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Abstract: The present work deals with the reconstruction of the flood wave that hit Mandra town
(Athens, Greece) on 15 November 2017, using the framework of forensic hydrology. The flash flood
event was caused by a huge storm event with a high level of spatial and temporal variability, which
was part of the Medicane Numa-Zenon. The reconstruction included: (a) the post-event collection of
44 maximum water depth traces in the town; and (b) the hydrodynamic simulation employing the
HEC-RAS and MIKE FLOOD software. The derived open dataset (which also includes additional data
required for hydrodynamic modeling) is shared with the community for possible use as a benchmark
case for flood model developers. With regards to the modeling issues, we investigate the calibration
strategies in computationally demanding cases, and test whether the calibrated parameters can be
blindly transferred to another simulator (informed modeling). Regarding the calibration, it seems
that the coupling of an initial screening phase with a simple grid-search algorithm is efficient. On
the other hand, the informed modeling concept does not work for our study area: every numerical
model has its own dynamics while the parameters are of grey-box nature. As a result, the modeler
should always be skeptical about their global use.

Keywords: forensic hydrology; flood modeling; open dataset; HEC-RAS; MIKE FLOOD

1. Introduction

Floods occur in both rural and urban environments and are among the most destruc-
tive natural hazards, creating huge economic losses and casualties at global scale [1,2].
Impervious surfaces pose a major effect on watershed hydrology [2], since urban sprawl
affects total runoff volumes, peak flow rates, and catchment response times. Moreover,
discharges, associated with storm events with high and/or low probability of occurrence
before development, increase after urban development takes place [3]. The combined
effects of urban development and climatic variability may affect the urban water cycle [1].
Moreover, extreme urbanization and the projected climate change have led the scientific
community to focus more on urban flood risk, urban flood dynamics and flood mitigation
measures, estimation of return periods of extreme events through extreme value analysis,
in both quantitative and qualitative terms, and the update of intensity–duration–frequency
curves [4–12].
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In our era, physically based simulators are the main tools used for simulating the
flow dynamics driven by urbanization, land use/land cover (LULC) changes, and climatic
variability in the urban environment [7]. The main approach employed is the 1D approach.
However, 1D-1D, 1D-2D, and 2D approaches are also applied [13]. Various uncertainties,
both aleatory and epistemic, are associated with these models and this is mainly because of
the model structure, initial and boundary conditions, input and forcing data. Moreover,
the rational estimation of the various parameters, incorporated in these models, requires a
calibration procedure [14]. For example, parameters regarding the proper coupling of 1D
flow in the sewer system with 2D flow on the surface of the catchment include the proper
representation of buildings and other obstacles to the flow, the estimation of mass losses
due to infiltration or interception, or the estimation of energy losses due to friction, among
others [14].

Accurate simulation of flood events is extremely difficult. The main reason for this is
associated with the absence of a proper dataset which can be used for model calibration-
validation purposes, especially in urban catchments which are partially gauged or com-
pletely ungauged. It should be noted herein that even in a gauged urban catchment the
monitoring system is often destroyed during a flood. The framework of forensic hydrology,
as proposed by [15], which comprises five steps (i.e., information gathering; hydrometeoro-
logical and hydrological analysis; hydrodynamic analysis; integrative analysis; and final
diagnosis), pays special attention to data collection for a proper reconstruction of the event.
Some recent studies propose the post-event data collection using some proxies as measure-
ments, which are mainly the maximum flood depths at several observational points [16,17],
while other studies are based on data derived by flood event reconstruction using physical
modelling [18,19]. Other strategies with potential merit are the crowd sourcing of data
derived by social media, also focusing on water depths at specific time moment [20], and
finally, remote sensing data, providing flood extents at various time points [21].

This paper is divided in two parts. In the first part, we describe and share a full
dataset, deposited in Zenodo platform, acquired using the forensic hydrology framework
at the site. The flood dataset is associated with the catastrophic flood event that hit Mandra
town in Athens, Greece, on 15 November 2017, causing 24 casualties. The purpose of this
open dataset is to provide a complete dataset for benchmarking flood simulators. In the
second part, we focus on the second and third steps of forensic hydrology framework.
Specifically, we reconstructed the flood event with the assistance of commercial, physically
based simulators, and we investigate some practical issues regarding flood modeling, which
can be summarized as follows: (a) the strategy for calibrating the required parameters
with respect to the computational burden; (b) the potential transferability of the calibrated
parameters from one software to the other, in order to identify if the calibrated parameters
are of global or grey-box nature.

2. Materials and Methods
2.1. Study Area

The town of Mandra is located in Attica, in the western part of the greater metropolitan
area of Athens, Greece (Figure 1). It is built at the outlet of two catchments, namely Agia
Aikaterini and Soures catchments (Figure 1), which are part of the greater river system
of Sarantapotamos, and extends along the eastern-southeastern foothills of Mt. Pateras
(1130 m).

The storm event under study caused the severe Mandra flood, which occurred between
the 14 November 2017 at 23:00 UTC and the 15 November 2017 at 12:00 UTC and was part
of the Medicane Numa-Zenon. It was a highly localized phenomenon with extreme spatial
and temporal variability. According to the National Observatory of Athens (NOA), which
recorded the rainfall field with a mobile X-band polarimetric weather radar (XPOL), the
total rainfall on Mt. Pateras, above Nea Peramos and Mandra, exceeded 200 mm in depth
during the 6-h main storm event, with instant rainfall intensities reaching peak values
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of up to 120–140 mm/h, while the accumulated rainfall in 10 h reached nearly 300 mm
(Figure 2, left).

Hydrology 2022, 9, x FOR PEER REVIEW 3 of 17 
 

 

(NOA), which recorded the rainfall field with a mobile X-band polarimetric weather radar 
(XPOL), the total rainfall on Mt. Pateras, above Nea Peramos and Mandra, exceeded 200 
mm in depth during the 6-h main storm event, with instant rainfall intensities reaching 
peak values of up to 120–140 mm/h, while the accumulated rainfall in 10 h reached nearly 
300 mm (Figure 2, left). 

The response of the storm was a flash flood wave, which hit the town during the 
night, with catastrophic consequences. It is one of the biggest multi-fatality flood events 
recorded in Greece. Several researchers reconstructed the event, simulating the flood hy-
drographs at the inlet of the town [8,22–28]. 

In this work, the input hydrographs were taken from a previous study [29] which 
reconstructed the flood dynamics of Agia Aikaterini catchment using a 2D-SWE-based 
simulator named FLOW-R2D [23]. A parametric and input data uncertainty analysis was 
performed. Therefore, the output was an ensemble of 100 hydrographs at the outlet of the 
catchment and at the inlet of the town (Figure 2, right). The uncertainty band of the flood 
discharge peak ranges between 120 m3/s and 220 m3/s, while the median was about 180 
m3/s. This peak is in accordance with the post event rough estimation of the flood peak 
made by [24]. 

 
Figure 1. General location of Mandra town and the Agia Aikaterini and Soures catchments. 

 
Figure 2. Accumulated rainfall depth recorded between 14 November 2017 at 22:30 and 15 Novem-
ber 2017 at 08:30 GMT (left); Joyplot of the 100 input hydrographs computed at Mandra town start-
ing from 14 November 2017 at 22:30 until 15 November 2017 at 13:30 (right). 

Figure 1. General location of Mandra town and the Agia Aikaterini and Soures catchments.

Hydrology 2022, 9, x FOR PEER REVIEW 3 of 17 
 

 

(NOA), which recorded the rainfall field with a mobile X-band polarimetric weather radar 
(XPOL), the total rainfall on Mt. Pateras, above Nea Peramos and Mandra, exceeded 200 
mm in depth during the 6-h main storm event, with instant rainfall intensities reaching 
peak values of up to 120–140 mm/h, while the accumulated rainfall in 10 h reached nearly 
300 mm (Figure 2, left). 

The response of the storm was a flash flood wave, which hit the town during the 
night, with catastrophic consequences. It is one of the biggest multi-fatality flood events 
recorded in Greece. Several researchers reconstructed the event, simulating the flood hy-
drographs at the inlet of the town [8,22–28]. 

In this work, the input hydrographs were taken from a previous study [29] which 
reconstructed the flood dynamics of Agia Aikaterini catchment using a 2D-SWE-based 
simulator named FLOW-R2D [23]. A parametric and input data uncertainty analysis was 
performed. Therefore, the output was an ensemble of 100 hydrographs at the outlet of the 
catchment and at the inlet of the town (Figure 2, right). The uncertainty band of the flood 
discharge peak ranges between 120 m3/s and 220 m3/s, while the median was about 180 
m3/s. This peak is in accordance with the post event rough estimation of the flood peak 
made by [24]. 

 
Figure 1. General location of Mandra town and the Agia Aikaterini and Soures catchments. 

 
Figure 2. Accumulated rainfall depth recorded between 14 November 2017 at 22:30 and 15 Novem-
ber 2017 at 08:30 GMT (left); Joyplot of the 100 input hydrographs computed at Mandra town start-
ing from 14 November 2017 at 22:30 until 15 November 2017 at 13:30 (right). 

Figure 2. Accumulated rainfall depth recorded between 14 November 2017 at 22:30 and 15 November
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The response of the storm was a flash flood wave, which hit the town during the night,
with catastrophic consequences. It is one of the biggest multi-fatality flood events recorded
in Greece. Several researchers reconstructed the event, simulating the flood hydrographs at
the inlet of the town [8,22–28].

In this work, the input hydrographs were taken from a previous study [29] which
reconstructed the flood dynamics of Agia Aikaterini catchment using a 2D-SWE-based
simulator named FLOW-R2D [23]. A parametric and input data uncertainty analysis was
performed. Therefore, the output was an ensemble of 100 hydrographs at the outlet of
the catchment and at the inlet of the town (Figure 2, right). The uncertainty band of the
flood discharge peak ranges between 120 m3/s and 220 m3/s, while the median was about
180 m3/s. This peak is in accordance with the post event rough estimation of the flood
peak made by [24].
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2.2. Data Collection

The research team visited the field four days after the flood event, and specifically, on
19 November 2017. During the visit, they derived a dataset of 44 maximum water depths
using the dry mud or leaf footprints on several building walls as a proxy indication. The
depth was measured with a measuring tape while the exact coordinates were recorded
with a hand-held GPS. Figure 3 depicts a general view of the observation points while
Figures 4–7 depict some indicative photos taken in the field. The majority of the observation
points are along the two main streets of Mandra, since the major flood impact was observed
in these roads. Specifically, the roads are Vaggeli Koropouli str. and Str. Nik. Rokka
str., which are the extensions of Agia Aiakterini str (which in fact is the extension of the
ephemeral Agia Aikaterini stream).
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Specifically, Figure 4 is a representative photo of flood traces observed in the roads
while Figure 5 is a representative photo of flood traces observed inside buildings. At some
points, local inhabitants had marked with a green line the flood maxima. This information
was used carefully, employing engineering judgement and after cross checking. It should
be noted that the guidance of the locals in the field was substantial in order to address the
uncertainties of the measurements and provided and increased reliability of the dataset. For
example, the building in Figure 6 (left) has two mud traces: the lower trace denotes the real
flood depth maximum, while the higher denotes mud splashing as a result of turbulence
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from obstacles. The flood mark depicted in Figure 6 (right) is also another point which is
characterized by uncertainties. All these issued were addressed doing forensic research
and with the assistance provided by the local community in the form of small discussions,
interviews, etc.

Finally, Figure 7 depicts an example of the sewer system failure. We should mention
here that the main storm sewer system is underground and was designed for a maximum
flood capacity of 10 m3/s. The main pipe of the latter system is below the Agia Aikaterinin
str. and its extensions (Vaggeli Koropouli str. and Str. Nik. Rokka str.) crossing the town.
Based on the field visit and the interviews with the locals, it seems that the sewer system
did not work (it was destroyed or filled with debris) and the flow inside the system was
negligible compared to the flood wave that hit the town. For this reason, we did not include
urban drainage flow in our hydrodynamic analysis.

2.3. Hydrodynamic Simulators

For the hydrodynamic simulations, we used two well-known 2D hydrodynamic
models, namely the HEC-RAS [30] and the MIKE-FLOOD [31,32] pieces of software. Both
simulators are based on the 2D Shallow Water Equations (2D-SWE), either in their full
form or in the simpler diffusion wave form, while the equations are solved using the finite
volume method. In this study, we exploited the 2D diffusion wave mode for both software
since the full form of 2D-SWEs numerical instabilities were observed.

We used the same input data, parameters, and boundary conditions in both models.
Specifically, the digital terrain model (DTM), the friction coefficients, the internal boundaries
defined by the buildings, and the forcing 100 hydrographs as defined from the above-
mentioned uncertainty analysis were introduced in both software. It should be noted
that only the inflow of Agia Aikaterini catchment (and not Soures catchment inflow) was
considered, since it was the only driver for the flood observed inside the town.

The computational area consists of a polygon of 1.6 km2 area. The digital terrain
model (DTM) which was used for geographical information was derived from the National
Cadastre & Mapping Agency of Greece with a spatial resolution of 5 m. The internal
boundaries for the buildings were manually designed with the assistance of satellite images
in the Google Earth platform. For both pieces of software, the lateral boundaries of the
computational domain were assumed to have a no-slip condition (solid boundaries) in order
to preserve the water volume, while for the downstream boundaries the open boundaries
mode was selected.

Regarding the HEC-RAS software, we manually inserted (233) flow breaklines around
urban blocks, and then modified the mesh by generating orthogonal cells around the
breaklines, thus improving the computational speed and accuracy of the model. For the
whole mesh, 121,583 cells were generated with the average cell area being about 13 m2.
For the upstream boundaries, we used the mode of the input hydrograph (which requires
no additional parameters), while for the downstream boundaries we selected the open
boundaries, which are based on the Manning equation and require an extra parameter,
namely the energy slope Sf. The time step was selected to be equal to 10 s.

The Manning coefficient of the computational domain nr was assumed to lie in a
plausible range of values and was calibrated. Since HEC-RAS software is not capable
of including internal solid boundaries, buildings are represented with a local increase
of roughness, a common methodology in the relative literature [33]. Therefore, we used
two more Manning coefficients, nh and nl (high and low), for dense and less dense urban
blocks, respectively.

Regarding the MIKE software, we performed a similar procedure in order to generate
the mesh, but with triangular elements. Specifically, we generated a mesh comprising
22.264 elements, with an average area of 70 m2, while the smallest permitted triangular an-
gle was 23◦. For the upstream boundaries, we also used the mode of the input hydrograph,
while for the downstream boundaries, we selected the open boundaries as well which
required no additional parameters. A constant eddy viscosity coefficient was selected with
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a value equal to 0.1, while the time step ranged between 0.001 and 0.002 s. Finally, the
wet-dry threshold was given a value equal to 0.005 m.

In contrast to HEC-RAS, MIKE FLOOD has the option to represent the buildings with
a free-slip boundary condition. Therefore, there was no need to introduce new parameters
in order to simulate the flood in a built-up area. Figure 8 depicts the computational area,
the building footprints, and the upstream/downstream boundaries, while Figure 9 depicts
the mesh generation for both pieces of software in an indicative part of the town.
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2.4. Calibration Strategy

Although 2D hydrodynamic simulators have a strong physical base, they incorporate
several grey-box parameters whose values, instead of being unique, adopted from hand-
books or good practice guidance, lie in a plausible range. It is recommended that these
parameters should be calibrated against relevant on-site measurements [14,34]. In theory,
the latter simulators shall be calibrated against both water depths and flow velocities. How-
ever, the difficulty in finding observed velocities led us to limit the calibration only using
maximum water depths. Moreover, the use of this kind of simulator for flood simulation
has as a consequence an extremely high computational burden, which is exacerbated in
cases where procedures, such as calibration, optimization, and uncertainty quantification,
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are employed. For example, each HEC-RAS simulation required approximately 2 h while
each MIKE simulation required 4 h in an Intel(R) i7-4790 CPU/3.60 GHz.

Overall, it is not necessary or feasible to incorporate all the parameters of a model
in such processes if we aim at an efficient optimization. To this end, sensitivity analysis,
a process aiming to screen the most influential parameters on model results, can help
modelers and practitioners identify a model’s key input parameters, and thus reduce
computational cost.

The two most common classifications of sensitivity analysis methods are the global
sensitivity analysis (GSA) and the local sensitivity analysis (LSA). It is not in the scope
of the present work to describe in detail sensitivity analysis approaches and for further
information the reader is referred to [35]. In recent literature, a wide variety of sensitivity
analysis methods are presented (e.g., local methods, global methods, qualitative, quantita-
tive methods) from different scientific fields [36,37]. Two of the most widely used sensitivity
analysis methods are Sobol’s sensitivity analysis method [38] and the screening technique
proposed by [39]. The latter is one of the most widely used sensitivity analysis methods as
it is easy to implement and is not time consuming [7,36].

Specifically, Morris [39] introduced the concept of elementary effects and proposed a
sensitivity analysis method which is based on the computation of the mean and standard
deviation of elementary effects in order to determine the effects of input parameter on the
final result. According to [35], the input parameters may have: (i) negligible; (ii) linear and
additive; or (iii) nonlinear or involved in interactions with other parameters. The mean
of the elementary effects is used to assess the overall effect of the input parameter on the
final result, while the standard deviation is used as a metric for the interactions with other
parameters. However, [40] proposed to use the absolute mean instead of the mean in order
to not introduce type II errors. In the present work, the sampling strategy proposed by [39]
was used. Overall, the Morris elementary effects method can be categorized as a GSA
approach, and it is simple, robust, and has low computational burden compared to other
GSA methods (e.g., Sobol’s method, GLUE etc.).

In the present study, we performed the calibration phase of the simulation only with
HEC-RAS and we divided it in two stages: (a) First, we performed a GSA for the required
model parameters using the SAFE toolbox [41] in order to reduce the dimensional space
through parametric screening. Then, (b) we performed a grid-search calibration. The
required five parameters were: a) the Manning coefficient for the roads, nr; (b) the Manning
coefficient for the urban blocks (high value), nH; (c) the Manning coefficient for the urban
blocks (low value) nL; (d) the confidence interval of the uncertainty band of the upstream
hydrograph, CI; and (e) the downstream energy slope, Sf. The range of values assigned to
each of the five parameters are presented in Table 1.

Table 1. Parametric range.

Parameter Lower Limit Upper Limit

nr [s/m1/3] 0.03 0.06
nH [s/m1/3] 40 60
nL [s/m1/3] 15 25

CI [%] 10 90
Sf [-] 0.01 0.03

3. Results
3.1. Flood Dataset

Table 1 presents the maximum water depths measured at the 44 observation points,
with their coordinates in both the Greek Geodetic Reference System 1987 (GGRS87) and the
World Geodetic System 84 (WGS84).

In this link (https://zenodo.org/record/7140750, accessed on 3 October 2022), the
reader can also download the full dataset on the Zenodo platform. The dataset consists of
the following:

https://zenodo.org/record/7140750
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1. The maximum water depths recorded at the 44 points after the event with their
coordinates in both GGRS87 and WGS84 systems, as shown in Table 2.

2. The digital terrain model (DTM) of the greater area with a resolution of 5 m, as
provided by the National Cadastre and Mapping Agency of Greece.

3. A shape file with the boundaries of the computational area used for both HEC-
RAS and MIKE FLOOD software, which coincide with the boundaries of the town
of Mandra.

4. A shape file with the Mandra urban blocks footprint, as were manually drawn on
Google Earth platform.

5. The ensemble of 100 hydrographs as depicted in Figure 2, which serve as the inflow
from Agia Aikaterini catchment to Mandra town. They are derived by implementing
the FLOW-R2D hydrodynamic simulator at the catchment scale, having as an input
the rainfall field captured by the weather radar during the Mandra flood event [23].

6. The rainfall field of the greater area with a spatial resolution of 200 m and a temporal
resolution of 2 min, recorded by the X-band weather radar of the National Observatory
of Athens.

Table 2. Maximum water depths measured at the field.

Gauge X, Y
(GGRS87)

ϕ, λ
(WGS84) Depth (m)

1 455668.2588, 4214030.3444 38.075555095412, 23.496248974378 3.00
2 455714.0308, 4213859.4439 38.074017108644, 23.496781377525 1.41
3 455618.1325, 4214089.9909 38.076090202058, 23.495673789261 1.91
4 455648.7464, 4214045.8128 38.075693548981, 23.496025555384 2.60
5 455715.7245, 4213941.2321 38.074754298656, 23.496795637049 2.00
6 455714.7635, 4213840.7551 38.073848713598, 23.496790884875 2.40
7 455708.8934, 4213757.7429 38.073100288440, 23.496729087177 1.90
8 455718.1527, 4213696.6548 38.072550190317, 23.496838421089 2.60
9 455711.4275, 4213686.7258 38.072460378003, 23.496762362771 2.40

10 455693.3690, 4213585.9232 38.071551023452, 23.496562711634 3.30
11 455683.1461, 4213546.1162 38.071191767747, 23.496448625272 2.44
12 455694.2735, 4213521.9724 38.070974717633, 23.496576973349 2.00
13 455724.7554, 4213510.6998 38.070874612326, 23.496925173983 2.80
14 455815.0195, 4213431.7319 38.070167321865, 23.497959080654 2.43
15 455893.3008, 4213392.0692 38.069813674021, 23.498853945292 1.17
16 455950.5524, 4213396.1206 38.069852967810, 23.499506375731 1.28
17 456148.2251, 4213517.7609 38.070958813396, 23.501752448480 1.56
18 456149.9273, 4213543.6000 38.071191768069, 23.501770274694 0.88
19 456244.9914, 4213542.7794 38.071188961397, 23.502854094564 1.55
20 456349.9641, 4213582.0807 38.071548216307, 23.504048435197 1.19
21 456405.9467, 4213583.0278 38.071559443195, 23.504686605580 1.68
22 456498.3168, 4213604.9584 38.071761523636, 23.505738338489 3.00
23 456555.1662, 4213651.3694 38.072182522132, 23.506383639558 2.47
24 456597.3211, 4213639.6230 38.072078676069, 23.506864940258 1.19
25 456662.0088, 4213690.0413 38.072536158243, 23.507599370013 1.87
26 456690.6165, 4213659.3707 38.072261108064, 23.507927367552 1.06
27 455950.3622, 4213418.8560 38.070057859161, 23.499502811367 1.15
28 455722.5295, 4213734.9355 38.072895404700, 23.496885956174 2.00
29 455761.5685, 4213956.7620 38.074896496719, 23.497317344483 1.70
30 455764.4553, 4213970.1369 38.075017177319, 23.497349431868 1.30
31 455770.2635, 4213945.5041 38.074795460034, 23.497417170265 0.81
32 455783.0573, 4213940.4525 38.074750556643, 23.497563343334 1.10
33 455811.7063, 4213918.1875 38.074551291492, 23.497891341098 1.16
34 456228.1013, 4213834.3580 38.073815970735, 23.502643747389 1.01
35 456335.9814, 4213774.6124 38.073282717248, 23.503877306043 0.28
36 456306.8247, 4213760.7545 38.073156420710, 23.503545742317 0.61
37 456333.7110, 4213759.3652 38.073145194065, 23.503852350022 1.21
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Table 2. Cont.

Gauge X, Y
(GGRS87)

ϕ, λ
(WGS84) Depth (m)

38 456346.2390, 4213821.5813 38.073706513488, 23.503991391677 1.01
39 456344.8884, 4213802.9037 38.073538118443, 23.503977130532 0.62
40 456422.4147, 4213797.8190 38.073496019748, 23.504861299648 0.54
41 456529.0244, 4213792.8917 38.073456726769, 23.506077031385 0.46
42 456528.4916, 4213751.4763 38.073083448814, 23.506073467053 0.54
43 456557.3220, 4213703.9877 38.072656842958, 23.506405030212 0.91
44 456652.5360, 4213731.8215 38.072912246041, 23.507488849352 0.78

3.2. Calibration Phase

As previously described, we first performed the GSA in order to reduce the number
of parameters to be calibrated, and therefore, reduce the dimensional space. Based on
engineering judgement and similar studies [23], we assumed that the trajectory number
was equal to 15. Hence, the required number of HEC-RAS simulations was equal to 90.

For each simulation, we calculated the root mean square error (RMSE) between the
simulated and the observed maximum water depths. Based on this value, the SAFE toolbox
calculates the mean and the standard deviation of the elementary effects.

Figure 10 depicts the results of the sensitivity analysis. It seems that the CI is by far
the most influential parameter regarding the RMSE. The impact of the forcing driver in the
model output is in accordance with similar flood studies [42]. The second most influential
parameter is the Manning coefficient of the computational domain nr, while the remaining
Manning coefficients and the energy slope required at the downstream boundaries seem to
have a negligible impact on the RMSE.
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Based on the previous analysis, we then focused on the pair of the most influential
parameters (CI, nr). Therefore, we implemented a grid-search calibration, in order to find the
optimal combination of the pair values. Assuming a step of 10% for the CI (which according
to Table 1 ranges from 10% to 90%) and 0.01 s/m1/3 for the nr (which according to Table 1
ranges from 0.03 s/m1/3 to 0.06 s/m1/3), we produced 9 × 4 = 36 scenarios with different
combinations of CI and nr, while the other parameters (nH, nL and Sf) were assigned the
average values 50 s/m1/3, 20 s/m1/3 and 0.02, respectively, according to Table 1.

Then, we performed again the hydrodynamic analysis for these scenarios, and we
defined as an objective function the RMSE of the simulated maximum flood depths against
the observed data. Figure 11 (up, left) depicts the dimensional space of the objective
function. Since the target was the combination of the CI and nr values for which the RMSE
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is minimized, it can be deduced that these values are 40% and 0.06 s/m1/3, respectively
(denoted by red star in the figure), while the RMSE value is equal to 0.70 m.
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It should be noted that the optimization procedure is trapped in the boundaries, which
means that the dimensional space is not sufficiently explored. If the runs are sorted from
the maximum until the minimum RMSE, it can be observed (Figure 11, up, right) that the
objective function can be further minimized, but not that much. Taking into account the
computational cost, we did not perform additional runs. Finally, Figure 11 (down, left and
down, right) depicts the general trend of the calibrated parameters CI and nr in respect
of the run number, as previously sorted. It seems that the parameters tend to reach their
optimal values as the calibration is in progress. This is not a proof that we achieved the
global optimum, but it is a strong indication that we avoided the equifinality issue.

3.3. Calibrated HEC-RAS vs. Informed MIKE FLOOD

Since we assumed that we identified the optimal combination for the HEC-RAS
parameter values, we then tried to identify whether we can inform MIKE FLOOD with
these values. With this blind test, we aimed to investigate whether these calibrated values
have a global nature or are model-specific.

As previously described, MIKE FLOOD includes the option for representing the
buildings using a free-slip condition, which in general is better practice than the other two
available methodologies in the literature, namely the local increase of the elevation or of the
Manning coefficient [33]. Therefore, there is no need for estimating the Manning coefficient
for the urban blocks. Besides, there is also no need for estimating a parameter for the
downstream open boundaries, in contrast with HEC-RAS which requires the energy slope
Sf. In order to make a meaningful comparison, MIKE FLOOD configuration (computational
area, boundary conditions, bathymetry, boundaries of buildings) was the same as in
HEC-RAS. Furthermore, for the MIKE-FLOOD simulations, the forcing driver was the
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hydrograph with the optimal value of CI = 40%, as described in the previous section,
while the Manning coefficient of the computational domain nr was given the optimal
value of 0.06 s/m1/3. It was found that the RMSE metric was significantly bigger than the
corresponding RMSE derived by HEC-RAS, which was equal to 1.63 m

Figure 12 depicts the comparison of the observed maximum flood depths vs. the
simulated results derived from HEC-RAS and MIKE FLOOD. The inundation maps shown
in Figures 13 and 14 are derived with the calibrated HEC-RAS and the informed MIKE
FLOOD, respectively, and depict the maximum water depths. Figure 15 depicts the differ-
ences between the calibrated HEC-RAS and the informed MIKE FLOOD, for maximum
water depths, while Figure 16 depicts the distribution of the residuals.
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There is an area of the city where both models failed to reproduce the flood suffi-
ciently, either overestimating or underestimating the maximum observed flood depths
(gauges 29–41). This is probably due to each model’s structure and the simplifying assump-
tions regarding the validity of the diffusion wave model. For the remaining observation
points, the calibrated HEC-RAS seems to capture the flood characteristics reasonably well.
On the other hand, the informed MIKE FLOOD seems to overestimate flood depths in
a systematic way. The residual (HEC-RAS minus MIKE FLOOD results) shows that an
overestimation of flood depths by MIKE FLOOD compared to the ones by HEC-RAS occurs
in the upstream and the main computational area, while in some parts of the downstream
computational area we observe the opposite. The residual distribution ranges from –5 m
(MIKE FLOOD is overestimating compared to HEC-RAS) to 1 m (HEC-RAS is overestimat-
ing compared to MIKE FLOOD). It should be noted that the abstraction is performed just
for the intersection between these two flood extents.

4. Discussion and Concluding Remarks

Our work had a dual objective: First, to perform forensic research, collecting post-
event flood data in the field, and second, to investigate several modelling issues regarding
the use of well-known flood simulators in this kind of complex case studies. More specifi-
cally, in this paper we presented and shared a flood dataset for the Mandra flood event,
which occurred in the greater metropolitan area of Athens, Greece, on 15 November 2017.
This real-world flood dataset was used to calibrate flood simulations by the HEC-RAS
software and used to inform the MIKE FLOOD software. The open flood dataset should
be welcome given the scarcity of this kind of data. Since many simulators are usually
verified with numerical experiments and analytical or simplified physical models, this
dataset can potentially contribute to benchmarking robust flood simulators, tested in real
world case studies.

The major findings of our work consist of: (a) the lessons learned from a post-event
data collection in the field; (b) the calibration issues raised from a computationally de-
manding simulator; (c) the answer to the research question regarding the global use of the
calibrated parameters.

As far as the first finding is concerned, it seems that a post-event forensic research is
feasible, in terms of resources and equipment. Since urban flooding is characterized by
mud flows, there are lot of clues for the maximum water depth observed in several points.
The drawback is the absence of data indicating the time evolution of the phenomenon and
flow velocity data. The participation of the locals in the field survey was of high importance
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in order to derive a reliable and representative flood dataset. Small interviews and chats
could provide answers for several unclear points.

Regarding the second finding, the proposed two-phase calibration procedure, includ-
ing the parametric screening and the grid-search methodology, seems to be an efficient
way of reducing the computational demand of the simulator. Although the calibration
procedure seems to be trapped in the boundaries of the dimensional space, there are strong
indications that the optimized pair of parameters gives the optimal result for these model
structures, without equifinality problems.

Finally, the concept of the informed modeling does not seem to work. Possible reasons
for this are the differences regarding the way in which buildings are represented, as well as
the different form of the downstream open boundaries and the mesh structure. However,
we strongly highlight that the systematic overestimation of MIKE FLOOD against the
observed data does not indicate that one software is better than the other, but that every
software has its dynamics, and the transferability of parameter values cannot be performed
in blind trust, while the direct calibration of model input parameters is a must. This
reinforces the belief that the flood model parameters are of grey-box nature and their global
use should be avoided or adopted with the utmost care.
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