator
outperformed the beta kernel density to model joint dependence for the flood pair
(RAIN, STORM SURGE|RIVER DISCHARGE) CRAIN STORM SURGE|RIVER DISCHARGE
(which exhibited the minimum value of MSE, RMSE, MAE and KS and the higher
value of NSE test statistics). Finally, the full 3D trivariate joint density was obtained
using Equation (15).

2. Similarly, D-vine structure 2 (case 2) comprises storm surge events as a condition-
ing variable (refer to Tables 3 and 4 and Figure 2). In this vine framework, at
first, in the first tree level (Tree 1), the Bernstein estimator is identified as the most
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justifiable and thus is employed in the estimation of CCDFs hRAIN, STORM SURGE
and hRIVER DISCHARGE, STORM SURGE, followed by Equation (14). Secondly, in the
second tree level (Tree 2), the Bernstein copula estimator is selected as the most
parsimonious in establishing the dependence between of flood pair (RAIN RIVER
DSICHARGE|STORM SURGE) CRAIN RIVER DSICHARGE|STORM SURGE. Finally, using
Equation (15), the full trivariate joint density of the fitted vine structure is estimated.

3. D-Vine structure 3 (case 3) is defined by considering rainfall events as a condition-
ing variable placed in the centre of the selected D-vine structure (refer to Figure 2,
and Tables 3 and 4). The Bernstein estimator and beta kernel density were identified as
most justifiable and thus employed in the estimation the CCDFs hSTORM SURGE, RAINFALL
and hRIVER DISCHARGE, RAIN (followed by Equation (14)) in Tree 1. In the second
level (Tree 2), again the Bernstein copula estimator was identified as the most par-
simonious in modelling joint dependence of flood pair (STORM SURGE RIVER
DSICHARGE|RAINFALL) (refer to Table 4). Finally, followed by Equation (15), the
full trivariate joint density of the fitted vine structure was defined.

After approximating three different D-vine structures (case 1, case 2 and case 3), their
performances were compared using the fitness test statistics (MSE, RMSE, MAE, NSE
and K-S). The theoretical probability (CDF) was estimated using a developed 3D vine
structure for each case and compared with empirical observations for estimating the GOF
test statistics. Table 4 shows that the D-vine structure for case-2, considering storm surge
as a conditioning variable, performed better than other D-vine structures. The selected
structure exhibited the minimum MSE, RMSE and MAE values and a high NSE test value.
The above approach in the vine copula provided much better flexibility in selecting the best
vine model, not just by fixing the conditioning variable but by switching or permutating
the conditioning variable. For example, in the above case, when considering storm surges
as conditioning variables, the performance of the fitted D-vine copula got better than
considering either rainfall or river discharge events. Supplementary Figure S8 illustrates
the vine tree plot of the developed D-vine structure in the nonparametric fitting procedure.



Hydrology 2022, 9, 221 16 of 31

Table 4. Summary statistics in the nonparametric D-vine structure for three different cases by incorporating the Bernstein estimator and Beta kernel density (each
D-vine structure is defined by permutating the location of the conditioning variable).

Vine Structure
(Conditioning

Variable)
Tree Level

Flood
Attribute

Pairs

Fitted Non-
parametric

Copula
Estimator

Estimated
Bandwidth

(for Beta
Kernel
Copula

Density)

MSE (Mean
Square Error)

RMSE (Root
Mean Square

Error)

MAE (Mean
Absolute

Error)

K-S
(Kolmogorov–

Smirnov)

NSE (Nash–
Sutcliffe
Model

Efficiency
Coefficient)

Case 1 (1-3-2)

3 or Maximum
River Discharge
(Time interval

= ±4 days)
placed in the

centre

Tree 1

1-3
(Rain-River
discharge)

Beta kernel

0.11
0.0004 0.0223 0.017

D = 0.086,
p-value = 0.99 0.9922-3 (storm

surge-river
discharge)

Bernstein

Tree 2 12|3
Bernstein

0.0006 0.0249 0.019 D = 0.087,
p-value = 0.99

0.990
Beta kernel

Case 2 (1-2-3) *

2 or Maximum
Storm Surge

(Time interval
= ±4 days)

placed in the
centre

Tree 1

1-2
(Rain–Storm

Surge)
Bernstein

0.17

0.0002 0.0153 0.013
D = 0.152,

p-value = 0.66 0.995
3-2 (Storm
surge–river
discharge)

Bernstein

Tree 2 13|2
Bernstein

0.0003 0.0154 0.013 D = 0.152,
p-value = 0.66

0.995
Beta kernel

Case 3 (2-1-3)

1 or Annual
Maximum 24 h
Rainfall placed

in the centre

Tree 1

2-1 (Storm
surge-Rain) Bernstein

0.12

0.0004 0.0203 0.015
D = 0.152,

p-value = 0.66 0.9933-1 (River
discharge-
Rainfall)

Beta kernel

Tree 2 23|1
Bernstein

0.0005 0.0214 0.016 D = 0.086,
p-value = 0.99

0.992
Beta kernel

Note: D-vine structure-2 (case-2) (bold letter with an asterisk) selected the most parsimonious vine density (exhibits the minimum value of MSE, RMSE MAE, K-S and high value of NSE test statistics).
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3.4. Comparing the Adequacy of Fitted Nonparametric D-Vine with Parametric and
Semiparametric Approaches in the D-Vine Copula Framework
3.4.1. Constructing D-Vine Structure in the Parametric Fitting Procedure

In the parametric vine approach, at first, the best fitted univariate marginal pdfs,
for instance, GEV (for rainfall), normal (for storm surge) and GEV (for river discharge)
distribution, were selected (refer to Table 2). This was followed by the same steps we
discussed in the last section. Three different D-vine structures (case 1, case 2 and case 3)
were considered by permutating the conditioning variables (refer to Figure 2). Our previous
study confirmed that Survival BB7 fit best for flood pair rain and river discharge, Survival
BB1 for storm surge–river-discharge and BB1 copula for the rain and storm surge pair [63].

For vine structure 1 (case 1, river discharge as conditioning variable; refer to Figure 2
and Table 5), both the selected 2D copulas (Survival BB7 and Survival BB1) were employed
in the estimation CCDFs, which became the input to define another 2D copula in the
second tree level (Tree 1). The present study tested different parametric copulas to fit
the D-vine structure’s second tree level (Tree 2) (refer to Supplementary Table S3a–c).
The parameters of the fitted copulas were estimated using maximum pseudo-likelihood
estimation (MPL) [112,113], and the performances of the fitted models were compared
using the Cramer–von Mises functional test statistics Sn, with the parametric bootstrap
procedure (N is the number of bootstrap samples = 1000) [114,115]. From Table S3a–c,
the Frank copula was identified as best for Tree 2 (D-vine structure 1, case 1), rotated BB6
270-degree copula for Tree 2 (D-vine structure 2, case 2) and Frank copula overall (D-vine
structure 3, case 3). The full trivariate D-vine structure (parametric settings) for each case
was obtained using Equation (15).

After developing vine structures for the given flood characteristics, their performances
were compared to select the most efficient D-vine structure developed under parametric
settings for three cases. From Table 5, it was found that D-vine structure-3 (case-3), with
rainfall as a conditioning variable, outperformed other vine structures (minimum values of
AIC, BIC, MSE, RMSE, MAE and K-S statistics and with high values of log-likelihood (L-L)
and NSE statistics).
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Table 5. Summary statistics of the fitted D-vine structure under parametric distribution settings (via parametric copulas with parametric marginal distributions).

Vine Structure
(Conditioning

Variable)

Tree
Level

Flood Attribute
Pairs

Most
Parsimonious
Fitted Copula

Copula
Dependence

Parameters (θ)
via MPL

MSE RMSE MAE K-S NSE
Log-

Likelihood
(LL)

AIC BIC

Case 1 (1-3-2)

3 or Maximum
River Discharge
(Time interval

= ±4 days)
placed in the

centre

Tree 1

1-3 (Rain-River
discharge) Survival BB7 θ = par = 1.142;

δ = par2 = 0.19

0.00086 0.0294 0.021
D = 0.152

(0.66) 0.982 10.51 −11.02 −1.87
3-2 (storm
surge-river
discharge)

Survival BB1 θ = par = 0.23;
δ = par2 = 1.29

Tree 2 12|3 Frank θ = par = 2.92

Case 2 (1-2-3)

2 or Maximum
Storm Surge

(Time interval
= ±4 days)

placed in the
centre

Tree 1

1-2 (Rain–Storm
Surge)

BB1
(Clayton-
Gumbel)

θ = par = 0.19;
δ = par2 = 1.36

0.00088 0.0297 0.022
D = 0.173

(0.48) 0.982 10.50 −11.01 −1.87
2-3 (Storm
surge–river
discharge)

Survival BB1 θ = par = 0.23;
δ = par2 = 1.29

Tree 2 13|2 Rotated BB6
270 degrees

θ = par = −1;
δ = par2 = −1

Case 3 (2-1-3) *

1 or Annual
Maximum 24 h
Rainfall placed

in the centre

Tree 1

2-1 (Storm
surge-Rain)

BB1
(Clayton-
Gumbel)

θ = par = 0.19;
δ = par2 = 1.36

0.00084 0.0290 0.021
D = 0.152

(0.67) 0.982 10.85 −11.71 −2.57
3-1 (River
discharge-
Rainfall)

Survival BB7 θ = par = 1.142;
δ = par2 = 0.19

Tree 2 23|1(Storm-
River/Rainfall) Frank θ = par = 2.97

Note: D-vine structure-3 (case 3, indicated by bold letter with an asterisk), considering rainfall events as a conditioning variable, perform better (minimum value of AIC, BIC, HQC, MSE, RMSE, K-S and high value of
model’s L-L and NSE statistics).
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3.4.2. Constructing a D-Vine Structure with the Semiparametric Settings

2D parametric class copulas were incorporated with the nonparametric marginal pdf in
the semiparametric D-vine structure. Firstly, the best-fitted 2D parametric copulas for Tree-1
in all three cases of the D-vine structure (refer to Figure 2) were selected from our previous
study [63]. Refer to Section 3.4.1. Supplementary Table S4a–c shows different parametric
class 2D copulas fitted with an MPL-based parameter estimation procedure for estimating
the most justifiable bivariate density fitted to the second tree level (Tree 2). The investigation
found that the Frank copula was best for the D-vine structure-1 (case-1), the rotated BB6
270 degree one for vine structure-2 (case-2) and the Frank copula for D-vine structure-3
(case-3). Using Equation (15), the full trivariate vine copula joint density was estimated
for each fitted D-vine structure. The most justifiable semiparametric-based vine structure
was selected by comparing the performances of three different cases of D-vine structure.
Table 6 provides the summary details of the fitted D-vine structures. It was found that
D-vine structure 3 (case-3), considering rainfall as a conditioning variable, outperformed
all other possible D-vine structures (case-1 and case-2); it exhibited minimum values of
MSE, RMSE, MAE, K-S, AIC and BIC statistics and high values of model likelihood (L-L)
and NSE statistics.
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Table 6. Details of the fitted 3-D vine structure in the semiparametric distribution settings for three different cases.

Vine Structure
(Conditioning

Variable)

Tree
Level

Flood
Attribute

Pairs

Most Par-
simonious

or Best-
Fitted

Copula

Copula
Dependence

Parameters (θ)
MSE RMSE MAE K-S NSE

Log-
Likelihood

(LL)

AIC
(Akaike

Information
Criterion)

BIC
(Bayesian

Information
Criterion)

Case 1 (1-3-2)

3 or Maximum
River Discharge
(Time interval

= ±4 Days)
placed in the

centre

Tree 1

1-3 (Rain-
River

discharge)

Survival
BB7

θ = par = 1.142;
δ = par2 = 0.19

0.0006 0.0236 0.0185
D = 0.152

(0.66) 0.9886 10.68 −11.37 −2.23
3-2 (storm

surge-
river

discharge)

Survival
BB1

θ = par = 0.23;
δ = par2 = 1.29

Tree 2 12|3 Frank θ = par = 2.89

Case 2 (1-2-3)

2 or Maximum
Storm Surge

(Time interval
= ±4 days)

placed in the
center

Tree 1

1-2 (Rain–
Storm
Surge)

BB1
(Clayton-
Gumbel)

θ = par =0.19;
δ = par2 = 1.36

0.0006 0.0239 0.0192
D = 0.130

(0.82) 0.9883 10.81 −9.62 1.34

2-3 (Storm
surge–
river

discharge)

Survival
BB1

θ = par = 0.23;
δ = par2 = 1.29

Tree 2 13|2
Rotated
BB6 270
degrees

θ = par = −1;
δ = par2 = −1

Case 3 (2-1-3) *

1 or Annual
Maximum 24 h
Rainfall placed

in the center

Tree 1

2-1 (Storm
surge-
Rain)

BB1
(Clayton-
Gumbel)

θ = par =0.19;
δ = par2 = 1.360

0.0005 0.0232 0.0185
D = 0.1303

(0.82) 0.9890 11.38 −12.77 −3.623-1 (River
discharge-
Rainfall)

Survival
BB7

θ = par = 1.14;
δ = par2 = 0.19

Tree 2 23|1 Frank θ = par =2.75
Note: D-vine structure 3 (case 3) fitted best (bold letter with an asterisk) (minimum value of AIC, BIC, MSE, RMSE, MAE, K-S and high value of NSE and L-L statistics.
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3.4.3. Comparison of the Models’ Performances (Nonparametric vs. Semiparametric vs.
Parametric Vine)

Section 3.3, Section 3.4.1, and Section 3.4.2 recognized the most justifiable vine struc-
tures, D-vine structure-2 (obtained via nonparametric vine approach), D-vine structure-3
(via parametric vine approach) and D-vine structure-3 (via semiparametric framework). We
performed an analytical and graphical comparison to check the adequacy of the selected
nonparametric D-vine density with parametric and semiparametric vine approaches fitted
to the given triplet flood variables. Refer to Table 7. The D-vine structure (case-2) defined in
the nonparametric setting outperformed the others (minimum values for MSE, RMSE, K-S,
MAE and high NSE test statistics). It was also observed that the performance of the selected
semiparametric D-vine structure (case-2) was better than that of the parametric D-vine struc-
ture (case-2) in the trivariate flood dependence. These results can further reveal how well
the performance of the incorporated vine getting improves when switching its marginal dis-
tribution from parametric to non-parametric and the copula joint density from parametric
to nonparametric joint pdf. The reliability and suitability of the selected D-vine structures
were examined further by comparing Kendall’s τ correlation coefficient estimated from
the simulated flood events (sample size N = 1000) using the best-fitted nonparametric
vine copula (D-vine structure-2), parametric vine (D-vine structure-2) and semiparametric
vine copula (D-vine structure-3) and compared with the empirical Kendall’s τ coefficient
estimated from the historical flood events (refer to Table 8). It was found that the obtained
nonparametric D-vine structure (case-2) exhibited a minimum gap or difference between
the empirical and theoretical Kendall’s tau statistics. These results confirm that the selected
nonparametric vine structure regenerates the historical flood dependence structure (or
correlation) much more efficiently. The same table also revealed that the semiparametric
vine approach better captures and regenerates flood dependence than parametric vine
copula density.

Table 7. Comparing the performance of the selected nonparametric D-vine structure with parametric
and semiparametric vine copula density.

Best-Fitted D-Vine Structure MSE RMSE MAE K-S NSE

Nonparametric settings
(D-vine structure-2 (case-2) * 0.0002 0.0153 0.0130 D = 0.152,

p-value = 0.66 0.995

Semiparametric settings (D-vine
structure-3 (case-3) 0.0005 0.0232 0.0185 D = 0.130 (0.82) 0.989

Parametric settings (D-vine
structure-3 (case-3) 0.00084 0.0290 0.0218 D = 0.152 (0.67) 0.982

Note: D-vine structure-2 derived in the nonparametric settings (bold letter with an asterisk) outperformed both
parametric and semiparametric approaches in the D-vine structure for trivariate CF events.

A graphical visual inspection was carried out to crosscheck the adequacy of the se-
lected D-vine structure-2 obtained nonparametrically. The overlapped scatterplots between
the observed samples (via historical flood) and simulated samples (using D-vine structure-2,
case-2) of sample size (N = 1000) were obtained; refer to Supplementary Figure S6a–c. It
was found that D-vine structure-2 (under nonparametric settings) performs adequately
since the simulated random sample (indicated by light grey colour) overlapped with the
natural mutual concurrency of the historical flood samples (red colour); refer to Figure
S6a–c. Supplementary Figure S7 illustrates a 3D scatterplot matrix of the generated flood
events (sample size N = 1000) using the selected nonparametric vine model. Supplementary
Figure S8 illustrates the vine tree structure of the most justifiable D-vine structure in the
nonparametric setting.
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Table 8. Examining the reliability of the developed D-vine structure (nonparametric settings) vs. parametric D-vine vs. semiparametric D-vine copula framework by
comparing Kendall’s τ correlation coefficient estimated using the generated random samples (size N = 1000) obtained from the above-selected model with Empirical
Kendall’s τ values estimated from historical observations.

CF Pairs
Kendall’s Tau Estimated from

Historical Flood Events
(Empirical Estimates)

Kendall’s Tau Estimated from
Best-Fitted D-Vine Copula
(D-Vine Structure 3) in a

Parametric Setting
(Theoretical Estimates)

Kendall’s Tau Calculated from
Best-Fitted D-Vine Copula (D-Vine

Structure-3) in a Semiparametric
Setting (Theoretical Estimates)

Kendall’s Tau Estimated from
Best-Fitted D-Vine Copula (D-Vine
Structure-2) in the Nonparametric

Setting (Theoretical Estimates)

Annual maximum 24 h rainfall
(mm) −Maximum Storm Surge (m)

(Time interval = ±4 days)
0.30 0.29 0.31 29

Maximum Storm Surge (m) (Time
interval = ±4 days) −Maximum

River discharge (m3/s) (Time
interval = ±4 days)

0.29 0.34 0.31 29

Annual maximum 24 h rainfall
(mm) −Maximum Storm Surge (m)

(Time interval = ±4 days)
−Maximum River discharge (m3/s)

(Time interval = ±4 days)

0.14 0.16 0.15 0.14

Note: It is clearly found that the best-fitted D-vine structure-2 constructed in the nonparametric distribution setting are very much closer to its empirical estimates.
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In conclusion, the above investigations confirm that the nonparametric vine density
is much better in trivariate dependence analysis of CF events. This framework has no
prior distributional assumption about their copula joint density and its marginal behaviour.
Finally, the selected nonparametric vine density is employed to estimate trivariate joint
cumulative distribution functions (JCDF) and joint return periods.

3.5. Compound Flooding Events Risk Assessments

Flood frequency analysis (FFA) establishes an interrelationship between the flood
design quantiles and their non-exceedance probabilities by fitting the best-fitted univari-
ate or multivariate probability distribution function. Primary return periods comprise
two different joint cases, OR- and AND-joint. The fitted nonparametric D-vine structure
was employed in estimating trivariate joint cumulative distribution function (JCDF) and
trivariate return periods for OR- and AND-joint cases for different possible combinations
of flood events; refer to Table 9 and Equations (16) and (17). Table 9 also shows estima-
tions of the bivariate joint return periods using the best-fitted 2D nonparametric copula
density (refer to Table 3). It was found that the trivariate return periods for the AND-joint
case were higher than for the OR-joint case for the same flood combination. Similarly,
the bivariate AND-joint case was higher than the OR-joint case for the same flood pair
combinations. These results further reveal that the occurrence of trivariate flood events
simultaneously is less frequent in the “AND” case and more frequent in the “OR” joint case.
The same observations are also valid for the bivariate case. For instance, refer to Table 9: a
1-in-100-year flood event with the following characteristics—rainfall = 147.541 mm, storm
surge = 0.337486 m and river discharge = 5951.523 m3s−1—the trivariate OR- and AND-
joint return periods are 33.66 years and 3486.75 years. For the same flood characteristics
mentioned above, the bivariate return periods for OR- and AND-joint cases are 50.92 years
and 2744.23 years for flood pair rainfall and storm surge events; 50.26 years and 9633.91
years for storm surge and river discharge; and 50.29 years and 8517.88 years for rainfall
and river discharge pair events.

Table 9. Comparing primary return periods (univariate vs. bivariate vs. trivariate) for a different
possible combination of triplet flood events.

Estimated Flood Quantiles Using the Inverse Cumulative
Distribution Functions (CDFs) of Best-Fitted Marginal

Distribution via KDE
Bivariate Joint Return Periods (JRPs)

Trivariate Joint
Return Periods

(JRPs) Estimated
Using the

Best-Fitted D-Vine
Structure (Case-2)

Return
Period
(Years),

T

Annual
Maximum

24 h
Rainfall
(R) (mm)

Maximum
Storm Surge

(m) (SS) (Time
Interval

= ±4 Days)

Maximum
River

Discharge
(RD) (m3s−1)

(Time Interval
= ±4 Days))

OR-
JRP,
TOR

RS

AND-
JRP

TAND
RS

OR-
JRP,

TOR
SRD

AND-
JRP

TAND
SRD

OR-
JRP,

TOR
RRD

AND-
JRP,

TAND
RRD

OR-JRP,
TOR

RSRD

AND-
JRP,

TAND
RSRD

5 97.04 0.151 2573.15 3.08 13.17 2.84 20.52 2.88 18.91 2.06 15.95

10 110.73 0.228 3367.54 5.69 40.97 5.32 81.46 5.34 77.23 3.70 50.42

20 128.04 0.277 5408.36 10.77 139.73 10.31 328.39 10.32 318.89 7.02 173.06

50 143.42 0.316 5854.64 25.85 760.16 25.29 2162.62 25.30 2063.98 17.00 950.29

100 147.54 0.337 5951.52 50.92 2744.23 50.26 9633.91 50.29 8517.88 33.66 3486.75

It is observed from the above-estimated return periods (refer to Table 9) that it would be
preferable in practice to use trivariate return periods instead of the bivariate (or univariate).
The above results also reveal that the accountability of both primary joint return periods
is essential; just considering either AND-joint or OR-joint case would be problematic in
the hydrologic risk evaluation. They also depend on the nature of water-related problems,
which usually decide the importance of the different types of return periods.
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In our current study, the developed nonparametric D-vine model was employed
further in estimating the failure probability (FP) statistics. This risk approach examined
variation in the trivariate, bivariate and univariate flood hazard events measured by service
design lifetime for different return periods, such as 100 years, 50 years, 20 years, 10 years,
and 5 years; refer to Figure 3a–e. A trivariate flood hazard scenario was found to result
in higher-value FP than bivariate and univariate events. Both the trivariate and bivariate
(also univariate) hydrologic risk or FP statistics are reduced when the return increases. FP
statistics increase when there is an increase in the service design lifetime of the hydraulic
infrastructure under consideration. For instance, at the return period of 100 years, the
estimated value of FP statistics is 0.778 (for trivariate hazard scenario) and 0.629 (for
bivariate hazard scenario) at a 50 year design lifetime. When considering a higher design
lifetime, say 100 years, for the same return periods (100 years), the estimated value is
0.951 (for the trivariate hazard scenario) and 0.862 (for the bivariate scenario). Similarly, at
100-year return periods, the trivariate and bivariate hazard scenario is 0.933 and 0.832 (at
90 years design lifetime). When reducing the return periods to 50 years, the value is 0.995
and 0.971 at the same design lifetime (90 years).

From the above results, it is inferred that observing the joint behaviour of the storm
surge event, rainfall event, and river discharge is essential in reducing the risk of coastal
flood hazard. Considering the univariate probability analysis or even bivariate joint be-
haviour may underestimate the level of risk In conclusion, ignoring the trivariate probability
analysis would be a problem which could result in the underestimation of FP. Their joint
probability occurrence facilitates a better understanding and realization of extreme com-
pound scenarios. All the above-discussed analytical and graphical investigations are crucial
for sustainable design and planning in coastal flood management strategies.
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Figure 3. Assessments in the hydrologic risk of CF events for return periods (RPs) (a) 100 years,
(b) 50 years, (c) 20 years (d) 10 years, (e) 5 years [Note: A [red colour]—describing trivariate CF
hazard scenario for OR-joint case; B [green colour]—describing bivariate CF hazard scenario between
flood pair rainfall and storm surge for OR-joint case; C [blue colour]—describing bivariate CF hazard
scenario for flood pair storm surge and river discharge for OR-joint case; D [grey colour]—describing
bivariate CF hazard scenario for flood pair rainfall and river discharge for OR-joint case; E [pink
colour]—describing univariate hazard scenario through rainfall events; F [yellow colour]—describing
univariate hazard scenario through storm surge events; G [purple colour]—describing univariate
hazard scenario through river discharge events].
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4. Research Summary and Conclusions

This study incorporated the D-vine copula in the nonparametric fitting procedure to
model trivariate joint probability analysis of the storm surge, river discharge and rainfall in
the compound flood risk assessments. The common forcing mechanisms that can derive
multiple extreme events either successively or in close succession in the coastal regions can
exacerbate the impact of flooding events. A comprehensive compound flood risk under-
standing can demand the accountability of multiple flood-driving agents simultaneously
because the complex interplay between them can be devastating. The performance of
the parametric and semiparametric approach in the vine framework was also compared
with the proposed nonparametric vine density in the CF dependence. The traditional vine
framework was defined by incorporating multiple parametric class 2D copula densities
with parametric 1D univariate margins. This parametric density (and their marginal distri-
bution) approximation had some statistical constraints already discussed in Section 1. The
nonparametric via the Bernstein estimator and beta kernel copula estimator is a much more
comprehensive way of vine construction, where the fitted 2D copula densities between each
flood pair can adapt to any dependence structure without the requirement of any specific
or fixed probability density structure. Conversely, the semiparametric vine framework
integrated multiple 2D parametric class copulas with nonparametric marginal pdfs via the
Kernel density estimation (KDE). The main findings of this study are summarized below:

1. This study compounded the joint relationship between annual maximum 24 h rainfall
and their associated storm surge and river discharge observed within a time lag of
±4 days from the date of highest rainfall events. Our previous study [63] already
examined the degree of mutual concurrencies and confirmed a significant positive
correlation between selected flood contributing-variables.

2. Our previous study confirmed that rainfall and storm surge events did not exhibit any
significant trend or serial correlation (or autocorrelation). From our present study [63],
it was also confirmed that both variables are homogenous. However, the storm surge
events exhibited nonstationary behaviour (time trend with non-homogeneity), but no
serial correlation was identified.

3. The nonparametric Normal KDE is selected as the most parsimonious for all three
targeted flood variables (refer to Table 2a–c). Additionally, the results were the same
when comparing the performance with the best-fitted parametric function (GEV,
NORMAL, GEV [63]; refer to Table 2a–c. This further reveals that a lack of prior
distributional assumption can result in a better explanation of the targeted flood
marginal distribution behaviour.

4. The 3-D vine copula was constructed by permutating the conditioning variable’s loca-
tion, which resulted in three different D-vine structures. In constructing the D-vine
copula nonparametrically, it was found that the Bernstein copula fit best for flood
pairs rainfall–storm surge and storm surge and river discharge, and the beta kernel
estimator fit best for pair rainfall–river-discharge. All the selected nonparametric
2D copulas were employed in the 3D vine construction for three different D-vine
structures. The fitness test statistics confirmed that nonparametric D-vine structure-2
(case-2) performs better when considering storm surge as a conditioning variable
(with the Bernstein copula estimator fitted in both the first and second tree levels). It
is important to note that it is much more practical to consider each targeted variable
separately as a conditioning variable instead of just fixing it in the vine construc-
tion. This approach can generate multiple possible structures for selecting the most
justifiable one.

5. Similarly, the parametric and semiparametric vine fitting approaches selected D-vine
structure-3 (rainfall as a conditioning variable; refer to Tables 5 and 6) as the most
justifiable density based on different GOF test statistics.

6. Best-fitted models have been compared analytically, such as nonparametric, semi-
parametric, and parametric fitting-based D-vine structures. Results confirmed the
adequacy of the proposed nonparametric vine density. The model’s reliability was
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investigated analytically by comparing the theoretical and empirical Kendall’s tau.
Results revealed that the selected D-vine structure-2, in the nonparametric fitting
procedure, outperformed the others. In other words, the selected vine structure
regenerates historical flood events efficiently. The adequacy of D-vine structure-2
(Nonparametric framework) was further investigated graphically through overlapped
scatterplots between historical observation and generated samples. It is clearly noted
that the fitted model effectively captured the natural mutual dependencies of historical
flood events. In conclusion, our proposed vine copula density in the nonparametric
fitting is a much better alternative to the traditional parametric vine approach.

7. The best-fitted nonparametric vine density was employed to estimate trivariate pri-
mary joint return periods for OR- and AND-joint cases. The OR-joint case resulted
in lower return periods than the AND-joint case for the same flood combinations.
It was noted how important it is to take accountability for trivariate return periods
rather than just considering a bivariate (or univariate) approach, which would be
problematic and less efficient for solving different water-related decision-making.

8. The trivariate and bivariate joint CDFs were employed in estimating failure probabil-
ity (FP) statistics which highlight the hydrologic risk due to the compound effect of
rainfall, storm surge and river discharge events in the trivariate flood events. Investi-
gation revealed that FP statistics could be underestimated if neglecting the trivariate
joint probability analysis between targeted flood characteristics compared to when
considering the same flood variables in pairwise joint modelling. The FP statistics
were higher when considering trivariate joint distribution for the OR-joint event than
when considering bivariate joint dependency between flood pairs. The hydrologic risk
(trivariate, bivariate and univariate events) decreases with an increase in the return
periods. At the same time, hydrologic risk increases, followed by the service design
lifetime of hydraulic infrastructure under consideration. The same investigation also
found that the FP of univariate flood events is much lower than trivariate (and bivari-
ate) events. These further reveals that compound events may not be devastating if
each flood source variable is considered separately.

This study has a few limitations. Firstly, this study only considered 46 years of the
observational dataset. It might cause a source of uncertainty in the estimated outcomes.
It could be preferred to take long-term data to reduce or minimize the risk of inheritance
uncertainty. Secondly, our proposed model considers nonparametric distribution, both uni-
variate marginals and multivariate nonparametric copula density in the vine construction.
The model compatibility and performance have already been compared thoroughly with
the existing parametric (or semiparametric) vine framework. It could be denied that there
is much scope for applying this nonparametric framework to model the joint behaviour of
different possible extreme events across the world. Even though it is possible to extend this
proposed model to higher dimensional modelling for more than three variables. However,
on the other side, it might not be easy to extrapolate to high return levels. It needs to be
addressed in extreme event modelling. Our present study is not tackling this issue, which
will be considered in our further study.
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