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Abstract: A total of three different satellite products, CHIRPS, GPM, and PERSIANN, with different
spatial resolutions, were examined for their ability to estimate rainfall data at a pixel level, using
30-year-long observations from six locations. Quantitative and qualitative accuracy indicators,
as well as R2 and NSE from hydrological estimates, were used as the performance measures. The
results show that all of the satellite estimates are unsatisfactory, giving the NRMSE ranging from 6 to
30% at a daily level, with CC only 0.21–0.36. Limited number of gauges, coarse spatial data resolution,
and physical terrain complexity were found to be linked with low accuracy. Accuracy was slightly
better in dry seasons or low rain rate classes. The errors increased exponentially with the increase in
rain rates. CHIPRS and PERSIANN tend to slightly underestimate at lower rain rates, but do show a
consistently better performance, with an NRMSE of 6–12%. CHRIPS and PERSIANN also exhibit
better estimates of monthly flow data and water balance components, namely runoff, groundwater,
and water yield. GPM has a better ability for rainfall event detections, especially during high rainfall
events or extremes (>40 mm/day). The errors of the satellite products are generally linked to slope,
wind, elevation, and evapotranspiration. Hydrologic simulations using SWAT modelling and the
three satellite rainfall products show that CHIRPS slightly has the daily best performance, with R2 of
0.59 and 0.62, and NSE = 0.54, and the monthly aggregated improved at a monthly level. The water
balance components generated at an annual level, using three satellite products, show that CHIRPS
outperformed with a ration closer to one, though with a tendency to overestimate up to 3–4× times
the data generated from the rainfall gauges. The findings of this study are beneficial in supporting
efforts for improving satellite rainfall products and water resource implications.
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1. Introduction

Rainfall signifies an important physical variable in modulating varying ecosystem
functions, including water availability [1], soil productivity [2], biodiversity, and agricul-
tural production [3], and is of importance in supporting land and water management,
such as soil erosion and flood risk assessment. Rainfall has been traditionally measured
using a gauge in real-time, on a daily basis. Given the importance of rainfall data, therefore,
accurate and complete rainfall data availability is essential for multi-users’ decision-making
processes [4]. However, despite being considered as the most accurate rainfall data, the
rainfall data are only available to the corresponding point or location of the gauges [5].
In tropical developing countries, rainfall gauges’ measurement records are often limited
by lower spatial and temporal coverage, due to costly maintenance, infrastructure and
difficult terrain conditions, especially in mountainous regions where an orographic influence
is evident.
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To provide rainfall information for ungauged places, estimation has commonly been
implemented through varying techniques of interpolation, including gauge points such as
arithmetic mean, Thiessen polygon, isohyet, and geo-statistics [6–8]. However, these meth-
ods require extensive gauge coverage and representative gauge distribution. When these
factors are compromised, high bias or errors are often the consequence. The increasingly
operational satellite data have offered gridded rainfall estimates in varying scales. The
products offer a promising approach to providing rainfall data that support varying appli-
cations, such as drought monitoring, flood risk assessments and water balance studies [9].
However, despite their potential to provide complete rainfall data coverage, satellite-based
rainfall estimates introduce a degree of error. Information about the errors of rainfall
estimates is of importance in that it enables the users to identify the most suitable rainfall
estimates and incorporate the errors in sequential analysis [10]. This is even more critical
for hydrological applications, since the rainfall variability has often been quantified as the
primary source of errors [11–13].

Despite improved development of satellite-based rainfall data, which has made data
more reliable and accurate [14,15], a number of studies on error assessments of satellite-
based rainfall data reveal that errors may vary from one region to another [10,16]. Several
studies also demonstrated the inconsistency of the performance of satellite-derived rain-
fall data. For example, the Climate Prediction Center Morphing Method (CMORPH)
data are better than Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Network (PERSIANN) in tropical landscapes in Bali and the Ethiopian
highlands [17,18], but it showed larger bias in Sumatra [19]. As modeling products, rainfall
estimates from satellite data introduce inherent errors and uncertainties due to several
aspects, such as methods in spatial and temporal samplings, estimation methods of data,
and climatic and terrain conditions [20,21]. Besides, satellite rainfall errors have also been
found to have an association with externalities, such as geographic, topographic, and
climatic regimes [22–24]. This condition drives the need for a comprehensive validation
assessment in varying geographic areas to improve the usability of remote sensing-based
rainfall products.

Indonesia is a typical tropical country with distinct monsoonal characteristics in most
parts. The presence of extensive mountainous regions signifies the role of orographic
influences. As in other humid tropic regions, primary traits include intensified rainfall
energy, leading to a great amount of runoff, and subjectivity to massive land-surface distur-
bance [25]. When national and local rain gauges’ data coverage is inaccessible, incomplete,
and insufficient, a reliance on satellite rainfall data is an increasingly used alternative for
varying assessment. However, peer-reviewed studies about satellite rainfall products in
the region are rare. To our knowledge, there have been several studies focusing on satellite
rainfall assessment. This includes assessment on CMORPH, PERSIANN, Tropical Rainfall
Measuring Mission (TRMM), and university-based gridded from Delaware University,
in scattered locations, namely in Bali, Jakarta, Lampung, and Central Java [19,26–28]. In
addition, impacts of the quality of satellite rainfall estimates on hydrological responses has
never been explored. All these studies employed short to medium timespans (3–13 years)
data, and there have been no studies exploring the satellite rainfall products in East Java, or
in a longer timespan. Sampling size can affect the result, especially with small numbers of
samples from a short period, and therefore assessment of a longer period (>20 years) would
be essential in obtaining a more complete understanding. Several studies documented the
errors of satellite products which are associated with biophysical conditions, such as wind,
landforms, topography, evapotranspiration, solar radiation, and vegetation [10,24]. Such
quantification of this phenomenon has never been examined for a complex humid tropic
region, such as the Brantas watershed. This information is beneficial not only in providing
an insight for parameterizations to improve the satellite rainfall estimates, but also in
recognizing the potential limitations of satellite data applications in certain conditions.

Brantas is a major watershed in East Java, Indonesia, and is home to more than
21 million inhabitants. Topographically, Brantas watershed is marked with a complex
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terrain, due to the presence of seven mountains within the watersheds. With increasing
reports on water resource-related issues in Brantas, the demand for accurate rainfall data
with sufficient spatio-temporal coverage for varying purposes, such as flood modelling,
erosion management, and water supply assessment, is increasing. This study is therefore
aiming to (1) validate the daily and monthly satellite-based rainfall data from Climate
Hazards Group InfraRed Precipitation with Station data (CHIRPS), Global Precipitation
Measurement (GPM), and PERSIANN using the publicly available rainfall field data from
1990 to 2020, (2) characterize the errors of the associated products and examine the contribu-
tion of physical factors, namely temperature, elevation, land-use, wind, and soil moisture,
to the errors of the rainfall estimates, and (3) examine the impact of satellite rainfall quality
on hydrological responses, as observed through a hydrological modelling approach.

2. Materials and Methods
2.1. Study Area

Brantas watershed is a typical humid tropic watershed, with an area of around
11,832 km2, and is situated in East Java, Indonesia (Figure 1). It has undergone increasing
urbanization and harbors around 21 million dwellers, representing around 14% of the
Java island’s population, the most populated island in the country. Brantas is a primary
watershed because of its economic and ecological importance to the province. It is also
home to 15 cities, municipalities, and regencies, locally termed as kota besar, kotamadya and
kabupaten, respectively. Geologically, the Brantas landscape was influenced by the Qua-
ternary Plate tectonics landforms, which are spatially distributed locations on subduction
and collision zones caused by lateral movement of the tectonic plates. Active volcanism is
associated with belts of ongoing subduction between Asian and Indo-Australian plates.
Mountainous ranges are subjected to intense humid tropical weathering processes, erosions,
and mass movements. These geomorphology processes create variations of landforms,
reflecting differences in the resistance of the bed rock to geological events in the past. With
seven mountain complexes (Arjuno-Welirang complex, Semeru-Bromo-Tengger complex,
Kelud-Kawi complex, and Ngliman complex) present within the area, Brantas exhibits a
gradient in temperature and elevation. The range of elevation spans from 0 to 3666 m asl,
with the slope ranging from 0 to 85 degrees, meaning that the region is affected by oro-
graphic systems. The annual average rainfall ranges from 1200 to 3600 mm. The monsoonal
influence is evident, with Brantas’ climate being classified as Am in Köppen-Geiger’s
classification system.

2.2. Satellite Rainfall Data Acquisition and Processing

We reviewed several satellite rainfall products and selected three satellite products,
CHIRPS, GPM, and PERSIANN, for several reasons: relatively finer resolution (≤25 km),
long coverage (>20 year), available on a daily basis, and currently being operational.
We selected three differing resolutions to enable us to obtain information regarding the
products’ performances in supporting applications from local to national scales. Despite
numerous studies elsewhere, these datasets have never been exclusively assessed for
Javanese landscapes. The three datasets are widely used, yet pose their own advantages
and limitations. Table 1 presents an overview of these advantages and limitations.
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Figure 1. Study area, with the background of elevation, gauges (black triangles) distribution and pixels corresponding to 
CHIRPS (red-box), GPM (black box), and PERSIANN (blue-box) boundaries. Green lines are river networks. Name of 
gauges: JU = Juanda, KK = Karangkates, KP = Karangploso, NG = Nganjuk, PS = Pasuruan, TP = Tanjung Perak. 
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Table 1. Advantages and limitations of each rainfall dataset.

Dataset Advantages Limitations

CHIRPS
Highest resolution, ~5 km, more suitable for detailed

assessment in small areas with a short latency. Potential
for smaller biases due to its higher resolution [29]

Larger data size per unit area due to higher spatial
resolution. The IR brightness temperature-based

algorithm included in CHIRPS is insensitive to rain
affected by orographic effects, due to its low

temperature clouds, and is moderately sensitive to
precipitation from typhoon weather systems [30]

GPM-
IMERG

GPM-IMERG combines intermittent precipitation
estimates from all constellation microwave sensors,

IR-based observations from geosynchronous satellites,
and monthly gauge precipitation data [31]

Available at a 0.1◦ and half–hourly and hourly temporal
scales, respectively, they offer the opportunity for

capturing finer local precipitation variations in space
and time [32]

Over oceans, it is likely that the performance of IMERG
will be better because of better microwave retrieval over

the ocean, but poorer over mountainous areas [33]
The geostationary IR from IMERG has two main

limitations, which are the mismatch between IR-based
cloud-top and surface precipitation motions, and the

limited latitude coverage (60◦ N–S) caused by viewing
angle limitation [34]

Ground
data/rain

gauge data

Ground-based rainfall measurements from
gauges/radars often provide higher spatial and

temporal sampling as well as the most direct measure of
rainfall over many regions. Often such data are used for

purposes of calibration [35]

Coverage might be limited, unevenly distributed, or
sparsely distributed. High potential for recording errors

due to lack of maintenance and low-skill gauge
operators, and often limited by incomplete or missing

data [36]

PERSIANN-
CDR

Consistent, long-term data set with more than 30 years
of data, updated quarterly [37]

Given its coarse resolution, it is relatively suitable for
large-scale (continental or national level assessment)

and benefitted from smaller data size [38]

CDR version has daily temporal resolution, does not
resolve the diurnal cycle, may not record some

short-lived, intense events and is not independent of
other precipitation estimates. Relies heavily on infrared
data—conversion from IR to precipitation rate requires
complex algorithm, not quite global (60◦ S–60◦ N) [37]
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PERSIANN is a gridded rainfall dataset that is generated at 3-h intervals, with
0.25 × 0.25◦ lat/lon resolution and is available for regions within 60◦ N–60◦ S. PERSIANN’s
algorithm relies on an artificial neural network and Infra-Red (IR) brightness temperature.
The daily PERSIANN-Climatic Data Record (afterwards called PERSIANN-CDR) is a daily
quasi-global product spanning from 1983 to the present (https://www.ncdc.noaa.gov/
cdr/atmospheric/precipitation-persiann-cdr). The product is developed by the Center
for Hydrometeorology and Remote Sensing at the University of California, Irvine (UC-
IRVINE/CHRS) using the Gridded Satellite (GridSat-B1) IR data that are derived from
merging ISCCP B1 IR data, along with GPCP version 2.2 [39]. The dataset in Google Earth
Engine (GEE) is available in a readily analyzed geo-tiff format for handy interpretation
with pixel values representing the amount of daily precipitation in mm. Most of the rainfall
gridded data are available in rain rate unit, mm/day. To make it comparable with other
datasets, the daily amount of the data was converted to daily rain rate, in mm/day, by a
division to one. Given its relative coarseness, PERSIANN is more suitable for large scale
assessments, such as at the national and continental level.

The third satellite rainfall data used in this study are Global Precipitation Measurement
(GPM), a new generation of satellite precipitation products, which are a follow-up to the
TRMM data. The data are available at 0.1◦ × 0.1◦ lat/long from 60◦ N–60◦ S. Several
studies on GPM-IMERG datasets included numerous assessments and applications carried
out in several places in China, Egypt, Austria, Singapore, and Peru [9,40–43]. None of the
datasets have been examined for their performance in Indonesia using long-term data.
The GPM gridded data were downloaded using the same platform, Google Earth Engine,
with the selected gridded data being at the daily calibrated precipitation rate (mm/day)
following the protocol from GEE’s catalogue (https://developers.google.com/).

The Climate Hazards Group Infrared Precipitation Satellite (CHIRPS) is a new land-
only climatic gridded database for precipitation at a higher resolution (0.05◦ lat/lon)
(https://www.chc.ucsb.edu/data/chirps). It incorporates several information types, such
as global climatology, satellite estimates and in situ observations, to create gridded rainfall
timeseries suitable for trend analysis and seasonal drought monitoring [29]. The temporal
coverage is from 1981 to present, and the spatial resolution is higher, up to 0.05◦ lat/lon.
There have been CHIRPS validation studies across the globe, such as in in Brazil, China,
Italy, and Eastern Africa [30,44,45], but there have been none for Indonesian regions. The
gridded CHIRPS raster dataset is also downloadable from Google Earth Engine with pixel
values in a daily rain rate unit (mm/day).

All the datasets were downloaded on a daily basis from 1 January 1990 to 31 December
2020 using the Google Earth Engine by matching the pixel locations with the rain gauges’
locations. Each of the pixel boundaries of the CHIRPS, GPM, and PERSIANN pixels, where
the gauges were located, were uploaded as assets in GEE and were used as the clipping
boundaries for extracting the average daily rain rates for each of the corresponding pixel
boundaries. The daily data were then exported as csv files for further comparison with the
gauges’ daily data.

2.3. Ground Rainfall Data Acquisition and Processing

The ground rainfall data, which were obtained from the six gauges available within
the study area, were publicly available rainfall data from Indonesia’s BMKG (local mete-
orological agency), available from their website (https://dataonline.bmkg.go.id/home).
The data were downloaded on a daily basis from 1 January 1990 to 31 December 2020. The
data were then examined for their integrity. This included removal of missing values, flag
values, and errors based on the BMKG’s data quality categories. The missing values, errors,
and invalid measurements were counted. The distribution of samples was summarized
in Figure 2 below. The data coverage, as shown in Figure 2, showed that most years have
more than 75% daily coverage.

The location of each rain gauge was used as the basis to locate and extract the satellite
estimates based on a nearest neighbor approach. This was selected because the resolutions

https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
https://developers.google.com/
https://www.chc.ucsb.edu/data/chirps
https://dataonline.bmkg.go.id/home
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of the satellite estimates are much larger than the point accuracy of the gauge locations.
Pixel-to-point method was selected to obtain a pair of daily rainfall data (mm/day) for
each of the gauge locations for the whole period (1 January 1990–31 December 2020). Six
rain gauges used in this study exhibited differing ecological characteristics. A summary of
the gauges is given in the below table (Table 2).

Table 2. Six gauges’ characteristics.

Gauge Locations

JU KK KP NG PS TP

Elevation (mean) 2.3 326.4 649.3 584.7 1479.2 4.7
Temperature range (◦C) 24–37 26–29 28–31 25–28 17–22 28–38
Wind-speed range (m/s) 2–5 2–5 2–5 2–5 2–5 2–5

PET range (mm/day) 0.6–1.7 0.8–1.7 0.6–1.7 0.8–1.8 0.1–1.8 0.1–1.8
Total annual rainfall (mm) 1567 1846 1576 2059 2373 1286

Average daily rainfall rate (mm/day) 4.8 5.6 5.2 6.2 8.4 4.0
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2.4. Accuracy Assessment of Three Satellite Rainfall Estimates

Accuracy signifies the closeness of the estimated data to an acceptable standard,
which in this case is the rainfall data from the gauges. To obtain information about the
performance of satellite rainfall estimates, two types of accuracy assessments were carried
out on the pairs of daily rainfall data from the gauges and satellites, namely quantitative
and qualitative assessment. The quantitative assessment is useful in providing information
about the magnitudes of the rain estimates and its biases, while the qualitative one is useful
in depicting the general usability of the satellite rainfall estimates in capturing the rain
events.

2.4.1. Quantitative Assessment

Four statistical measures were employed to examine the accuracy of the satellite
rainfall data, namely Root Mean Square Error (RMSE), Normalize RMSE (NRMSE), Mean
Absolute Error (MAE), and Spearman Correlation Coefficient (CC), as expressed below:

RMSE =

√
1
n

n

∑
i=1

(Si − Gi)
2 (1)

NRMSE(%) =
RMSE

(Gmax − Gmin)
∗ 100 (2)

MAE =
∑n

i=1 abs(Si − Gi)

n
(3)

CC =

[
∑n

i=1
(
Si − S

)
.
(
Gi − G

)]2
∑n

i=1
(
Si − S

)2
∑n

i=1
(
Gi − G

)2 (4)

where Gi = rainfall from gauge, Si, rainfall from satellite, Gmax is maximum observed
rainfall from gauge, Gmin is minimum rainfall from gauge, S is the mean of satellite rainfall,
and G is the mean of satellite rainfall. To obtain insights about the temporal accuracy
variability, the accuracy measurements were carried out at four different timespans: daily,
monthly, dry season, and wet season. April to September is classified as the dry division,
and October to March is classified as the wet division [28].

2.4.2. Qualitative Assessment

To investigate the ability of satellite rainfall data to sense rainfall events, four cate-
gorical statistics were calculated and compared through a cross-table of variables meeting
certain conditions. The four statistics are “hits (a)”, “misses (c)”, “false (b)”, and “correct
negatives (d)”. This approach would allow a decomposition of the categorical bias of each
satellite products [16]. The contingency table for the rainfall categories is as below (Table 3):

Table 3. Cross-table of categorical rainfall measures.

Rain Gauge (mm/day)

Rain > 0 mm/day Rain = 0 mm/day

Satellite estimates
Rain > 0 mm/day a (hits) b (false)
Rain = 0 mm/day c (misses) d (correct no rain)

The following measures were then calculated from the “a”, “b”, “c”, and “d”:

Probability of detection (POD) POD =
a

a + c
(5)

Frequency of hit (FOH) FOH =
a

a + b
(6)
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False alarm ratio (FAR) FAR =
b

a + b
(7)

Critical success index (CSI) CSI =
a

a + b + c
(8)

In our opinion, the ability of satellite products to detect rain events should also
consider the ability to detect no-rain events, and thus we added one indicator as DA, or
degree of ability, as expressed below:

Degree of ability (DA) DA =
a + d

a + b + c + d
(9)

2.5. Association of Errors to Varying Ecological Variables

To examine whether errors from satellite rainfall products are associated with ecolog-
ical or land characteristic variables, the absolute errors from each satellite product were
correlated to several ecological variables, namely, elevation, slope, Normalize Difference
Vegetation Index (NDVI) as a surrogate of physical land surface characteristics, wind, and
Potential Evapotranspiration (PET) from each station (Table 4). The datasets were extracted
and downloaded using Google Earth Engine with the satellite pixel boundaries similar to
the approach applied in Section 2.2. We used monthly aggregated level data and calculated
the Spearman correlation to measure the degree of the association between ecological
variables and the magnitude of errors in monthly levels. All the ecological variables or land
characteristics were collected from publicly available remote sensing datasets, as below:

Table 4. Types and Source of Ecological Variables.

Dataset Source Resolution

Mean and CV of Elevation (AV_EL, CV_EL) ASTER DEM V2 30 m
Mean and CV of Slope (AV_SL, CV_SL) ASTER DEM V2 30 m

Mean and CV of NDVI (NDVI) MODIS 500 m, daily, monthly aggregated
Mean potential evapotranspiration (PET) MODIS 16-ET 500 m, 8-day, monthly aggregated

Mean wind (Wind) NOAA AVHRR 5 km, daily, monthly aggregated
Mean temperature (Temp) MODIS-LST 1 km, daily, monthly aggregated

2.6. Impacts of Satellite Rainfall Products on Hydrological Response Outputs
2.6.1. Model Description, Input, and Model Setup

Hydrological modeling tools have been widely applied in the investigation into
the behavior of hydrological systems [46]. While their advantage is clear, one evident
limitation is the reliance on massive climatic data, which are difficult to obtain. Climatic
variables were often derived from remote sensing products [47,48]. To understand the
influence of using satellite rainfall data to assess the quality of hydrological outputs, we
applied a Soil and Water Assessment Tool (SWAT) to a selected sub-watershed which
had a long-term discharge of data. The simulation used has been successfully applied
to simulate hydrological processes in upper Brantas in our previously published study.
The details of the model inputs, setup, and validated parameters were adopted from
the validated parameters in this area from the previous study, which were run on a
monthly basis (calibration 2003–2008 and validation 2009–2013) [49]. We re-simulated this
model into three identical SWAT projects, except for the precipitation inputs, to examine
the influence of precipitation data derived from three satellite rainfall estimates on the
estimated daily flow. We specifically focused on the selected sub-basin used in the previous
study for continuity. We used the sub-basin boundary to extract the daily rainfall data from
CHIRPS, PERSIANN and GPM downloaded through the Google Earth Engine as specified
in Section 2.2.

The model parameters applied in this study were taken from the previous study, as
they had been validated and assessed for their accuracy and sensitivity in detail [49]. In
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this study, we replicated the SWAT project and created three similar projects with exactly
similar inputs and parameters, and therefore the only source of difference was the rainfall
data. This approach enabled an examination of the impact of the rainfall data input on the
hydrological output performance.

2.6.2. Model Performance Evaluation

To evaluate the accuracy of the flow outputs from the three models above, compared
to the observed flows, SWAT-CUP computed the accuracy metrics R2 and a Nash–Sutcliffe
Efficiency (NSE) coefficient as below:

R2 = 1 − [
∑n

i=1

(
Qobs − Qpred

)(
Qpred − Qpred

)
(

∑n
i=1
(
Qobs − Qobs

)2
)0.5 (

∑n
i=1
(
Qobs − Qobs

)2
)0.5 ]

2

(10)

NSE = 1 −
∑n

i=1

(
Qpred − Qobs

)2

∑n
i=1
(
Qobs − Qobs

)2 (11)

where Qobs is the observed value, Qpred is the simulated value, Qobs and Qpred are the means
of the observed and simulated values, respectively, and n is the number of observations.
The coefficient of determination (R2) quantifies the proportional variation in the predicted
variable, explained by the observed variable, and indicates the linear relationship between
the predicted and observed variables. The Nash-Sutcliffe Efficiency (NSE) determines
the relative magnitude of the residual variance compared to the observed data [50]. It
ranges from −∞ to 1 with 1 representing a perfect agreement between the simulated and
measured values.

In addition to measuring the accuracies, we also quantified the uncertainties associated
in the modeling. The uncertainties in hydrological modeling might originate from three
possible sources: input data, such as the rainfall and temperature data that can affect the
simulation results directly (i.e., surface runoff); model structure, which is mainly caused by
the assumptions and simplification of the model; and model parameters [51–53]. Among
these groups, models’ parameters were considered as the relatively easily controlled
group, through a calibration step, and input datasets were perceived as the biggest source
of uncertainties [13,54]. To quantify such uncertainty, we used the SWAT Calibration-
Uncertainty Program (SWAT-CUP) accompanied by the SWAT modeling. We selected the
widely applied program sequential uncertainty fitting SUFI-2 [53,54]. Using a Bayesian
framework, SUFI2 computes the uncertainties through the sequential and fitting processes.
In SUFI2, the parameter uncertainty is calculated from all sources such as input variables
(e.g., rainfall data, temperature, and land use) and model structure. SWAT-CUP/SUFI-2
calculated several measures in addition to R2 and NSE. The P-factor represents the degree
to which all uncertainties accounted for is quantified, accounting for the percentage of
the observed data within the 95% prediction uncertainty (95PPU). Another measure is
the R-factor, a measure quantifying the strength of the uncertainty analysis, which is
manifested as the average thickness of the 95PPU band divided by the standard deviation
of the observed data. A higher P-factor (close to 1) and smaller R-factor (close to 0) is
expected [55]. By comparing the R2, NSE, P-factor and R-factor, we deduced the relative
performance of each satellite rainfall estimate for hydrological modeling.

3. Results
3.1. Accuracy Assessment Results
3.1.1. Descriptive Statistics of Satellite Rainfall Data

The results of rainfall extraction from satellite data and comparison with ground data
is presented in Figures 3–5.
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The scatter plots show that CHIRPS and PERSIANN mainly underestimated for the
rainfall higher than 100 m/day, especially in Nganjuk (NG), Pasuruan (PS), Juanda (JU),
and Tanjung Perak (TP). GPM appears to be relatively more sensitive to ground rainfall
variations.

Despite poor visual agreement in Figure 3, Figure 4 shows that satellite products have
good visual seasonal patterns. It appears that after removing outliers, CHIPRS shows
better seasonal patterns than GPM and PERSIANN. In dry seasons, CHRIPS appears to
show a rainfall variability which is as visually good as the gauge’s rainfall, however, in
wet seasons (Figure 4B), when outliers are considered, CHIRPS cannot detect rainfall over
100 m/day. Through this figure, GPM overestimates the observation in both dry and wet
season.

Monthly-based daily rainfall distribution in Figure 5 provides more detailed infor-
mation about the temporal patterns of satellite products. Figure 5 shows that all rainfall
estimates from the three sources follow the pattern of the gauges’ rainfall. The seasonal
patterns are clearer in CHRIPS and PERSIANN, while estimates from GPM clearly show
overestimation from month to month, as also shown by Figure 4B.

3.1.2. Quantitative Accuracy Assessments

A summary of quantitative accuracy assessments of three satellite products is pre-
sented in Table 5, covering accuracy assessment results by season, monthly rainfall aggre-
gates, and the gauges’ individual locations. From Table 5, we can see that CHIRPS and
PERSIANN have relatively similar performances, given the similar values of RMSE, MAR,
CC, and NRSME, as shown in the combined daily data. The errors were evidently larger in
the wet season, especially from GPM, whose NRMSE can reach 30%. Daily error ranges
from CHIRPS and PERSIANN were relatively similar at 8–13% of NRSME (CC 0.28–0.35).
Despite the weak performance of the daily data, monthly aggerated data show an improved
association (CC 0.79–0.91) for all satellites. If we consider geographic variations, there
have been varying performances from six locations, and apparently no observable patterns
of errors with gauge locations. A more detailed comparison for each gauge location is
presented in Figure 6. In all stations, GPM consistently exhibits the largest error compared
to CHRIPS and PERSIANN.
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Table 5. Summary of quantitative accuracy measures from three satellite rainfall products. Data calculated with outliers
included.

Level Dataset *
CHIRPS GPM PERSIANN

RMSE CC MAE NRMSE RMSE CC MAE NRMSE RMSE CC MAE NRMSE

Daily
(mm/day)

All-combined 16.56 0.28 7.99 7.68 27.85 0.28 14.06 12.93 16.15 0.29 7.95 7.49
JU 15.17 0.28 7.15 9.52 28.19 0.22 12.93 17.70 15.28 0.26 7.54 9.59
KK 14.95 0.31 8.40 13.35 27.30 0.37 13.17 24.38 13.62 0.32 7.47 12.16
KP 14.07 0.23 7.45 7.82 27.02 0.21 14.45 22.52 13.21 0.26 7.05 7.34
NG 19.72 0.28 9.24 9.15 28.36 0.37 13.45 13.16 19.24 0.31 9.13 8.93
PS 21.93 0.26 11.20 11.13 28.09 0.30 16.03 14.78 21.32 0.31 10.73 10.82
TP 11.80 0.36 5.56 8.28 28.63 0.23 15.40 30.30 11.86 0.35 6.05 8.32

Total Monthly
rainfall (mm)

All-combined 139.20 0.79 83.37 10.09 252.64 0.84 181.41 22.74 135.86 0.79 83.63 9.85
JU 104.93 0.86 67.17 11.84 258.38 0.89 188.20 29.16 97.83 0.84 65.72 11.04
KK 113.58 0.77 86.85 21.59 294.48 0.90 230.71 55.98 80.04 0.85 54.19 15.22
KP 88.91 0.81 61.47 13.72 314.92 0.84 230.30 61.39 86.54 0.81 60.16 13.36
NG 178.93 0.79 111.87 18.04 192.93 0.94 143.92 18.90 169.81 0.84 110.60 17.12
PS 221.90 0.84 151.26 16.08 159.65 0.90 117.09 14.37 224.26 0.87 153.22 16.25
TP 60.69 0.88 39.16 11.92 319.88 0.90 255.40 67.51 66.91 0.87 49.12 13.16

Daily in wet
season

All-combined 19.91 0.22 11.44 9.24 30.77 0.24 16.77 14.28 19.51 0.22 11.35 9.05
JU 18.13 0.22 10.23 11.38 35.66 0.16 19.84 22.39 18.24 0.19 10.79 11.45
KK 17.89 0.21 11.78 15.98 32.14 0.29 18.70 28.70 16.16 0.23 10.29 14.43
KP 17.23 0.16 10.86 9.57 29.37 0.18 16.59 24.47 16.30 0.16 10.23 9.06
NG 23.73 0.21 13.19 11.01 28.48 0.37 13.77 13.21 23.41 0.22 13.19 10.86
PS 25.79 0.19 15.36 13.09 27.18 0.29 15.28 14.30 25.29 0.22 14.80 12.84
TP 14.56 0.32 8.31 10.22 24.76 0.31 12.60 30.57 14.57 0.30 8.77 10.23

Daily in dry
season

All-combined 12.26 0.22 4.48 6.13 24.51 0.30 11.28 11.90 11.85 0.26 4.53 5.93
JU 11.55 0.26 4.12 9.20 18.24 0.22 6.24 14.54 11.73 0.24 4.39 9.34
KK 10.99 0.37 4.80 11.82 20.99 0.45 7.31 22.57 10.28 0.36 4.49 11.05
KP 9.76 0.19 3.91 10.85 24.27 0.23 12.16 24.03 8.97 0.23 3.79 9.97
NG 14.41 0.25 5.12 6.99 28.23 0.37 13.12 13.71 13.69 0.32 4.96 6.84
PS 17.00 0.21 6.86 10.06 29.02 0.29 16.84 17.17 16.24 0.30 6.54 9.61
TP 8.27 0.27 2.88 7.27 31.74 0.17 17.94 33.59 8.47 0.31 3.43 7.44

* All combined dataset represents taken from all six gauge’s locations (JU, KK, KP, NG, PS, and TP).

To examine the error distribution, error histograms were created, as in Figure 7. The
figure allows for the assessment of whether the errors were distributed normally or not.
This can also infer if the satellite data experience a systematic error. As shown in Figure 7,
the errors of three satellite products were normally distributed. It is also evident that wet
season errors are the primary source of total errors.

Despite the normal error distributions as shown in Figure 7, the data show that the
magnitude of errors are related to the magnitude of rain rates. Figure 8 shows the patterns
between rain rate classes on the ground and magnitude of errors in terms of RMSE and
NRMSE. Apparently, the error increases exponentially for higher rainfall rates. In rain rate
classes of more than 20 mm/day, the RMSE values jump to higher than 10 mm/day, and
even reach higher than 50 mm/day when rain rates are very high (>60 mm/day).
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3.1.3. Quantitative Accuracy Assessments

A summary of the quantitative accuracy assessments of the three satellite products is
presented in Table 6 below.
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Table 6. Categorical accuracy measures of three satellite products.

Source Dataset
Accuracy Measure

POD FOH FAR CSI DA

CHIRPS
All-combined 0.70 0.68 0.32 0.52 0.74

Wet season 0.78 0.72 0.28 0.60 0.70
Dry season 0.46 0.53 0.47 0.33 0.78

GPM
All-combined 0.96 0.54 0.46 0.52 0.63

Wet season 0.98 0.53 0.47 0.53 0.59
Dry season 0.96 0.54 0.46 0.52 0.63

PERSIANN
All-combined 0.91 0.60 0.40 0.57 0.72

Wet season 0.76 0.46 0.54 0.41 0.74
Dry season 0.97 0.66 0.34 0.65 0.69

Despite the poorer performance of GPM’s rainfall data in terms of RMSE, MAE, and
NRMSE, the GPM data show a better performance in detecting rain events, as shown by its
consistent highest POD values in all dataset types (0.96–0.98). This confirms the finding
from Figure 3 where GPM was able to show a sensitivity to rain events. However, the
FOH and FAR scores of CHIRPS were the best, especially in all combined and wet season
data, with the values being generally lower than 0.60. CSI integrates the comprehensive
measures of accurate prediction, false prediction, and missing precipitation. The CSI
scores varied by season and showed no clear observed patterns, with poor values lower
than 0.6. The degree of ability shows that CHIPRS and PERSIANN are relatively similar
(ranging from 0.6 to 0.8), which supports the similarity of quantitative accuracy measures
in Table 4. The considerable differences in POD and DA suggests the low ability of the
satellite-based rainfall estimates, especially in GPM, to match ground conditions where no
rain is observed.

3.2. Influence of Varying Ecological Variables to Errors of Satellite Products

The Spearman correlation results of the errors and corresponding ecological conditions
of gauges were presented in Table 7. For elevation, slope and NDVI, we included the coeffi-
cient of variation (CV) in addition to the mean values of the data within the satellite pixel
boundaries. This is to examine if landscape variability also influences the rainfall estimates.

Table 7. Correlation between absolute errors and ecological variables *.

CHIRPS GPM PERSIANN

Cv_NDVI 0.04 −0.03 0.05
Av_NDVI −0.05 0.16 −0.10

PET −0.48 −0.01 −0.54
Wind −0.39 0.14 −0.39
Temp −0.19 0.21 −0.06

Av_Slope 0.29 0.16 0.29
Cv_Slope −0.19 −0.17 −0.17

Av_Elevation 0.22 0.20 0.21
Cv_Elevation −0.14 0.01 0.01

* bold are statistically significant (p < 0.05).

The correlation values in Table 6 suggest that landscape variables influence the quality
of rainfall estimates. From the table, we can observe that the magnitude of errors have
some association with the ecological variables or land characteristics. In CHRIPS and
PERSIANN data, the association of the absolute errors were found to be significant with
the PET and with the average slope within the satellite rainfall pixel boundaries. In brief,
larger errors were inversely associated with magnitude of PET and wind, with a negative
correlation of −0.48 and −0.39 (for CHIRPS), and −0.54 and −0.39 (for PERSIANN). Apart
from climatic variables, the slope, on the other hand, shows that higher average slopes
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are associated with larger errors, with a correlation of 0.29 for CHIRPS and PERSIANN.
Considering the elevation, higher elevation areas tend to pose larger errors, as shown by
the positive relationship between the magnitude of errors and all three satellite rainfall
products (r = 0.20–0.22). On the other hand, slope variations as a proxy for the topographic
condition did not significantly link to the magnitude of errors. Interestingly, as we expected
to represent land cover variability within the pixel boundary, both the average and CV
of NDVI from the three rainfall estimates showed a very weak association with the error
magnitudes (r = −0.10~0.05).

3.3. Assessment of Satellite Products as Inputs for Hydrological Modeling
3.3.1. Accuracy and Uncertainty Performance of the SWAT Models

The SUFI-2 results from the three SWAT models using three satellite rainfall estimates,
compared to that of the rain gauges, is presented in Table 8 below. From this, it was
expected that three satellite-based rainfall inputs did not produce satisfactory results in
both the calibration and validation period. The R2 and NS, as the accuracy performance for
these datasets, are relatively low (R2: 0.28–061 and NS: −21.44 to 0.55). These values are
quite different from those gained from the rain gauge data (R2: 0.28–061 and NS: −21.44 to
0.55). Compared to two other satellite products, CHIRPS consistently outperformed the
GPM and PERSIANN data, with R2 and NS vales being the highest (R2: 0.59–0.62 and NS:
0.54–0.55). The values between calibration and validation are relatively similar, indicating
no signs of over-fitting. Regarding the daily timespan, the NS values from the three satellite
products were considered to be good, as they are comparable to the satisfactory monthly
performance standards [56].

Table 8. Accuracy and uncertainty of SWAT daily models from four rainfall sources.

Dataset
Calibration (2003–2008) Validation (2009–2013)

R2 NS p-Factor r-Factor R2 NSE p-Factor r-Factor

Rain gauge 0.75 0.74 0.97 1.96 0.74 0.73 0.93 0.94
CHIRPS 0.59 0.54 0.97 1.96 0.62 0.55 0.95 2.22

GPM 0.28 −13.58 0.33 4.49 0.37 −21.44 0.33 4.97
PERSIANN 0.47 0.35 0.92 1.7 0.61 0.55 0.88 1.84

The estimated daily flows plotted against 1:1 line as in Figure 9 reveals the degree
of accuracy from each rainfall datasets. Obvious overestimation was found from GPM-
based flow estimates. Visually, CHIRPS and PERSIANN show relatively better estimates
with narrow confidence interval bands, and almost all observations were within their 95%
prediction intervals. GPM, as shown in Table 8, produced the lowest p-factor value (0.33)
and r-factor values (4.49–4.97). These measures reveal that flows estimated from SWAT
models using GPM data suffer the highest uncertainty. The uncertainty is higher for the
flows higher than 200 m3/s, as shown by the increased deviation from both the prediction
and confidence interval bands.

Further analysis reveals that the distribution of the estimated flow from CHIRPS is
most similar to the estimated flow resulted from the rain gauge data (Figure 10A), especially
to the flow with the range of 0–200 m3/s. The cumulative distribution of rainfall inputs
(Figure 10B) clearly shows the similarity of CHIRPS and the rain gauge data for lower daily
rain ranges (0–25 mm). Given the similarity in model structure, model parameters, and
other model inputs (i.e., soil, land cover, and other climatic data), larger errors and higher
uncertainty from GPM-based flow apparently originated from the larger deviation, as well
as overestimation of the rainfall data as shown in Figure 10B.



Hydrology 2021, 8, 154 16 of 22

Hydrology 2021, 8, x FOR PEER REVIEW 17 of 24 
 

 

Table 8. Accuracy and uncertainty of SWAT daily models from four rainfall sources. 

Dataset 
Calibration (2003–2008) Validation (2009–2013) 

R2 NS p-factor r-factor R2 NSE p-factor r-factor 
Rain gauge 0.75 0.74 0.97 1.96 0.74 0.73 0.93 0.94 

CHIRPS 0.59 0.54 0.97 1.96 0.62 0.55 0.95 2.22 
GPM 0.28 −13.58 0.33 4.49 0.37 −21.44 0.33 4.97 

PERSIANN 0.47 0.35 0.92 1.7 0.61 0.55 0.88 1.84 

The estimated daily flows plotted against 1:1 line as in Figure 9 reveals the degree of 
accuracy from each rainfall datasets. Obvious overestimation was found from GPM-based 
flow estimates. Visually, CHIRPS and PERSIANN show relatively better estimates with 
narrow confidence interval bands, and almost all observations were within their 95% pre-
diction intervals. GPM, as shown in Table 8, produced the lowest p-factor value (0.33) and 
r-factor values (4.49–4.97). These measures reveal that flows estimated from SWAT mod-
els using GPM data suffer the highest uncertainty. The uncertainty is higher for the flows 
higher than 200 m3/s, as shown by the increased deviation from both the prediction and 
confidence interval bands. 

 
Figure 9. Performance of best simulated daily flow using rain gauge, CHIRPS, GPM, and PER-
SIANN data plotted with 1:1 line during calibration and validation period. 

Further analysis reveals that the distribution of the estimated flow from CHIRPS is 
most similar to the estimated flow resulted from the rain gauge data (Figure 10A), espe-
cially to the flow with the range of 0–200 m3/s. The cumulative distribution of rainfall in-
puts (Figure 10B) clearly shows the similarity of CHIRPS and the rain gauge data for lower 
daily rain ranges (0–25 mm). Given the similarity in model structure, model parameters, 
and other model inputs (i.e., soil, land cover, and other climatic data), larger errors and 
higher uncertainty from GPM-based flow apparently originated from the larger deviation, 
as well as overestimation of the rainfall data as shown in Figure 10B. 

Figure 9. Performance of best simulated daily flow using rain gauge, CHIRPS, GPM, and PERSIANN
data plotted with 1:1 line during calibration and validation period.Hydrology 2021, 8, x FOR PEER REVIEW 18 of 24 

 

 

A 

 
B 

 
Figure 10. Probability density function (PDF) of observed and predicted daily flow (A), Cumulative 
density function of rainfall input (B). 

The daily performances for the three satellite rainfall products were not satisfactory, 
as shown by the low R2, NS, p-factor, and r-factor. However, the accuracy might be re-
duced, as well as the increased uncertainty for the application at a monthly basis. The 
monthly aggregated flow estimates from the daily data showed that R2 and r increased 
drastically to around 0.6 and 0.9 (complete data not shown for brevity). 

3.3.2. Impacts on Water Balance Components 
Result show that, despite relatively good R2 values at a monthly level, the three sat-

ellite products show negative NSE values, indicating a poor predictive ability. The error 
from flow data generated from satellite products in SWAT modeling propagated to the 
subsequential products, which are water balance components. The comparison of water 
balance components simulated for the year of 2010 is given in Figure 11 below. 

Figure 10. Probability density function (PDF) of observed and predicted daily flow (A), Cumulative density function of
rainfall input (B).



Hydrology 2021, 8, 154 17 of 22

The daily performances for the three satellite rainfall products were not satisfactory, as
shown by the low R2, NS, p-factor, and r-factor. However, the accuracy might be reduced,
as well as the increased uncertainty for the application at a monthly basis. The monthly
aggregated flow estimates from the daily data showed that R2 and r increased drastically
to around 0.6 and 0.9 (complete data not shown for brevity).

3.3.2. Impacts on Water Balance Components

Result show that, despite relatively good R2 values at a monthly level, the three
satellite products show negative NSE values, indicating a poor predictive ability. The error
from flow data generated from satellite products in SWAT modeling propagated to the
subsequential products, which are water balance components. The comparison of water
balance components simulated for the year of 2010 is given in Figure 11 below.
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The results show that SWAT modeling using rainfall satellite products did not produce
very satisfactory results. All water balance components from the three satellite rainfall
products show relatively higher than those from the rain gauge. At annual level, the simu-
lated water balance components for the year of 2010 showed different results, as expected.
GPM shows a clear overestimation of groundwater, surface runoff, and water yield, with
ratio values higher than two. CHIPRS was relatively better compared to GPM and PER-
SIANN in terms of groundwater. The ratio values of CHIRPS for these two components
were relatively close to 1.00. The overestimation and underestimation reflected as a ratio to
values from rain gauge data were given in Table 9.

Table 9. Ratio of water balance components of satellite data products compared to those of rain
gauge.

Component Ratio to Gauge Value

CHIRPS GPM PERSIANN

Surface runoff 1.02 4.35 1.34
Groundwater 1.32 2.87 1.12
Water yield 1.08 3.80 1.40

Table 9 shows that the satellite-based rainfall estimates might be inaccurate for the
analysis at a daily basis. However, aggregated estimates at an annual level would improve
the usability of the satellite rainfall products, especially the CHIRPS’ data, as shown by its
ratio values being close to one, the values of the estimates from the rain gauge data.
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4. Discussion

In this study, we assessed the performance of the three globally used daily satellite
rainfall products, which had varied spatial resolutions, using long-term ground rainfall
data from 1990 to 2020. The ground rainfall data came from six varying locations and
had similar traits in wind and evapotranspiration statistics, but relatively different traits
in terrain and temperature characteristics. Overall, the performance of the three daily
satellite rainfall products were not satisfactory, given only CC of 0.22–0.36 at combined
daily data. The RMSE and NRMSE values were also not very good, with ranges between
11–21 mm/day and 7–30%, respectively. As expected, the errors in the wet season are
larger than in the dry season due to larger rain magnitudes. These results are comparable
to those from other tropical studies, such as in Bali [17], but are somewhat better than in
tropical Malaysia [57].

In all gauges, both CHIRPS and PERSIANN, despite their relatively better RMSE than
that of GPM (Table 4), show a tendency to underestimation (Figure 3). This underestimation
was also found in tropical parts of Brazil [58]. These two products are less capable in
capturing high rainfall rates. Figure 8 confirms this finding, where the errors of CHIRPS
and PERSIANN are exponentially larger with the increase in rainfall rates, mainly higher
rates (>20 mm/day). The inability of satellite products to sense high rain rates was probably
due to the presence of rainfall/hydrology extremes [40,59].

As opposed to other studies, which show substantial spatial differences in the per-
formance of satellite rainfall data, this study shows that among six locations, there have
been no distinct differences in error patterns. This could partially be attributed to the
scale of assessment, which is only within 11,000 km2, so that the extreme spatial climatic
variations within the area were not found. The only location that almost consistently has
the largest error is the PS location (>1470 m above sea level). Mountainous terrain can
introduce a significant effect to variations of rainfall due to the generation of local wind
currents, producing orographic impacts in tropics, especially those close to the maritime
region (e.g., [60,61]). This was probably due to the potentially strongest orographic in-
fluence in this location. While a study in Bali [17] shows that the land-water interface
might contribute to the errors, this study shows that two locations, JU and TP, that have
considerably close proximity to coastal areas (~2 km), do not exhibit major difference in
performance. This was due in part to the fact that the number of gauges used in this study
is limited, and therefore cannot sufficiently represent rainfall variability within the pixel
boundary. Discrepancies between satellite products and gauge measurements, therefore,
do not necessarily indicate satellite retrieval errors, but instead can originate from low
density or nonuniform gauge coverage.

The categorical accuracy assessments reveal that GPM has the highest ability to detect
(highest POD), however CHIRPS is more consistent, given its higher FOH, lower FAR, and
higher agreement (DA). GPM shows its superiority in sensing wetter climates where rain
events are evident, rain-rate magnitudes are high, and rain events are very extreme [31].
This information would offer an opportunity for the GPM to evaluate the spatial rainfall
variability in tropical humid regions, especially in Indonesia, which might experience
unexpected climate change, and are predicted to be much wetter and exposed to higher
incidents of weather extremes [62].

Evaluation results of the relationship between errors and physical variables or land
characteristics of the locations show that errors are larger in areas that have higher average
elevation and steeper slopes. This suggests that accuracy decreases in the regions that have
higher altitudes and topographic gradients. This could potentially be linked to the fact
that higher elevation areas are associated with mountainous regions, where orographic
influence is stronger [63]. In addition, larger errors can also be linked to the wind and
evapotranspiration, where faster winds and higher evapotranspiration are associated with
higher precipitation [64], thus introducing larger errors at higher rain rates. The larger
errors in lower PET regions in tropics might be attributed to the ability of the algorithms of
the satellite rainfall products. The ability of a satellite to detect and estimate the rate of rain
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is affected by the complex relationship between rain rates and brightness temperatures,
which needs adjustment based on the evaporated water and relative humidity [65]. Larger
errors in lower PET regions might be attributed to these variables, since these two variables
are associated with the evapotranspiration and wind in the atmosphere. With regards to
the land physical cover, interestingly, all three rainfall datasets did not show any observable
association to the CV of NDVI values within the corresponding pixel boundaries. While
the CV of NDVI values can provide an inference about variations of land-uses, these
findings suggest that within the resolution of interest (5 km~25 km), the variations of
land-uses/land-cover should not be a concern. Among the three rainfall products, GPM is
the only satellite product whose errors show correlation with NDVI (r = 0.16). NDVI values
represent the density of vegetative cover. Denser coverage induces infrared scattering
from leaf structures. In addition, higher NDVI values are usually forested areas where
precipitation is high. GPM’s algorithm is designed to intercalibrate, merge, and interpolate
“all” satellite microwave rainfall estimates, in conjunction with microwave-calibrated
infrared (IR) satellite estimates and precipitation gauge analysis [66]. Forest areas are mostly
located in higher elevations, sparsely gauged or even ungauged, and often marked with
high precipitation. Apart from the ground condition, the weakness of IR-based algorithms
in the satellite rainfall estimate, where cloud thickness and cloud top temperature as
estimated by the IR, do not always convey with the amount of rainfall. On the other
hand, the microwave-based algorithms are also affected by water vapor, cloud liquid,
oxygen, surface temperature, and the surface emissivity, which makes it very difficult
to differentiate rain from the background, especially in the low rain regime [65]. This
combined effect could potentially lead to an association between vegetation cover and
errors in rainfall estimates.

This study expanded the assessment of rainfall potentials to hydrological applica-
tions. Findings reveal that CHIRPS performed better than GPM and PERSIANN products,
delivering generated daily flow with high R2 and highest NSE value (R2 = 0.59–0.62,
NS = 0.54 and 055). This indicates that CHIRPS data has a slightly better ability for hydro-
logical modeling. Table 8 shows that ratios of CHIRPS and PERSIANN for three water
balance components are generally better (close to one). The performance from CHIRPS
for hydrological modeling is apparently influenced by its finer spatial resolution and
station-based interpolator integrated in the algorithms. The results support the potential of
CHIRPS for being complementary of rainfall gauge data. While for PERSIANN, it should
be noted that PERSIANN’s resolution is 25 km2, which probably is not suitable to support
the hydrologic applications at the sub-catchments level, which are essential to sustainability
resources, disaster management and environmental safety. While GPM, despite its better
ability for rain event detection, is too poor to apply the datasets as a surrogate to ground
rainfall data due to its extreme overestimation (3–4 times larger than gauge data). Some
studies show the potential ways of improving the usability of satellite-based rainfall data.
These include a blended method of interpolation and correlation [67], machine learning [68],
and correction of orographic influence when applying hydrological modeling [69]. While
these approaches were beyond this study, the findings from the study provide insight on
the potential of satellite-based rainfall data for hydrological application in a humid tropic
country, especially in Indonesia.

5. Conclusions

In this study, we evaluated three satellite rainfall products using long-term daily rain-
fall data (1990–2020) from six locations in a humid tropic watershed. Based on numerical
(quantitative) accuracy measures, GPM is consistently the product with the largest errors
in all selected timespans (daily, monthly, and seasonal), while CHIRPS and PERSIANN
show similar degrees of performance. However, based on categorical measures, CHIRPS
shows relatively consistent performance, as shown by its high POD, FOH, DA and low FAR.
On the other hand, GPM shows better sensitivity in capturing rainfall variability, especially
during high rainfall events (>40 mm/day). This means that s GPM has more potential
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for applications related to extreme rain events and hazard assessment. Terrain physical
conditions, such as wind, slope, and evaporations, exhibit a degree of association with
the magnitude of errors. This information provides insight about future potential satellite
data calibration and downscaling efforts. Examination into hydrological modelling shows
that CHIRPS slightly shows the best ability to model monthly flow and water balance at a
finer resolution, followed by PERSIANN, and GPM being the worst. However, its coarse
resolution impedes PERSIANN applications for local and regional analysis supporting
watershed management.
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