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Abstract: This study was conducted to map flood inundation areas along the Manafwa River, Eastern
Uganda using HECRAS integrated with the SWAT model. The study mainly sought to evaluate
the predictive capacity of SWAT by comparisons with streamflow observations and to derive, using
HECRAS, the flood inundation maps. Changes in Land-use/cover showed by decrease in forest
areas and wetlands, and conversions into farmlands and built-up areas from 1995 to 2017 have
resulted in increased annual surface runoff, sediment yield, and water yield. Flood frequency
analysis for 100-, 50-, 10-, and 5-year return periods estimated peak flows of 794, 738, 638, and
510 m3/s, respectively, and total inundated areas of 129, 111, 101, and 94 km2, respectively. Hazard
classification of flood extent indicated that built-up areas and commercial farmlands are highly
vulnerable, subsistence farmlands are moderately to highly vulnerable, and bushland, grassland,
tropical high forest, woodland, and wetland areas are very low to moderately vulnerable to flooding.
Results demonstrated the usefulness of combined modeling systems in predicting the extent of flood
inundation, and the developed flood risk maps will enable the policy makers to mainstream flood
hazard assessment in the planning and development process for mitigating flood hazards.

Keywords: Eastern Uganda; flood plains; flood hazard maps; HEC-RAS; return period; SWAT

1. Introduction

In recent years, variability in natural disasters has increased due to the changes in
global climate, land use/cover, and socio-economic development [1]. Statistics show that
318 natural disasters affected 122 countries worldwide in the year 2017 alone, the impacts of
which resulted in 9503 deaths, 96 million people affected, and USD 314 billion as economic
damages, and floods accounted for 38.3% of these disasters and 35% of deaths, affecting
59.6% of people’s livelihoods and 6.2% of economic damages [2]. Uganda, like other low-
income countries, is vulnerable to extreme weather events such as droughts and floods [3].
In Eastern Uganda, the low-lying areas of Butaleja district are vulnerable to flooding [4],
and more recently, in December 2019, floods led to four deaths, and over 2000 people were
displaced [5].

Flood inundation mapping plays an important role in designing sustainable plans,
protecting human properties and lives, and mitigating disaster risks [6]. It is also a crucial
step in developing flood hazard maps and conducting proper flood assessments [7]. Flood
inundation mapping usually requires repeated observations of the flooded area and inun-
dation extents through remote sensing images [8] or ground observations [9]. Obtaining
representative meteorological data for watershed-scale hydrological modeling can be dif-
ficult and time-consuming [10]. The difficulty in collecting data can be attributed to the
following reasons: (i) lack of reliable equipment, (ii) absence of a good archiving system
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and software to store and process the data, and (iii) lack of funds to organize data collection
campaigns [11]. It is also worth mentioning that once the data have been captured and
archived, accessing them is quite costly [12]. Weather stations based on the ground do not
always adequately represent the weather occurring over a watershed because they can
have gaps in their data series and can be far from the watershed of interest or recent data
are not available [13]. For data-scarce areas, hydrological and hydrodynamic models as
such play a critical role in flood simulations and risk assessment [14].

Hydrologic models rely on the parameterization of watershed properties and rainfall
patterns and depths to produce a flood hydrograph of discharge at discrete time steps [15].
These models have become widely used in flood forecasting, stream flow prediction, and
quantifying effects of climate change and land use impacts or other spatially distributed
properties. However, their limited routing methods do have some drawbacks in simulating
flows in large watersheds. Examples of hydrologic modeling tools include the wflow, Hy-
drologic Engineering Center–Hydrologic Modeling System (HEC–HMS), the Hydrologic
Simulation Program–FORTRAN (HSPF), Soil and Water Assessment Tool (SWAT), and
MIKE-SHE [15]. On the other hand, hydrodynamic modeling tools are based on the solu-
tions to St. Venant equations to calculate open channel flow. The most commonly used of
these models are either one-dimensional or two-dimensional. Widely used hydrodynamic
modeling tools include FLO-2d, Lisflood-FP (1D and 2D models), Water Quality Analysis
Simulation Program (WASP), CE-QUALW2, Environmental Fluid Dynamics Code (EFDC),
EPDRIV1, Hydrologic Engineering Center River Analysis System (HECRAS), MIKE11 (1-D
model), MIKE21 (2-D model), and SOBEK [15]. The comparison between models has been
a significant issue of debate in the scientific fraternity [16,17]. The resulting differences
are attributed mainly to the quality of topographic and input data [18] and less to the
complexity of the phenomenon itself [19]. Several studies have compared the performance
of 1D and 2D hydraulic models for river flood simulations [16,20] and have concluded
that all models have proven sufficiently accurate, but they still have discovered that flood
inundation modeling involves several sources of uncertainty such as (1) input data (bound-
ary and initial condition data, digital elevation models and channel bathymetry, hydraulic
structures, roughness parameterization), (2) model structure (1D, 2D, quasi 2D, 1D/2D),
and (3) internal model parameters. Furthermore, they emphasize the fact that no matter
the quality of the input data, provided the user does not properly fit the data into the
appropriate geometrical description of the model, the final results of the simulation will be
of considerably lower accuracy [16].

Combining hydrodynamic models with hydrological models often compliments and
overcomes the shortcomings of either type of modeling approach [21]. In the current
study, the hydrologic modeling tool, namely the Soil and Water Assessment Tool (SWAT),
is used to derive flow hydrographs at designated locations, which were then fed into
the hydrodynamic modeling tool, namely the Hydrologic Engineering Center’s River
Analysis System (HECRAS) for flood prediction. The SWAT and HECRAS programs
were adopted in this study because they are freely available, user-friendly, peer-reviewed,
are continuously improved and developed. The SWAT modeling system is a long-term,
continuous model simulation of the watershed developed by the United States Department
of Agricultural (USDA) [22]. SWAT has proven to perform well in streamflow and base-flow
simulations around the world and in complex catchments with extreme events [23] since it
allows the interconnections of different physical processes [24]. Additionally, the model
is recognized as suitable for investigating long-term impacts, particularly in watersheds
without conventional gauges [25]. HECRAS is one of the most commonly used modeling
systems to analyze channel flow and floodplain delineation [26]. HECRAS uses geometric
data representation as well as geometric and hydraulic computation routines for a network
of natural and constructed channels of the river. HECRAS has the ability to make the
calculations of water surface profiles for steady and gradually varied flow as well as for
subcritical, super critical, and mixed flow regimes. HECRAS is also capable of doing
modeling for sediment transport, which is notoriously difficult. The HECGeoRAS is a GIS
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extension with a set of procedures, tools, and utilities for the preparation of river geometry
GIS data to import into HECRAS, and it is used to generate the final inundation map [27].

In recent decades, many researchers have performed flood hazard mapping in various
parts of the world, as reported elsewhere [26]. Generally, basin-scale flood hazard mapping
is performed worldwide [26]; however, limited research exists in the literature for Uganda
river basins [28]. The main objective of this study was to analyze the inundation area along
the Manafwa River network and to assess the flood hazard in the Manafwa catchment. The
specific objectives pertaining to this study were to: (1) assess the land-use/cover changes,
(2) evaluate the impact of LULC on the hydrologic characteristics, (3) evaluate the predictive
capacity of the SWAT modeling system by comparisons with streamflow observations,
and (4) derive using HECRAS the flood hazard maps. In this study, we aim to address
one scientific question: (1) how suitable is the coupled hydrology-inundation model for
producing probability maps of flood plain areas for mapping vulnerability and risk areas
in a data-scarce area? Integrated modeling is the focus of this study because by using it
to simulate the rainfall depths at different probabilities, complete flood hazard maps are
obtained. Additionally, it can be used for other purposes in the design and analysis of flood
mitigation measures, as well as flood forecasting and warning systems. The novelty of
the present study is to combine the physically based distributed hydrologic model SWAT
with the hydraulic model HEC-RAS for flood prediction in Eastern Uganda, which has not
been conducted before for tropical catchments and for small watersheds. The study area is
an important hydrological region in Uganda, very populous with extensive areas of rice
cultivation, and no similar studies (to the authors’ knowledge) have been conducted in the
past on the Manafwa Catchment. The Office of the Prime Minister (OPM) in Uganda will
be in a position to strengthen the catchment planning process, and this will be a platform
for further studies to be carried out on other catchments in the country.

2. Materials and Methods
2.1. Study Area

The Manafwa catchment covers a total area of 502 km2 in the Mt Elgon region, located
in the eastern region of Uganda (Figure 1). The catchment is characterized by high relief in
the East, with altitudes ranging from 1041 to 4301 m above sea level, and its main stream
drains from Mt Elgon to Lake Kyoga in downstream. The annual mean temperature is
23 ◦C, and the mean annual rainfall is 1500 mm. The annual rainfall follows a bimodal
pattern, marked by the dry season covering the period of June–August (JJA) and December–
February (DJF); and the rainy season occurs during the months of March to May (MAM) and
short rains in September–November (SON). The geology in the Mt. Elgon region comprises
mainly Pre-Cambrian and Cainozoic rock formations, including volcanics, granites, and
sediments. The predominant soil type is Vertisols, regionally known as “black cotton soils”.
Generally, the soils in the highlands are clays, while those in the midlands and the lowlands
are clay loams or sandy. Land-use/cover changes in the catchment are characterized by
the conversion from natural forest to other land-use/cover types, especially crop lands
and grazing, due to the high population growth rate of 3.5% increasing demand for arable
lands for crop production. The catchment is also characterized by low-income generating
activities and weak infrastructural and service facilities.
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Figure 1. Map of the study area.

2.2. Hydrological Modelling
2.2.1. Model Input Data

In this study, the SWAT model [22] was used to simulate discharge data at the required
station in the catchment for the chosen time period. A 30-m spatial resolution digital
elevation model (DEM) from the Shuttle Radar Topography Mission (SRTM) downloaded
from https://earthexplorer.usgs.gov/ (accessed on 10 July 2018) was used to derive the
topographic information used for drainage pattern definition. A soil map was obtained
from FAO, Scale- 1:50,000 (2000); Land cover maps of 1995, 2008, and 2017 (Figure 2a–c) with
a spatial resolution of 30 × 30 m were obtained from National Forestry Authority (NFA),
which is the mandated institution required to frequently monitor land use/cover changes in
Uganda; Relative humidity, wind speed, solar radiation, and the minimum and maximum
air temperatures were obtained from the Climate Forecast System Reanalysis (CFSR),
which was designed based on the forecast system of the National Centers for Atmospheric
Prediction (NCEP) from 1981 to 2013 https://globalweather.tamu.edu (accessed on 10 July
2018). The rain gauge network of the area is very sparse, and as such, the precipitation
data were downloaded from CHIRPS for the 1981–2013 period. Daily discharge data were
acquired from the Directorate of Water Resources Management, MWE for the period of
1981–2013 obtained from the Manafwa river gauge (station ID 82212)

https://earthexplorer.usgs.gov/
https://globalweather.tamu.edu
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2.2.2. Model Set-Up and Calibration

The initial model setup was carried out with the Arc SWAT 2012 (revision 664) using
the DEM. A total of 19 sub-catchments were defined with 73 Hydrologic Response Units
(HRUs) from a unique combination of land use/cover, soil type, and slope at thresholds
over the sub-catchment area of 10% for all categories. Surface runoff and infiltration were
computed using the Soil Conservation Services (SCS) curve number method. Evapotranspi-
ration was calculated based on the Penman Monteith method using the obtained climate
data (mean daily temperature, solar radiation, and wind speed). The lateral flow was
calculated using a kinematic storage model described in [22]. After the initial setup, the
model was calibrated and validated at a daily resolution using the Sequential Uncertainty
Fitting (SUFI-2) algorithm in the SWAT Calibration and Uncertainty Program (SWAT-CUP,
version 5.1.6.2) [22], following the procedures of [23]. The SUFI-2 program was applied for
parameter optimization, and Latin Hypercube sampling iteratively discarded the worst
simulations by rejecting the 2.5th and 97.5th percentile of the cumulative distribution.
Thus, the best 95% of simulations generated a parameter range (95% prediction uncertainty,
95PPU) rather than a single final parameterization. The uncertainty band (95PPU) was used
to account for the modeling uncertainty [22]. Calibration of the streamflow was performed
from the year 2000 to 2010, and the validation was performed from the year 2011 to 2013.

2.2.3. Model Performance Evaluation

In this study, the model performance during calibration and validation was evaluated
based on three quantitative statistics: specifically, the coefficient of determination (R2) using
Equation (1), the Nash-Sutcliffe efficiency (NSE) using Equation (2), and the percent bias
(PBIAS) using Equation (3). The coefficient of determination (R2) ranges between 0 and 1.0,
with high values indicating less error variance. The NSE, which was used as the objective
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function, ranges between −∞ and 1.0. An NSE of 1.0 indicates a perfect fit between the
simulated and observed data [29]. The optimal value of PBIAS is 0%, with positive and
negative values indicating model underestimation and overestimation bias, respectively.
The model performance was considered to be satisfactory if NSE ≥ 0.50, R2 ≥ 0.50, and
PBIAS ≤ ±25% [29].

R2 =
[∑n

i=1

(
Oi − Ò

)(
Pi − Ṕ

)
]
2

∑n
i=1 (Oi − Ò)

2
∑n

i=1 (Pi − ṕ)2
(1)

NSE = 1 − ∑n
i=1 (Oi − Pi)

2

∑n
i=1 (Oi − Ò)

2 (2)

PBIAS = 100∗ ∑n
i=1(Oi − Pi)

∑n
i=1 Oi

(3)

where Oi and Pi are the measured and simulated data, respectively, Ò and Ṕ are the means
of measured and simulated data, and n is the number of observations. The modeling
uncertainty was quantified as the P- and R-factor [22]. The P-factor measures the ability of
the model to bracket the observed data with the 95PPU. The P-factor is between 0 and 1,
where 1 means a 100% bracketing of the observed data. The R factor represents the width
of the 95PPU, ranges from 0 to 8, and should be below 1, implying a small uncertainty
band [22].

2.3. Hydraulic Modelling Using HECRAS

The hydraulic model used for our study is based on Hydraulic Engineering Center’s
River Analysis System (HEC-RAS), version 5.0.3 [30]. This model was designed to perform
1D steady flow as well as 2D unsteady flow simulations for a river flow analysis and
sediment transport and water temperature/quality modeling. The model uses geometric
data representation as well as geometric and hydraulic computation routines for a network
of natural and constructed channels of the river. The model required to discharge, DEM
as a boundary condition, and Manning’s roughness coefficient derived from LULC for
calibration. The Model was discretized into an equal number of grid cells of 30 m × 30 m,
i.e., equal geometry to maintain spatial uniformity. HECRAS modeling within the Manafwa
floodplain followed three steps (Figure 3).
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Step one—This preprocessing stage involved the manual digitization of thematic
vector layers (e.g., river network, stream centerline, river banks, flow paths, cross sections)
in ArcGIS 10.5. software based on the STRM DEM with 30 m spatial resolution and
generation of the attribute table for each of them. The DEM was used as an input in the
RAS mapper of HECRAS 2D to develop a Digital Terrain Model (DTM). The DEM data
were added to the New Terrain Layer dialogue of the RAS mapper in HECRAS 2D. A new
terrain layer was created with terrain files that were used for evaluation. This information
was saved in the terrain folder in GeoTiff format. In addition to GeoTiff, two more files
were created in. hdf and. vrt formats. The file. hdf was created in the RAS mapper, which
contained information on the raster data. The. vrt file helped visualize and display multiple
data. For visualizing flood plain, the model geometry was coupled to DTM, and the DTM
acted as a basis to create a 2D mesh using the polygon shapefile. The DEM and DTM were
used for computing the water surface elevations to visualize floodplain geometry and flood
risk analysis. The importance of DEM’s accuracy has been highlighted by several authors,
especially in two-dimensional hydraulic–hydrodynamic modeling applications [20].

Step two (Figure 3)—This processing stage involved the import of the required param-
eters (e.g., Manning roughness coefficient, hydrological data) into HECRAS software to run
the 2D flood simulation. Thereby, the Manning roughness coefficient (n) was calculated
based on land use/cover classes in combination with typical roughness coefficient tables for
each cross-section, stream centerline, and river bank intersections with values (built-up area:
n = 0.3; farmland: n = 0.025; bushland: n = 0.035; tropical high forest: n = 0.1; woodland:
n = 0.06; wetland: n = 0.04 [31]. Steady flow analysis was used instead of unsteady flow
analysis because, in the second case, the HECRAS software needs a hydrograph, which we
could not obtain from the local authorities. Thereby, to overcome this limitation, we used
the flow rate for the gauging station.

Step three—This post-processing stage involved exporting the HECRAS results to the
software and generating the flood patterns with the different recurrence intervals. The
validation of the results was performed by comparing the real discharge recorded at the
gauging station with the computed discharge hydrographs. A detailed description of
HECRAS is provided by [32,33].

2.4. Flood Hazard Analysis

To assess flood hazard, the DEM was converted into Triangulated Irregular Network
(TIN) format, and TIN showed that the Elevation of the study area ranged from 1070
to 4260 m (Figure 4). After that, the river cross-sections, stream centerline, stream bank
lines, flow lines, and other river geometry information were extracted from the TIN for
the HECGeoRAS model. The geometric data of the Manafwa River basin are shown in
Figure 5. At the same time, the Manning roughness coefficient (n) was calculated based
on land use/cover classes in combination with typical roughness coefficient tables for the
study area [30,31]. After the RAS geometry data preparation, the HEC-GeoRAS model was
used to generate the RAS GIS import file (final river geometry file) that was used as input
for HECRAS.
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The outputs of HECGeoRAS preprocessing provided GIS to RAS import files; there-
after, two-dimensional hydrodynamic models were created in HECRAS 5.0.3 for the flood
frequency analysis of 5, 10, 50, and 100 years return periods. The Manning’s ‘n’ value,
flow data, and boundary conditions were inputted in the imported GIS2RAS file, and the
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HECRAS results were obtained. To perform HECRAS analysis, River discharge data were
used as the upstream boundary condition, while normal depth was used as the downstream
boundary condition. These boundary conditions require the input of the Energy Grade
Line (EGL) slope at the downstream boundary. The flow data obtained from SWAT and
geometry obtained from the DEM created were also inputted. The cross-sections were
created in HEC-GeoRAS. Thereafter, the water surface profiles were obtained, and the
sufficiency of cross-section coverage was checked. River cross-sections were used at 100 m
distance each, and 500 cross-sections were generated for the analysis. The 1D model was
connected to the floodplain, and a 2D computational mesh was created at 100 × 100 m grid
size. Although the cell size is rather large, considerable hydraulic details are still retained
within a cell using the 2D Geometric Preprocessor. The algorithm preprocesses cells and
cell faces to develop detailed hydraulic property tables (elevation versus wetted perimeter,
elevation versus area, roughness, etc.) based on the underlying terrain (5 × 5 m in this
case). As such, HEC-RAS can produce detailed results (for example, a cell can be partially
wet), which is an advantage over other models that use a single elevation for each cell [30].
The outputs were exported to GIS from HECRAS, and water surface TINs were created in
the Arc GIS environment. Thereafter, flood plain extent and depth grids were obtained,
and flood hazard maps for 5-, 10-, 50-, and 100-year return periods were prepared using
Arc GIS.

A flood hazard assessment was undertaken based on the flood water depth indicated
by the prepared flood map of the Manafwa watershed. For this, hazard levels were ranked
in terms of water depth, and these levels were determined by reclassifying the flood grid
water depth bounding cells. Five hazard levels were categorized based on water depth
such as very low (<0.5 m), low (0.5–1 m), moderate (1–1.5 m), and high (1.5–2 m) and very
high (>2 m) area bounded by each level calculated by modification of the scale used in the
MLIT methodology [34] and flood hazard maps were prepared.

2.5. Flood Vulnerability Analysis

The first step in vulnerability analysis was to identify the elements at risk in the study
area. In this study, elements at risk were identified by overlying the land-use/cover onto
flood inundation maps. LULC dataset was generated from the digital image classification
of Landsat, satellite images of 1995, 2008, and 2017 with a spatial resolution of 30 × 30 m,
downloaded from Global Land Cover Facility (https://glovis.usgs.gov/) (accessed 10 July
2018 (Table 1). Images from the same period (March–May), i.e., the first rainy season,
were selected in order to minimize the seasonal effect on the classification results. In
this study, supervised classification of the maximum likelihood algorithm was applied
to classify Landsat images into discrete LULC categories. The area was classified into
the following land-use/cover classes: built-up areas, bushlands, grassland, commercial
farmland, subsistence farmland, tropical high forest, woodland, and wetland. Information
collected during the field survey as ground-truthing point was used to assess the accuracy
of classification. The elements at risk identified for the study areas included commercial
farmland, subsistence farmland, and rural settlements (i.e., homesteads) because other land-
use/cover classes were not important from a flood risk point of view. Finally, inundation
layers were overlaid on the land-use/cover layer to obtain the overlaid zones. From
the ArcGIS overlay analysis, different sorts of inundation statistics were generated. The
land-use/cover areas under the influence of each flooding event were reclassified for the
calculation of the total vulnerable areas.

Table 1. Summary of Satellite Imagery used for Land cover change analysis.

Satellite Sensor Path/Row Date of Acquisition

Landsat 4–5 TM 171/059 2 April 1995
Landsat 7 ETM 171/059 12 March 2008

Landsat 8 OLI/TIRS LANDSAT 8 171/059 14 April 2017

https://glovis.usgs.gov/
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2.6. Flood Risk Analysis

The flood risk analysis included the combination of the results of both the vulnerability
analysis and the hazard analysis by intersecting the flood depth polygons prepared during
the hazard analysis with the land-use/cover vulnerability polygons. The resulting attribute
tables were reclassified to develop the land-use/cover-flood depth relationship. Potential
flood areas in terms of both the land cover vulnerability classes and water depth hazard
classes were then presented. Flood risk maps were then prepared by overlaying the flood
depth grids with the land-use/cover map. The following equation was used to generate
the flood risk map of the Manafwa catchment in the raster calculator of ArcGIS. Finally,
and based on Equation (4), flood risk was reclassified into five classes, as shown in Table 2

Risk Map = Hazard Map × Vulnerability Map (4)

Table 2. Classes of flood risk in Manafwa, which results from the product of hazard and vulnerability.

Flood Risk Value Risk Class (RC) Risk Level (RL)

<0.5 1 Very Low

0.5–1.0 2 Low

1.0–1.5 3 Moderate

1.5–2.0 4 Significant

>2.0 5 Extreme

3. Results
3.1. Land Cover Classification in Manafwa Catchment

There are eight land-use/cover types identified in the Manafwa catchment, which are
built-up area, bushland, commercial farmland, grassland, subsistence farmland, tropical
high forest, wetland, and woodland (Figure 6). Subsistence farmland, Tropical High forest,
wetland, and woodland were the dominant LULC types at the beginning of the study
period (Figure 6). However, bushland, wetland, and tropical high forests significantly
declined whilst subsistence farmland, commercial farmland, and woodland increased
during the 1995–2008 period. The period of 2008–2017 is characterized by an increase in
bushland, commercial farmland, and subsistence farmland with a marked decrease in the
tropical high forest, wetland, and woodland.
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3.2. Model Calibration, Sensitivity, and Uncertainty Analysis

Through the sensitivity analysis of the SWAT model, 14 parameters with higher sensi-
tivity were selected to calibrate and verify the model (Table 3). Sensitivity was evaluated
based on t-stat values (a higher absolute value is more sensitive). Significance was also
determined based on the p-value. Sequential Uncertainty Fitting program (SUFI-2) flow
calibration was performed for the simulated results based on the sensitive parameters.
This was conducted by simulating the flow for 26-year period, including two-year warm
period from 1981–2013. The values of NSE and R2 (Table 4) after calibration are greater than
0.65, which is the best predictor of the model. After calibrating (2000–2010) and obtaining
acceptable values of NSE and R2, validation of simulated stream flow for 3-year period,
including one-year warm-up period from 2011 to 2013, was performed using monthly
observed flows. The results after validation were also checked using NSE and R2 and had
magnitudes greater than 0.65 and 0.77, respectively, for the 2008 and 2017 (Table 5), except
for 1995, which has an NSE value less than 1. The PBIAS also shows a good estimation
since the values are less than ±25%, except for 1995. The calibrated and validated stream
flow results showed a good agreement with the observed data (Table 4 and Figure 7)
and therefore indicate that the SWAT model is a good predictor of stream flow of the
Manafwa watershed.

Table 3. Flow sensitive parameters and their fitted value in SUFI2.

No Parameter Name Definition Fitted
Value

Min
Value

Max
Value t-Stat

1 R__CN2.mgt Initial SCS runoff curve number for moisture
condition II −0.24 −0.4 0.2 0.53

2 V__ALPHA_BF.gw Baseflow alpha factor (days) 1.52 1.04 1.55 0.09

3 V__GW_DELAY.gw Groundwater delay time (days) 35.26 −50.05 98.83 17.11

4 V__GWQMN.gw Threshold depth of water in the shallow aquifer −0.63 −0.77 0.12 −0.54

5 R__LAT_SED.hru Sediment concentration in later and groundwater
flow (mg/L) 59.56 43.68 74.52 −0.96

6 R__SOL_AWC(..).sol Available water capacity of the soil layer
(mm/mm) −0.30 −0.49 −0.06 −0.44

7 R__CH_K2.rte Effective hydraulic conductivity in main channel
alluvium (mm/h) 46.80 1.07 62.45 −1.53

8 R__CH_N2.rte Manning’s “n” value for the main channel 0.05 0.05 0.12 0.55

9 R__ESCO.hru Soil evaporation compensation factor −0.04 −0.05 0.50 0.15

10 R__OV_N.hru Manning’s “n” value for overland flow 16.04 6.49 16.88 0.56

11 R__SURLAG.bsn Surface runoff lag coefficient 15.19 12.34 17.29 0.91

12 R__RCHRG_DP.gw Deep aquifer percolation factor 1.29 0.92 1.42 0.10

13 R__GW_REVAP.gw Groundwater “revap” coefficient 0.47 0.28 0.76 1.72

14 R__SOL_K(..).sol Saturated hydraulic conductivity (mm/h) 3.37 3.06 5.81 −2.94

Table 4. Summary of calibrated and validated performance criteria.

Performance
Criteria

Calibration (2000–2010) Validation (2011–2013)
Accepted Range [24].

1995 LC 2008 LC 2017 LC 1995 LC 2008 LC 2017 LC

R2 0.94 0.79 0.94 0.81 0.78 0.79 R2 > 0.50

NSE 0.65 0.79 0.74 −1.72 0.69 0.69 NSE > 0.50

PBIAS −30.2 −12 −23.4 −68.8 −14.6 −11.7 PBIAS ≤ ±25%
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Table 5. Flooded areas (km2) in different Land cover types (1995–2017).

Land Cover Type Area (km2) Area (km2) Area (km2) % Change % Change % Change

1995 2008 2017 1995–2008 2008–2017 1995–2017

Built-up area 0.0 0.1 0.3 200.0

Bushland 2.0 1.8 3.2 −10.0 77.8 60.0

Commercial farmland 6.8 15.7 34.2 130.9 117.8 402.9

Grassland 0.0 0.1 0.01 −90.0

Subsistence farmland 57.3 65.5 67.9 14.3 3.7 18.5

Tropical high forest 1.5 1.2 1.1 −20.0 −8.3 −26.7

Wetland 53.4 35.8 12.3 −33.0 −65.6 −77.0

Woodland 7.7 8.5 9.7 10.4 14.1 26.0
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3.3. Inundation Areas Mapped

The analysis of flood inundation area indicated that a considerable increase in flood
inundation with increasing discharge of flood was shown from 5 years to 100 years return
period (Figure 8). The classification of flood depth areas indicated that 13–19% of the total
flooded areas had water depths greater than 2 m.
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Figure 8. Return Period–Flood Depth Relationship.

3.4. Floodplain Vulnerability

The land cover area under the influence of modeled flood showed that 42.7, 33.7,
10.8, and 5.3 km2 of subsistence farming area, forest commercial farming area, wetland,
and woodland area are respectively inundated by 5-year flood, and the total vulnerable
area is 94 km2 (Figure 9). The very high flood vulnerability areas covered 12.9 km2, and
high vulnerability areas occupied 9.0 km2. Moderate, low, and very low vulnerability
zones were 10.7, 17.4, and 43.9 km2, respectively. Similarly, 67.9, 34.2, 12.3, and 9.7 km2 of
subsistence farming area, forest commercial farming area, wetland, and woodland area
were respectively inundated by a 100-year flood, which showed flooded areas increased
with an increase in flooding intensity; mostly subsistence farming area was inundated by
different year floods, which was followed by commercial farming and wetland area. The
flood vulnerability results for the 100 Yr. return period showed that the total vulnerable area
is 128.7 km2. The very high flood vulnerability areas covered 23.4 km2, high vulnerability
areas occupied 12.1 km2, while moderate, low, and very low vulnerability zones were 20.6,
55.6, and 17.1 km2, respectively.

According to [35], integrated flood management and land cover change, along with
HECRAS hydraulic model simulations, are required for flood risk mitigation. Therefore,
land cover change in the Manafwa basin was analyzed in two time periods, and the
comparisons for the different two time periods shows that flooded area in Commercial
farming, subsistence farming, Bushland, and Woodland has increased, but flooded areas in
Wetland and Tropical High Forest decreased (Table 5).
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3.5. Flood Risk Analysis

The classification of risk for the 5 YR and 100 YR return periods showed that commer-
cial farmland, subsistence farmland, and Built-up/Settlement areas were under extreme
risk of floods (Figure 10). The extreme flood risk areas covered 11.3 km2; significant risk
areas occupied 5.7 km2, while moderate, low, and very low-risk zones were 12.9, 15.9, and
48.2 km2, respectively. Similarly, for the 100 YR return period, the extreme flood risk areas
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covered 20.0 km2, and significant flood risk areas occupied 15.0 km2. Moderate, low, and
very low-risk areas were 24.0, 46.0, and 23.7 km2, respectively.
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The analysis of the relationship between the flood hazard level and settlement area
(Figure 11) indicated a gradual increase in the significant and extreme hazard classes in all
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return periods. There is no change in the very low, low, and moderate hazard classes in all
return periods.
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Figure 11. Risk Classification of Settlement Land Cover Type.

Similarly, Subsistence farming area under a very low hazard class (<0.5 m) is 22.2, 22.6,
18.9, and 11.9 km2 for return periods of 5–100 years (Figure 12). It also shows that there is a
gradual increase in the low, moderate, and extreme hazard classes.
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Figure 12. Risk classification of Subsistence Farming Land Cover Type.

In the commercial farming land cover type, there is a gradual increase in every return
period in the low, moderate, and extreme hazards and a gradual decrease in every return
period in the very low hazard (Figure 13).
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Figure 13. Risk classification of Commercial Farming Land Cover Type.

4. Discussion

SWAT is one of the most widely used models when simulating water balance within
a basin [36]. However, the software has some limitations related mostly to a large num-
ber of input parameters. Sometimes, several parameters must be obtained or estimated
from global databases, equations, or other computer software [37]. The information
gave a satisfactory representation of the total flow behavior in the basin once the model
was calibrated for the different land coverage scenarios. The error metrics for calibra-
tion and validation periods in the Manafwa catchment were “good”, according to [29].
Ref [29] recommended that the general performance of objective functions on monthly
time step calibration are satisfactory if NSE > 0.50 and RSR ≤ 0.70, and if PBIAS ≤ ±25%
for streamflow.

The combination of Arc GIS and HECRAS 2-D flood simulation model indicates the
capability of simulating flood events and spatially depicting the degree of exposure or
vulnerability of the region towards a hazard event in terms of inundation extent and depth
of water levels. The model can be said to have generated reliable quantified output. This
hybrid approach provides quantified information on the water level depths and facilitates
access to the data at any point of interest. As there are no quantified data on the inundation
depths for flood hazards in the study region, the visualization and the quantification of
the flood risks, as facilitated by this approach, can generate invaluable information and
assist the decision-making authorities to making informed choices towards mitigating the
catastrophic effects of flooding disasters.

Whereas in literature, there is considerable debate about whether a 1D or a 2D model
provides a better representation of a flood event [21], it should be noted that even for
the most sophisticated models, the performance of models is influenced by the quality
of the source of information that is available for their parameterization, calibration, and
validation. This is especially critical in undeveloped countries where financial and data
sources are scarce. With regard to the calibration or validation of the model result, it could
have been improved if it had been possible to compare it to an actual flood event, e.g.,
upstream and downstream flow hydrographs, mapped and recorded inundation extents,
depths, or flow velocities. Such data were not available for the model area.
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The lack of appropriate infrastructures and data makes the development of FHA
difficult in African countries beyond the inclusion of this continent in global risk studies,
such as those cited in [38]. In most African countries, the 30 m spatial resolution digital
elevation model (DEM) from the SRTM project or the ASTER project, or the SRTM-derived
‘Bare-Earth’ DEM and Multi-Error-Removed Improved-Terrain (MERIT) DEM are the best
options. The lack of detailed DEMs can be considered as one but not the only key factor of
the limited FHA in Africa. Apart from the lack of DEMs for flood hazard analysis, the poor
quality or limited availability of flow data must be kept in mind [39].

The vulnerability assessment approach used in this study for identifying and provid-
ing a vulnerability rank based on land use/cover in the flood area is a simple yet powerful
approach. It not only identified the most to least vulnerable critical land-use/cover types
but also provided enough information for flood preparedness processes that could signif-
icantly reduce the impact. The approach could easily be extended for the vulnerability
evaluation of other infrastructures in order to estimate economic losses, the navigation
route of people, including high-density areas, and other region-specific important factors.
Moreover, futuristic higher magnitude flood events can be simulated to assess magnified
vulnerability and associated risks. Land use planning decisions could be made based on
flood inundation maps. Following such approaches will help save lives and resources at
the same time and provide a proven and more accurate way to contest the uncertainties of
the natural events causing floods.

It should be kept in mind that uncertainties exist in every stage of flood hazard
mapping, from the beginning of the process (data collection, model selection, parameter
selection, input data, model calibration, operation, and handling of the models) until
the outcome is obtained [40]. The main limitations of this study were data quality and
availability (e.g., missing rainfall and hydrologic data; unevenly distributed discharge and
water level gauges with varying time series length and missing data; little field survey
cross-section data and lack of hydraulic structure data along the river, such as bridges,
weirs, etc.) contributing to uncertainties and inaccuracy in the results. The accuracy of the
flood maps could be improved through the identification of possible sources of uncertainty
and uncertainty analysis; the sources of uncertainty include the DEM resolution. The
current 30 m is not sufficient and could lead to errors. We, therefore, recommended this
for further research, as well as the integration of better-quality data into the models if they
become available.

5. Conclusions

This study presented a systematic approach of coupling the hydrodynamic model
HEC-RAS with the hydrologic model SWAT in delineating flood inundation zones and
subsequently assessing the vulnerability of different land cover types in the Manafwa River
Watershed Eastern Uganda. The HEC-RAS flood simulation model was found to be capable
of simulating flood events and spatially depicting the vulnerability of the region towards a
hazard event in terms of inundation extent, whereas SWAT was proven to be an appropriate
tool in generating simulated flood hydrographs at desired locations. The calibration and
validation results of the streamflow generally show good agreement with the observations
in terms of R2, PBIAS, and Nash-Sutcliffe efficiency coefficient. This study demonstrates a
useful case study for applying the coupled hydrological and hydraulic models for flood
hazard mapping. The integrated model used in this study could also be used for the
analysis and design of possible structural measures and alternatives or be improved to
establish a flood forecasting and warning system. The real-time inundation maps generated
from forecasting systems are also an effective tool to inform relevant stakeholders and can
significantly assist in communication with residents in areas susceptible to flooding. In the
future, additional river survey data and high-resolution satellite images should be used
for calibrating the model and improving the accuracy of flood hazard mapping. More
hydro-meteorological observation stations are advocated to be installed in Manafwa and
its surrounding area to provide first-hand hydrological information.
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The results of the paper can be applied, especially in the areas of prevention, flood
risk management, and crisis management. By incorporating flood maps into the local
development plan of the catchment area, irresponsible expansion and densification of
construction near the watercourse or in areas with moderate and high degrees of flood
hazard could be prevented. In general, it is concluded that the use of integrated models to
develop probabilistic flood hazard maps is an important step in the future flood protection
of the Manafwa River Basin and similar river systems in Uganda and in the region. From
the methodological point of view, the importance of the paper can be seen in the universality
of the proposed steps to assess flood hazard and flood risk, which could be transferred
to other similar flood-prone areas. However, further case studies in other regions should
be undertaken to verify their general applicability. There are several potential research
directions that can be mentioned as the next step, such as the comparison of HECRAS
results with other 2D models such as Iber and BASEMENT. All three models are free,
and such a comparison will highlight the advantages and disadvantages of each model’s
structure as well as the assumptions for the applied location.
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