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Abstract: Volunteered Geographic Information, data contributed by community scientists, is an
increasingly popular tool to collect scientific data, involve the community in scientific research, and
provide information and education about a prominent issue. Johnson City, Tennnessee, USA has
a long history of downtown flooding, and recent redevelopment of two land parcels has created
new city parks that mitigate flooding through floodwater storage, additional channel capacity, and
reduced impervious surfaces. At Founders Park, a project to collect stage data using text messages
from community scientists has collected 1479 stage measurements from 597 participants from May
2017 through July 2021. Text messages were parsed to extract the stage and merged with local
precipitation data to assess the stream’s response to precipitation. Of 1479 observations, 96.7% were
correctly parsed. Only 3% of observations were false positives (parser extracted incorrect stage
value) or false negatives (parser unable to extract correct value but usable data were reported). Less
than 2% of observations were received between 11 p.m. and 7 a.m., creating an overnight data
gap, and fewer than 7% of observations were made during or immediately following precipitation.
Regression models for stage using antecedent precipitation explained 21.6% of the variability in
stream stage. Increased participation and development of an automated system to record stage data
at regular intervals will provide data to validate community observations and develop more robust
rainfall–runoff models.

Keywords: community science; stage; rainfall–runoff response; text message; parser

1. Introduction

Community science research relies on data collected and submitted by community vol-
unteers and is an increasingly popular tool to collect scientific data, involve the community
in scientific research, and provide information and education about a prominent issue [1,2].
The process was arguably first employed to engage the public and extend the reach of
science at the turn of the 20th century with the Cooperative Weather Service (since 1890)
and the National Audubon Society Christmas Bird Count (since 1900) [2]. Since then,
community scientists have been active in long-term ecologic population counts, phenologic
studies to assess impacts of climate change, and inventories of invasive and rare plants [3].
In the US, community scientists have focused more on monitoring environmental quality
over single species monitoring [4]. More recently, one-time events and collective problem-
solving activities have become popular, including data blitzes that generate substantial
data over a short time period and online participatory events that engage the larger global
community, including those with mobility constraints [5].

In hydrology, recent community science projects include collection of stage data [6–9],
flood risk analysis [10], and capture of community perspectives of watershed issues [11],
among others. In one study, youth were tasked with documenting local watershed issues
of perceived importance using Photovoice, and photos were later data-mined to distill
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the youth perspective [11]. Such community science research shares a common purpose:
community members collaborate in scientific research to meet real-world goals that support
conservation, raise environmental awareness, or inform policy decisions [5]. A thorough
review of community science applications to hydrology, including opportunities for water
quality monitoring, discharge monitoring, mapping, and conflict resolution, is available
in [1]. A more recent review examines benefits and obstacles in community science, clas-
sifying projects as related to geohazards, observation/classification, education/outreach,
and other foci [12].

Benefits of community science activities include increasing the reach of scientific mon-
itoring and supporting science outreach and education while producing reliable research
data. One concern with use of contributed data is data quality [13] and assessing uncer-
tainty in data [12]. Using data from the CrowdHydrology network [6], a decision tree
approach was applied to evaluate and clean submitted data, yielding estimates of data
uncertainty [14]. In a separate study, data quality in community science were examined
and it was concluded that datasets produced by volunteers can be of comparable quality to
those produced by professionals, provided methods to boost accuracy and account for bias
are in place [2]. They suggest employing iterative design, using simple and systematic tasks,
recording of metadata, accounting for collection effort variability, and comparing with
data collected by professionals as appropriate methods to ensure data quality. Therefore,
dual goals of education/outreach and scientific research are achievable in collaborative
community science projects.

One difficulty in processing volunteered geographic information is in adding reported
data to a database. This may be resolved through use of freely available data collection apps
developed for a specific purpose, e.g., iNaturalist and eBird for biodiversity data [15,16].
It may also be resolved through use of web-based mapping utilities [17] such as ArcGIS
products used to map visual pollution in urban settings [18] or contribute data to a global
Landslide inventory [19]. The necessity of smartphone use may, however, be a barrier
to participation for some aspiring community scientists. One solution is to accept data
submitted via text message, as with CrowdHydrology [6], following with an automated
process to parse the data and enter them into the project database. This is the approach
used in the present study.

In this study we describe a free automated system to collect stream stage data con-
tributed by community scientists and match it with weather data to build a database
of rainfall and stream stage. These data may then be used to assess both the stream’s
hydrologic response to rainfall and patterns in community science data contribution. In
particular, the question of who contributes data is of interest. Lowry et al. (2019), reporting
on data submission patterns in the CrowdHydrology project [20], found 86% of partici-
pants contributed data only once, with 0.1% of participants classed as “champions” who
contributed over 100 observations each, and accounting for 19% of contributed data. We
seek to assess whether participation in this project breaks down in an equivalent manner.

The aims of the study are, therefore, to (1) identify temporal and individual patterns of
community science observations and (2) develop a statistical model of stream stage using
antecedent rainfall data and stage observations from community scientists.

2. Materials and Methods
2.1. Study Area and Flood History

The research was conducted on Brush Creek in Johnson City, Tennessee, USA (HUC
060101030505). The stream’s 42 km2 watershed (with a contributing area of 19.2 km2

upstream of the staff gauge used in this study) has an average gradient of 11.4 m/km and
flows through the historic downtown. The Time of Concentration to the measurement
point at the staff gauge is 84 h.

The watershed is in the Valley and Ridge physiographic province, consisting of a series
of northeast-southwest trending shale and sandstone ridges and carbonate valleys. Bedrock
in the Brush Creek watershed consists of carbonates of the Knox and Honaker dolomites
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(OCk and Chk, respectively) with a small ridge of the shale and dolomite Conasauga
formation (Ccu) running parallel to the strike (Figure 1). Elevation ranges from 617 m in the
southern ridges to 494 m at the staff gauge and the longest flow path is 9 km. The region
experiences a humid continental (Köppen Cfa) climate with year-round precipitation and
hot summers. Average annual precipitation is 1070 mm and annual average temperature
ranges from 1.1 ◦C in January to 23.3 ◦C in July.
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Geosciences weather station, staff gauge, and geology, Johnson City, TN. OCk refers to the Knox
Dolomite, Ohk to the Honaker dolomite, and Ccu to the shale-dolomite of the Conasauga formation.

Brush Creek has an extended history of flooding dating back over one hundred
years [21]. From 1901 through 1956, sixteen flooding events were recorded, with the largest
events in 1908 (56.1 m3/s) and 1938 (62.3 m3/s) [21]. These largest recorded events were
several orders of magnitude greater than the typical discharge of 0.33 m3/s (per a US
Geological Survey stream gage 3486500 operational from 1932–1934). There are currently
no gauging sites on Brush Creek.

To address continued flooding following the 1959 report, in 2001 Johnson City set out
to study the causes and solutions to flooding along Brush Creek in downtown Johnson
City [22]. Water surface elevations resulting from the 10-year (0.1 annual probability)
and 100-year (0.01 annual probability) 24-h storm events were modeled using the EPA
Stormwater Management Model (SWMM) Version 4.4, from rainfall intensity, soils, and
land use data. Hydrographs for the design storms were generated from model output, and
the model was calibrated and validated using data from local rainfall events, including a
2003 flood during which a total of 119 mm of rain was measured at East Tennessee State
University (ETSU), 1.9 km upstream. Various mitigation measures to address flooding
were presented to the city and to residents during public meetings, and the recommended
option was to develop a downtown Greenway to spur economic development and to
address flooding.



Hydrology 2022, 9, 11 4 of 13

In 2008, AMEC Earth & Environmental, Inc. was contracted by the City of Johnson
City to complete a second downtown drainage study to assess whether a “relatively minor
capital improvement project” could help to alleviate some of the flooding problems that
have plagued the downtown area since the late 1800s [23]. The 2008 study confirmed the
findings of the 2005 CDM study [22], concluding that a major capital outlay would be
needed to provide flood relief for the downtown area. AMEC used the SWMM model
developed in the 2005 CDM study to perform hydraulic simulations of water levels using
24-h rainfall totals with the goal of assessing the efficacy of various flood mitigation concept
scenario in controlling flooding in the downtown corridor. The report recommended a
phased approach that combined (1) storage ponds and bypass culverts for a tributary
stream, King Creek (5-year flood protection), (2) a new open channel to replace the old
Brush Creek culvert (25-year flood protection), and (3) construction of three regional
detention ponds upstream of the downtown area to provide protection from the 0.02 to 0.01
probability flooding event (50- to 100-year flood). The estimated cost for all phases totaled
US $25.7 million [23].

The city recently implemented phases 1 and 2 by restoring an old warehouse property.
First a culvert was removed and Brush Creek, which originally flowed under the warehouse,
was daylighted. The property was developed into a community space known as Founders
Park. The space plays an important flood mitigation role through increased channel
capacity, a large lawn for infiltration, and an amphitheater that doubles as flood storage
(Figure 1). Community buy-in for efforts to control flooding is important, and a community
science project was developed in collaboration with ETSU, the City of Johnson City, and
a local watershed group, Boone Watershed Partnership, to increase public awareness
and collect stream stage data along Brush Creek. One important component of the data
collection was to make the data available in real time to avoid delays associated with
physical data retrieval from a logger or autographic stage recorder. Ultimately, access to
real-time stage data can provide necessary foundation data for implementation of a flood
warning system.

2.2. Field Data Collection

In May 2017, a staff gauge was installed on a bridge abutment at the upstream entrance
to Founders Park, and a nearby sign provides details of Brush Creek’s flooding history.
Instructions describe how to read the staff gauge and submit the water level reading via
text message (Figure 2). Concurrently, a Davis Vantage Pro weather station was installed
on the ETSU campus within the Brush Creek watershed, 1.9 km upstream from the staff
gauge. This weather station records precipitation, temperature, pressure, and wind data at
5-min intervals.

Contributed stage data observed at the staff gauge by participating community scien-
tists are sent via text message to a Google Voice phone number set to forward to a Gmail
account. Python scripts on a computer on the ETSU campus run on an automated schedule
using Windows Task Manager to download the email messages. The parser uses regular
expressions to extract the reported stage level from the body of the email message, and the
stage, timestamp, and source phone number are written into a PostgreSQL database, popu-
lating a table of stage data. Figure 3 shows how a representative text message appears as an
email when going through the Google Voice/Gmail process. The sender’s phone number
and the timestamp are easy to extract from this email. The reported stage level is extracted
using two regular expressions. The first regular expression shown in Step 1 in Figure 3
extracts the body of the actual text message along with some additional header/trailer text
added by the Google Voice/Gmail process. The second regular expression shown in Step 2
in Figure 3 is then applied to the text extracted from the first step to find the submitted
stage level. Each stage data record is assigned a unique ID.
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Weather data are downloaded from the ETSU weather station hourly, and Python
scripts running on an automated schedule add a unique ID to each weather record. Weather
data are loaded into the PostgreSQL database, populating a table of weather data. Using the
timestamps, the stage data and weather data are matched, and data reports of timestamped
stage and weather data are written to .csv files hourly. The complete automated workflow
is shown in Figure 4.

The software tools such as Google Voice, Gmail, Python and PostgreSQL were chosen
because they are readily and freely available allowing the software part of the system to be
implemented at no cost, making this system cost attractive for those wishing to replicate it.



Hydrology 2022, 9, 11 6 of 13

Hydrology 2022, 9, x FOR PEER REVIEW 6 of 14 
 

Weather data are downloaded from the ETSU weather station hourly, and Python 
scripts running on an automated schedule add a unique ID to each weather record. 
Weather data are loaded into the PostgreSQL database, populating a table of weather data. 
Using the timestamps, the stage data and weather data are matched, and data reports of 
timestamped stage and weather data are written to .csv files hourly. The complete auto-
mated workflow is shown in Figure 4. 

The software tools such as Google Voice, Gmail, Python and PostgreSQL were chosen 
because they are readily and freely available allowing the software part of the system to 
be implemented at no cost, making this system cost attractive for those wishing to repli-
cate it. 

The Python plotting program Pyplot was used to plot preliminary stage and precip-
itation data from the hourly reports, generating five plots in real time and reflecting dif-
ferent time frames: all data, past year, past month, past week, and past 24 h. Prior to plot-
ting, contributed stage data outside the range of 0.15 m to 2.1 m are excluded as these 
values are below baseflow and above the length of the staff gauge, respectively. Prior to 
formal data analyses, contributed data are reviewed and corrected. Recognizing that data 
accessibility is paramount to promoting and sustaining a community science project [12], 
the preliminary plots are updated and uploaded hourly to the ETSU Geosciences ArcGIS 
server. They are available publicly online at https://iluffman.wixsite.com/ingrid-luff-
man/research (accessed on 15 December 2021). A sample plot showing data from 2017-09-
11 to 2021-12-15 is displayed in Figure 5.  

 
Figure 4. Automated workflow to extract stage data from text messages and load stage and weather 
data into database. 

Figure 4. Automated workflow to extract stage data from text messages and load stage and weather
data into database.

The Python plotting program Pyplot was used to plot preliminary stage and precipita-
tion data from the hourly reports, generating five plots in real time and reflecting different
time frames: all data, past year, past month, past week, and past 24 h. Prior to plotting,
contributed stage data outside the range of 0.15 m to 2.1 m are excluded as these values are
below baseflow and above the length of the staff gauge, respectively. Prior to formal data
analyses, contributed data are reviewed and corrected. Recognizing that data accessibility is
paramount to promoting and sustaining a community science project [12], the preliminary
plots are updated and uploaded hourly to the ETSU Geosciences ArcGIS server. They
are available publicly online at https://iluffman.wixsite.com/ingrid-luffman/research
(accessed on 15 December 2021). A sample plot showing data from 2017-09-11 to 2021-12-15
is displayed in Figure 5.

https://iluffman.wixsite.com/ingrid-luffman/research
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Figure 5. Example of automated plot of stage and precipitation data showing all contributed data.
All plots are updated hourly and freely available online. Units are in US format (inches/feet) in all
data plots intended for public use.

2.3. Assessment of Contributed Community Science Data

To assess parser performance and data quality, stage data contributed from 2017-05-17
through 2021-07-31 were compared to the parsed data and classified into three groups:
(1) data were correctly parsed, (2) false positive (incorrect data extracted), and (3) false
negative (parser unable to extract data even though usable data were reported) (Figure 6).
Submissions from individual participants were tallied to identify top data contributors and
the frequency distribution of number of observations per participant was calculated.
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To statistically correlate precipitation accumulation to streamflow as a rainfall–runoff
response, a time series dataset of both rainfall and runoff (here, using stage as a proxy) is
required. The frequency of contributed stage data was assessed by cross-tabulating by day
of week and time of day to identify peak days and times for community participation.

2.4. Rainfall–Runoff Response

We calculated antecedent precipitation for lags of 15 min, 30 min, 1 h, 2 h, 3 h,
6 h, 12 h, 1 day, 3 days, and 7 days prior to each stage observation. The Spearman
correlation coefficient between antecedent precipitation and stage was calculated for each
stage measurement. Ordinary Least Squares (OLS) regression models were developed
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for stage using antecedent precipitation at various lags to identify the timing of rainfall-
associated runoff in Brush Creek.

3. Results
3.1. Assessment of Contributed Data

From 2017-05-17 through 2021-07-31, we received 1496 contributed stage measure-
ments (observations) from 597 different participants. Of the nearly 1500 text messages
received, the parser extracted correct data for 1430 (96.7%) messages. Only 3.3% of text
messages were parser failures; false positives accounted for 3.1% of messages while false
negatives accounted for 0.1%.

One challenge in relying on community scientists for data collection is that data are
contributed only when participants are present, predominantly when weather is fair and
during normal waking hours. Rainfall occurs at any time of day or night, yet partici-
pants contribute more during daily peak times between 7–9 a.m., 1–3 p.m., and 6–10 p.m.
(Figure 7). Only 27 observations (1.8%) were received between 11 p.m. and 7 a.m., a pattern
that is consistent throughout week and weekend nights (Figure 8). Friday and Saturday
evenings and Sunday afternoons were the most frequent data contribution times during
the week. Cumulative data were compared at three timesteps during the study period
(inception on 2017-05-17 to 2019-01-24, to 2019-10-08, and to 2021-07-31); the weekly and
daily patterns are similar for each (Figure 8). Further, while stream stage data should be
collected during all weather conditions, stream stage during rainy and stormy weather was
not well represented in the contributed data. Only 7% of observations were made when
rain was recorded in the prior 15 min and 10% of observations were made with rain in the
prior 30 min.
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Most participants (445 participants, or 75%) contributed stage observations a single
time during the study period, while eight participants (1%) were considered regulars by
contributing more than 20 observations. Only one “champion”, with contributions in
excess of 100 observations, was identified (Figure 9). The distribution of contributions by
participant closely followed the pattern observed in the CrowdHydrology project [20].
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3.2. Analysis of Precipitation-Stage Relationships

Contributed stage data were matched to precipitation data by calculating the depth of
precipitation (in mm) received during various antecedent precipitation periods ranging
from 15 min to 7 days. The Spearman correlation coefficients between stage and precipita-
tion were highest within 6 h of the stage observation (Table 1). As expected, high correlation
existed between the various antecedent precipitation periods.

The OLS stepwise regression model for stream stage using antecedent precipita-
tion depth as the independent variables explained 21.6% of the variability in stage data
(R2 = 0.216). Retained variables are listed in Table 2. No multicollinearity problems were
indicated based on reviewing the Variance Inflation Factor. Examination of standardized
coefficients shows that precipitation in the preceding 15 min has the highest influence on
stream stage, followed by precipitation in the prior 2 and 24 h. A small negative influence
on stage was noted for antecedent precipitation in the prior 6 h and three days.
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Table 1. Spearman correlation of precipitation and stage. All coefficients are significant at α = 0.01.

Stage 15_min 30_min 60_min 2_h 3_h 4_h 5_h 6_h 12_h 24_h 3_Days 7_Days

Stage 1
15_min 0.254 1
30_min 0.277 0.867 1
60_min 0.279 0.78 0.9 1

2_h 0.313 0.668 0.771 0.856 1
3_h 0.297 0.598 0.69 0.766 0.881 1
4_h 0.3 0.541 0.624 0.692 0.798 0.882 1
5_h 0.292 0.512 0.591 0.655 0.755 0.839 0.909 1
6_h 0.275 0.489 0.565 0.626 0.72 0.802 0.872 0.905 1

12_h 0.239 0.42 0.484 0.536 0.614 0.681 0.742 0.771 0.795 1
24_h 0.214 0.349 0.392 0.433 0.487 0.538 0.584 0.608 0.629 0.741 1

3_days 0.112 0.243 0.263 0.283 0.299 0.321 0.345 0.359 0.373 0.448 0.569 1
7_days 0.09 0.197 0.194 0.192 0.187 0.19 0.204 0.207 0.211 0.254 0.328 0.545 1

Table 2. OLS regression results for stream stage (dependent variable) with antecedent precipitation
depth show that stage is most influenced by rainfall within the prior 15 min.

B Std.
Error

Standardized
Coefficients t Sig. Tolerance VIF

Constant 1.035 0.019 - 55.585 0 - -
24_h 0.006 0.001 0.194 5.53 0 0.459 2.178

15_min 0.257 0.033 0.274 7.755 0 0.452 2.214
3_days −0.002 0.001 −0.106 −3.035 0.002 0.461 2.17
7_days 0.001 0 0.07 2.242 0.025 0.583 1.717

2_h 0.039 0.009 0.195 4.417 0 0.289 3.465
6_h −0.008 0.003 −0.103 −2.658 0.008 0.378 2.649

4. Discussion
4.1. Assessment of Contributed Data

Successful data collection by community scientists requires context and clear unam-
biguous instructions. Junk data, missing data, and use of Emojis can result in false positives
(wrong data extracted) and false negatives (parser unable to extract data even though
usable data were reported). In this project, community scientists were encouraged to
submit stream stage observations via text messaging. Simple illustrated instructions for
contributing readings were provided on the educational sign (Figure 2). When participants
followed instructions for submitting stream stage data, the parser successfully parsed their
texts. However, community scientists did not always follow instructions and embellished
their submissions with additional text, time and date stamps, emojis and other non-Unicode
symbols that can cause the regular expression-based parser to fail to properly extract the
reported stream stage. Failures consisted of false positive results where the parser reported
the incorrect stage and false negatives where the parser was unable to extract the stage
observation from the text message. Despite the 96.7% parser success rate over the course of
the project, we seek to reduce parser failures. Manual analysis of the submitted texts has
identified some patterns of user submissions that lead to parser errors.

First, some community scientists entered the date or time of the observation followed
by the stream stage data. The simple parser extracts the first numbers it encounters
in the text message as the stream’s stage, anticipating that participants will follow the
instructions provided. To address this, we recommend that the regular expression be
extended to disregard numbers that look like dates or time stamps when extracting the
stream stage data; numbers containing colons, dashes, slashes or a.m. or p.m. indicators
could be ignored.

Second, some participants spelled out their submission, for example “one point four.”
Some gave ranges, “between 1.4 and 1.5” or relative values, “a bit under 2”. Creating
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regular expressions to handle these latter examples is very difficult. More sophisticated
natural language processing techniques would be needed to properly parse these examples.

4.2. Improving Participation

Community scientists have been encouraged to participate in this project through
public outreach. With the support of Johnson City, signage was installed to publicize the
project and to instruct the community on how to participate. Undergraduate students in
general science education and geosciences courses at ETSU were introduced to the project
and encouraged to submit data. Educational field trips have been conducted for local
youth (including the Girl Scouts of America), environmentally focused organizations, and
conference attendees and other academics.

Personal conversations with community members revealed that potential participants
were skeptical that their stage observations were, in fact, recorded and used for research. To
encourage repeat participation, in summer 2020, a “Thank you” text message was instituted.
Now, within 15 min of submitting an observation, participants receive a response text thank-
ing them for submitting data to the project. Following implementation of the “Thank you”
text, participation rate doubled from 13.75 observations per month (July 2019–June 2020)
to 26.88 observations per month (July 2020–June 2021).

Automated real-time plots available online and updated hourly were another ef-
fort to improve participation through engagement. Within one hour of contributing an
observation, participants can view their contributed data on the data plots.

Other suggestions for improving participation focused on generating interest through
rewards or badges for regular participants [12], or by installing hands-on devices like a
bicycle instrumented to serve as a generator that passersby could ride to power nearby
spotlights to aid in nighttime observations, or to power internet-of-things projects.

One advantage of our methodology is the use of simple instructions (read the gauge,
send a text), a widespread communication utility (text messaging), and freely available
tools to handle observations (Google Voice and Gmail) and generate reports and plots
(PostgreSQL and Python). This methodology is replicable in other parts of the watershed
and in other communities. The sole portion of the process that uses proprietary software
is our use of the ArcGIS server at ETSU to store images of the stage/precipitation plots
(Figure 4). We used this server as it was readily available, however, another server could
be used.

Another advantage of our methodology is how data are transferred. The system we
implemented permits the host computer to request data from Google Voice and Gmail and
pull it to the host computer, process it, and push it back out to the cloud in the form of data
plots. This eliminates security risks associated with pushing data from the cloud to the
host computer.

4.3. Assessing Rainfall–Runoff Response

A limitation of this study is the gaps in contributed stage data that fail to capture peak
flows. Nevertheless, data are sufficient to identify patterns of recession following high
flows and normal base flows (Figure 5). Occasionally, high stage values were reported
by community scientists without any recorded precipitation at the ETSU rain gauge, for
example, in February of 2020 (Figure 5). This is likely the result of rainfall elsewhere in the
watershed. Given the karst geology of the region, springs may also contribute water from
outside the watershed, but within the springshed for Brush Creek. We recommend that
data from additional rain gauges be located and included in future analyses.

Because of the sporadic timing of contributed stage data, we selected the approach
of using the antecedent precipitation associated with each stage observation to evaluate
the rainfall–runoff relationship. Regression models identified that precipitation in the
preceding 15 min had the greatest influence on stream stage, indicating a tendency toward
flashy behavior. The negative coefficient for 6-h antecedent precipitation likely reflects a
quick drop in stage following peak flow associated with a rain event. Field observation of
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Brush Creek discharge during and immediately following precipitation supports the “quick
recovery” explanation. Further, the negative coefficient for 3-day antecedent precipitation is
consistent with the Time of Concentration of 84 h (approximately 3.5 days), suggesting that
all runoff from a storm three days prior had moved through the system by 84-h post-storm.

4.4. Future Work

We recognize that contributed stage data are sparse and not uniform in time. Further,
stage data for some major precipitation events may go unrecorded due to lack of reporting
during times of inclement weather or overnight. Increased participation is not likely to
improve this temporal pattern. We also recognize that contributed data have not been
validated for accuracy. We therefore recommend installation of automated sensors to fill
temporal data gaps and provide a dataset that can validate contributed stage observations.
To address this limitation, a team of engineering students at ETSU is building an internet-
connected ultrasonic sensor system to report the stream stage data at periodic regular
intervals, such as every 5 min, 24 h a day. Data reported by this system may be used to
validate the sparsely submitted community scientist observations. A secondary use of
data reported by this system is refinement of current regression models, and development
of other rainfall–runoff models in which sensor data may be used for model calibration
and validation.

5. Conclusions

This research describes patterns of stream stage data contributed by community scien-
tists, and development of regression models for stream stage using antecedent precipitation.
Stage observations were contributed overwhelmingly during waking hours (7 a.m. to
11 p.m., 98% of observations) and during periods of fair weather (only 7% received within
15 min of precipitation). Ordinary least squares regression models for stream stage using
antecedent precipitation explained 21.6% of the variability in stage data, with the 15-min
antecedent precipitation variable having the most influence on stage, indicating flashy be-
havior of the monitored stream. We conclude that community scientist observations to date
are insufficient to develop predictive models for water flow due to data gaps. To validate
contributed data and fill data gaps, an automated sensor system is under development to
provide continuous measurement of stage.
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