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Abstract: Assessing the impact of climate change on streamflow is crucial for depicting the vulnera-
bility of water resources and for identifying proper adaptation measures. This study used the Soil
and Water Assessment Tool (SWAT) to simulate the impact of climate change on the streamflow of El
Kalb river, a major perennial river in Lebanon. The model performance was tested for monthly flow
at two stations under a nine-year calibration period (2003–2011) and a four-year validation period
(2012–2015). The model results indicated satisfactory precision in fitting observed and simulated
flow using various acceptable statistical indices. Future projections of climate change were obtained
for three Representative Concentration Pathways (RCPs) (2.6, 4.5, and 8.5). The model indicated that
the average annual discharge of El Kalb River in the near future (2021–2040) will decrease by around
28–29% under the three RCP scenarios. End-of-century projections (2081–2100) indicated that the
flow will decrease by 23%, 28%, and 45% under RCP 2.6, RCP 4.5, and RCP 8.5, respectively.

Keywords: soil and water assessment tool (SWAT); hydrological modeling; calibration and validation;
climate change

1. Introduction

Long-term records showing the impacts of climate change continue to prove the
dire need for sustainable management and planning of water resources. The variation
in precipitation due to climate change has had significant repercussions on the supply of
water resources [1]. According to the 5th assessment report (AR5) of the Intergovernmental
Panel on Climate Change (IPCC), the three-decade period lasting from 1983 to 2012 was
likely the warmest 30-year period of the last 1400 years in the northern hemisphere. A
linearly rising trend of global warming in the range of 0.65 ◦C to 1.06 ◦C over the 1880–2012
period was reported [2]. The United Nation’s 2030 Agenda stipulated one of the indicators
for Sustainable Development Goal no. 13 (SDG 13: Climate Action) to specifically assess
the number of countries with national adaptation strategies that help consider climate
risks when making decisions. This is in coordination with SDG 6 that seeks the sustainable
management of water and sanitation systems [3]. Indeed, climate change was found to be
the most influential planetary boundary affecting freshwater use [4].

Conceptual and physically based models to assess the impact of climate change
on water resources have been used [5]. The Soil and Water Assessment Tool (SWAT), a
physically based model, has been used for streamflow prediction [6–11]. SWAT is used to
address watershed management questions by predicting the effects of changes in soil, land
use, and climate on water quantity and quality [12]. Recently, Haghighi et al. [13] used the
SWAT model on the Marboreh watershed in Iran to prove that the climate change impact on
the hydrology of the watershed is more significant than land-use change. Mittal et al. [14]
used the SWAT model on the Kangsabati river in India to show that the combined impact
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of dam construction and climate change will significantly reduce river flow, while climate
change alone will reduce the high peak flows in the near future (2021–2050). Physically
based models are used to help assess current and future problems, which is a prerequisite
to planning water management policies and strategies [15,16].

Located in the Middle East, Lebanon is considered to have sufficient natural water
resources. Yet, its potential annual renewable water resources have decreased from a value
of 1155 to 1074 m3/capita/year, between 2002 and 2008 [17]. Access to safe drinking water
reaches 37% of the Lebanese population, whereas access to sanitation services reaches
only 20% of the population [18]. Most of the water-related challenges in Lebanon have
been attributed to poor management and planning and outdated legislations [19,20]. The
country’s score in the degree of implementation of integrated water resources management
is medium to low, implying that implementation is taking place but with limited geographic
coverage and stakeholder participation [21]. The decrease in snowpack melt rate changed
from 97 days prior to 2000 to 86 days during the period of 2000–2010, and to 64 days
during the period of 2010–2018 [22]. Furthermore, defining the exact number of rivers in
Lebanon has become a source of debate as some rivers remain dry for more than 9 months
a year and 60% of springs have disappeared [22]. Discharge from rivers such as Litani
river, Al Kabir river, and El Damour river decreased on average by 40%, while that of
Beirut river decreased by 55% [22]. The flow of 12 perennial rivers in Lebanon decreased
by 23% in 40 years, compared to the year 1965 [23]. Similarly, the flow of 60 seasonal
watercourses decreased by 50% below normal levels [24]. In addition, the Litani river, the
largest river in length and width in Lebanon, showed a drying trend in the period between
1900 and 2008, with a reduction rate varying between 0.1 and 0.8 m3/s per decade [25].
The cost of reduced agricultural, domestic, and industrial water supply due to climate
change was estimated at USD 21 million, USD 320 million, and USD 1200 million by 2020,
2040, and 2080, respectively. Similarly, the reduction in water supply for the generation of
hydroelectricity was estimated at USD 3 million, USD 31 million, and USD 110 million by
2020, 2040, and 2080, respectively [26].

At the level of water demand, a 10% climate-induced increase in total water demand
is anticipated in Lebanon by 2050 [27]. The COVID-19 pandemic is further expected to
exacerbate current conditions where water demand is estimated to have increased by 9 to
12 L per person per day for need of better sanitation [28]. The country is already using
more than two-thirds of its available water resources with an anticipated 22% increase in
total annual demand by 2035 [29]. Considering the current deficiency in the national water
budget, and the low national water storage capacity (6% compared to 85% MENA average),
the country is highly susceptible to water shortage [30]. The water deficit is expected to
reach 610 million cubic meters by 2035 [31].

According to the third national communication to the United Nations Framework
Convention on Climate Change by the Ministry of Environment, viable adaptation mea-
sures in the water sector include: establishing reliable data collection and storage systems,
improving the feasibility of alternative sources of water, and developing climate-based
watershed management plans [26]. Yet, informed decision-making and planning require
reliable projections of water quantities. Despite the reported attempts to forecast the im-
pact of climate change on the water sector in Lebanon, river management requires more
extensive research in terms of physically based hydrological modeling; only seven studies
have addressed the impact of climate change on water quantity and four have modeled
the impact of climate change on streamflow [15]. This research assessed the impact of
climate change on the streamflow of the El Kalb river, a major perennial river in Lebanon.
A physically based model, SWAT, and three climatic scenarios (RCP 2.6, RCP 4.5, and RCP
8.5) were used to simulate the watershed hydrology and to forecast the potential short-
and long-term flow changes. This research will contribute to the evaluation and planning
objectives under future climate conditions, especially for the projected planned treatment
plants along the river stretch.
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2. Materials and Methods

The studied watershed includes a major historical river in Lebanon, El Kalb River,
located in the country’s west central administrative governate, Mount Lebanon (Figure 1).
The watershed has an area of 252 km2, covering an altitude ranging from 0 m near its estuary
(at sea mouth to the east) to 2622 m at the hilltops of Sannine to the west where it originates
with an average annual precipitation of 1093 mm. The three main tributaries—Zerghaya, El
Salib, and Hardoum—join at their confluence in Deir Chomra to form the El Kalb river that
discharges in the Mediterranean Sea with an average river discharge of 5.6 m3/s [32].
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Figure 1. Map of El Kalb watershed in Lebanon and locations of flow and weather stations.

Figure 2 illustrates the methodology used in this study. Three input datasets, describ-
ing the physical features of the basin, were used: Digital Elevation Model (DEM), land-use
map, and soil map. The basin’s response was simulated at the level of multiple Hydrologic
Response Units (HRUs). Historical climatic data were used to calibrate the model for
the years 2003 to 2011, after which the model was validated for 4 years (2012 to 2015).
Climate change data, retrieved from a Regional Climate Model (RCM), were downscaled
and bias-corrected, and then used to model the impact of projected climatic change on the
river flow.

The Soil and Water Assessment Tool (SWAT), a physically based hydrological model,
was adopted to simulate flow in the watershed. Developed by the United States Department
of Agriculture (USDA), SWAT is a deterministic semi-distributed model that divides the
catchment into HRUs based on a unique set of data, including land use/cover, soil type,
and slope. SWAT models the land phase of the hydrologic cycle using the water balance
equation (Equation (1)) [33]:

SWt = SWo +
t

∑
i=1

(
Rday − Qsur f − Ea − wseep − Qgw

)
(1)

where SWt is the final soil water content (mm), SW0 is the initial soil water content on day i
(mm), t is the time (days), Rday is the amount of precipitation on day i (mm), Qsurf is the
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amount of surface runoff on day i (mm), Ea is the amount of evapotranspiration on day i
(mm), wseep is the amount of water entering the vadose zone (unsaturated zone; saturated
zone) from the 0 soil profile on day i (mm), and Qgw is the amount of return flow on day
i (mm).
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Figure 2. Overview of the research approach.

The model requires a specific set of input data, including topography, land use/land
cover, soil, and weather data (Tables 1 and 2, Figure 3). The basin was divided into
27 subbasins and 123 HRUs. Data were retrieved from the National Council for Scientific
Research (CNRS), Food and Agriculture Organization Digital Soil Map of the World (FAO-
DSMW), and the Litani River Authority (LRA). DEM, soil, land use, flow, and weather data
were used for the model run, model calibration, and validation.

Table 1. Spatial model input for El Kalb the Kalb study site.

Data Type Description/Scale Source

Topography DEM Resolution: 10 m CNRS-2010
Land Use/Land Cover Cell size: 10 m × 10 m CNRS-2010

Soil The Global Soil Map 1: 5,000,000 FAO-DSMW
Weather Data (Historical) 2003–2015 (Daily) LRA

Flow Data (Historical) 2003–2015 (Monthly) LRA

Table 2. Soil characteristics for El Kalb the Kalb study site.

Parameter
Soil Texture

Clay Loam Loam Clay

Moist Bulk Density (g/cm3) 1.2 1.4 1.4
Depth from soil surface to bottom of soil layer (mm) 300 300 300

Available water capacity (mm H2O/mm soil) 0.37 0.37 0.37
Saturated hydraulic conductivity (mm/hr) 12.43 6.93 4.55

Clay content (% of soil weight) 36 24 40
Silt content (% of soil weight) 39 28 31

Sand content (% of soil weight) 25 48 29
Max rooting depth of soil (mm) 570 690 740
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Figure 3. Data entry in SWAT input.

The past flow and weather data (from 2003 till 2015) were used for: model warm-up
(2003–2006), calibration (2007–2011), and validation (2012–2015). The data were retrieved
from the records of two flow stations (in Zouk Mosbeh city and Mayrouba village) and one
weather station (in Qartaba village) (Table 3). As the weather station inside the watershed
had only six years of data, Qartaba weather station, 5 km outside the watershed, was used.
Air temperature and precipitation data for both stations were compared using overlapping
years that showed similar seasonal patterns. Weather data include daily precipitation (mm),
daily maximum and minimum temperature (◦C), solar radiation (W/m2), wind speed
(m/s), and relative humidity (%). Monthly precipitation and temperature over the past
period are shown in Figure 4, where the average yearly precipitation is 1093 mm with an
average of 82 wet days, and the average temperature is 15.88 ◦C.

Table 3. Characteristics of stations.

Station Type Station Name Location Latitude Longitude Elevation (m)

Flow F.1 Seamouth 35:57:02 35:36:22 12
Flow F.2 Mayrouba 34:00:35 35:46:44 1178

Weather W.1 Qartaba 34:05:44 35:50:55 1222
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The study area includes 19 land use/land cover classes dominated by deciduous
forest (42.58%). Only 9.45% of the land use is urban, of which 63% is residential of medium
density (Figure 5). Most rural land cover is covered by wild trees such as oak and pine, as
well as apple and other fruit trees. The soil map was obtained from Digital Soil Map of
the World [34], and three main soil types are found in the watershed (clay, clay loam, and
loam), with clay as the dominant soil.
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To quantify the impact of climate change on the streamflow of EL Kalb river, pro-
jected weather parameters were used for different climate scenarios. Those were adopted
from the output of the Coordinated Regional Downscaling Experiment (CORDEX), and
obtained from the Lawrence Livermore National Laboratory at the Earth System Grid
Federation (ESGF) [35,36]. The scenarios considered in this study cover the Representative
Concentration Pathways (RCPs) 2.6, 4.5 and 8.5.

The driving model used was MPI–ESM–MR, which is a General Circulation Model
(GCM) developed by the Max Planck Institute for Meteorology Climate Service Center. Due
to its relatively coarse scale (grid resolution 0.44◦), the GCM was dynamically downscaled
using the REMO 2009 regional climate model (RCM). Due to the geographical difference
(0.147◦) between the station in Qartaba and the center of the nearest grid cell, bias correc-
tion was needed during the calibration stage. The downloaded simulated climate change
data cover future and historical (overlapping observed weather data from Qartaba station)
periods. The simulated climate change data for the El Kalb watershed were prepared using
the CMhyd (Climate Model data for hydrological modelling) [37]. Bias correction was per-
formed as the spatial resolution of the General Circulation Models (GCMs) is generally too
coarse to be directly used in fine-scale impact studies [38,39]. Bias correction was applied
on temperature and precipitation using the additive linear scaling and multiplicative linear
scaling methods, respectively, on the overlapping historical period [40]. The future weather
data, covering the timespan from 2021 to 2100, were divided into four 20-year periods for
future predictions (Table 4).

Table 4. Change in average interannual temperature in ◦C.

Period Past Period RCP 2.6 Increase (◦C) RCP 4.5 Increase (◦C) RCP 8.5 Increase (◦C)

2021–2040 15.93 16.27 0.34 16.24 0.31 16.53 0.60
2041–2060 15.93 16.14 0.22 16.87 0.94 17.27 1.34
2061–2080 15.93 16.25 0.33 17.35 1.42 18.68 2.75
2081–2100 15.93 15.87 −0.06 17.15 1.22 20.32 4.39
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3. Results
3.1. Model Calibration and Validation

During the tested period 2003–2015, average flows were observed to be 6.62 m3/s
and 2.68 m3/s at Seamouth and Mayrouba stations, respectively, under an average annual
precipitation of 1092.7 mm and 82 wet days. Calibration was carried out using the observed
monthly streamflow data at Seamouth (F.1) and Mayrouba (F.2) for the period 2003 to 2011
(with a warm-up period of 4 years). The model was calibrated manually by changing the
parameters for runoff, groundwater, evapotranspiration, snowmelt, and soil. Validation
was performed over the observed streamflow data for the period 2012–2015.

Parameters describing the diverse hydrological conditions and characteristics across
the watershed were calibrated to physically plausible parameter values [41]. Best-fit
parameters are presented in Table 5 that show the most sensitive parameters. Snow is a
major contributor to the water balance in El Kalb watershed, and as such, the snow melt
base temperature was adjusted to 0.5 ◦C with a maximum and minimum snow melt rate of
8.5 mm/◦C·d and 2.5 mm/◦C·d, respectively. This increased the lag time for snow to melt,
infiltrate into the ground, and reach the river as baseflow. Using the Soil Conservation
Service (SCS) curve number method to estimate surface runoff in the watershed, the
curve number (CN) was increased in several sub-watersheds downstream of the river
where urbanization is dominant near the river outlet. In addition, the evapotranspiration
method that produced the most reasonable values for the watershed was the Hargreaves
method [42] as compared to the Penman Monteith method (Table 6). The Penman–Monteith
method overestimated the ET rates and underestimated the flows [33,36,37].

Table 5. Change in average yearly temperature in ◦C. The periods used were 2021–2040, 2041–2060, 2061–2080, and
2081–2100 under RCP 2.6, RCP 4.5, and RCP 8.5.

Period
Parameter Range Initial Value Best Fit Value

Name Description

Basin ESCO Soil evaporation compensation factor 0.01–1 0.95 0.99
EPCO Plant uptake compensation factor 0–1 1 0.95

FFCB Initial soil water storage expressed as a fraction of
field capacity water content 1–1 1 0.95

SURLAG Surface runoff lag coefficient (days) 1–24 4 1
TIMP Snowpack temperature lag factor 0–1 1 0.5

Management CN2 Initial SCS runoff curve number for moisture
condition II 35–98 Varying † 11%

Soil SOL_AWC Available water capacity of the soil
(mm H2O/mm soil) 0–1 Varying ‡ 245%

SOL_K Saturated hydraulic conductivity (mm/h) 0–2000 Varying ‡ 14%
Groundwater GW_DELAY Groundwater Delay (days) 0–500 Varying ‡ −15%

ALPHA_BF Baseflow alpha factor (days) 0–1 0.048 0.5

GW_QMIN Threshold depth of water in the shallow aquifer
required for return flow to occur (mm) 0–5000 1000 500

REVAP_MIN Threshold depth of water in the shallow aquifer
required for revap to occur (mm) 0–1000 750 850

HRU LAT_TIME Lateral flow travel time (in days) 0–180 0 50
† Initial values vary according to the land use class. ‡ Initial values vary according to the soil layer class.

Table 6. Comparison of ET methods in calibration period.

ET Method
Calibration Results (Average Historical Yearly Flow Is 6.185 m3/s)—2006 to 2011

Simulated Annual Flow (m3/s) R2 PBIAS

Penman–Monteith 2.251 0.2478 −63.603
Hargreaves 6.032 0.354 −2.619

Other calibration parameters adjusted in this study included the surface runoff lag
coefficient (SURLAG), and the initial soil water storage expressed as a fraction of field



Hydrology 2021, 8, 134 8 of 14

capacity water content (FFCB). Calibration parameters were based on a literature review,
and adjustments were made to peak flows and base flows.

The simulated and observed monthly streamflow at the two stations in the two
subbasins (11 and 15) are plotted in Figures 6 and 7. The simulations were initially
evaluated by examining the plots visually for a match between the observed and predicted
values (Figure 7). Performance measures indicate that the model was able to simulate the
discharge of the river at different subbasins with satisfactory to good results.
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historical recorded flows (PCP = precipitation).

In addition to graphical methods such as hydrographs, the model performance
was also evaluated using the statistical indices, including the Nash–Sutcliffe efficiency
(NSE) [43], the RMSE-observations standard deviation ratio (RSR), and the percent bias
(PBIAS) [44]. The statistical indices and related equations are presented in Table 7 [45].

The calibration and validation model performance statistics are presented in Table 8.
According to Moriasi et al. [45], during the calibration period, at Station F1, the model
performance was satisfactory (NSE = 0.57 ∑ (0.5; 0.65), PBIAS = 0.06% < ±10%), while
at station F2, the model performance was in a very good range (NSE = 0.78 ∑ (0.75; 1),
PBIAS = −8.35% < ±10%).
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Table 7. Statistical indices for SWAT model [45,46].

Statistical Index Equation Indication

Nash–Sutcliffe Efficiency (NSE) NSE = 1 − ∑n
i=1(Qi

obs−Qi
sim)

∑n
i=1(Qi

obs−Qmean
obs )

Indicates how well fitted a plot of a 1:1 line of
observed vs. simulated data would be.

Standard Deviation Ratio (RSR) RSR =

√
∑n

i=1 (Qi
obs−Qi

sim)
2√

∑n
i=1 (Qi

obs−Qmean
obs )

2

Incorporates the benefits of error index
statistics and indicates the standardized error.

Percent Bias (PBIAS) PBIAS =
∑n

i=1(Qi
obs−Qi

sim)
∑n

i=1(Qi
obs)

× 100
Measures the average tendency of the

simulated data to be larger or smaller than
their observed counterparts.

Where Qi
obs and Qi

sim are the observed and simulated streamflow at the i time step, respectively; Qmean
obs is the average of the observed

streamflow; n is the number of observations.

Table 8. Monthly flow calibration and validation statistics of the measured and simulated data at F1
and F2 stations.

Statistical Index
Seamouth Mayrouba

Calibration Validation Calibration Validation

NSE 0.57 0.77 0.78 0.65
PBIAS −0.06 −2.81 −8.35 −25.60
RSR 0.65 0.47 0.46 0.58

3.2. Impact of Climate Change

As precipitation is the main driver of river flow, the variation in El Kalb river flow
at station F.1 (Seamouth) is plotted along with the change in yearly precipitation for the
three RCPs (Figure 8). Compared to the average yearly actual runoff of 5.47 m3/s for the
past period (1998–2017), the results of introducing the MPI–ESM–MR model data into the
SWAT model indicated that, in the near future (2021–2040), the average annual simulated
flow will decrease to 3.925, 3.957, and 3.862 m3/s under RCP 2.6, RCP 4.5, and RCP 8.5,
respectively (equivalent to decreases of 28%, 28%, and 29%, respectively). End-of-century
(2081–2100) simulations indicated a flow reduction to 4.196, 3.960, and 3.017 m3/s under
RCP 2.6, RCP 4.5, and RCP 8.5, respectively (equivalent to decreases of 23%, 28%, and 45%,
respectively). The greatest reduction in runoff is expected to occur under RCP 8.5. This is
compatible with the results of other studies [13,47].

Based on Figure 8, precipitation will decrease with time compared to the recorded
past period under all three RCPs. Under RCP 2.6, the maximum amount of precipitation
(minimum decrease) is expected to occur by 2081–2100, whereas the minimum amount
of precipitation (maximum decrease) is expected to occur by 2061–2080. Average yearly
flow is thus minimum during 2061–2080 (when mean annual temperature would have
increased by 2.75 ◦C) with a value of 2.98 m3/s (45.5% decrease in flow from the historical
value of 5.47 m3/s). On the other hand, the maximum average yearly flow will occur at the
end of the century (2081–2100) under RCP 2.6 with a value of 4.15 m3/s (24.1% decrease).
Furthermore, though RCP 8.5 is the extremely pessimistic pathway, its simulated flow
during the first two periods (2021–2040 and 2041–2060) is not very different from that of
RCP 4.5 (it is even higher).

Tables 9 and 10 show the monthly average discharge during the four simulated periods
under the three studied RCPs. In all scenarios and all periods, the maximum monthly flow
always occurs in February. However, while the minimum flow is mostly observed during
the month of September, it shifts to the month of October twice under RCP 2.6 (2021–2040
and 2041–2060) and twice under RCP 8.5 (2021–2040 and 2061–2081), which indicates a
possibility of broadening the dry period.
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Figure 8. Average yearly discharge and average decrease in yearly precipitation (PCP) for the
observed period 1998–2017 and SWAT simulated periods 2021–2040, 2041–2060, 2061–2080, and
2081–2100 under the influence of RCP 2.6, RCP 4.5, and RCP 8.5.

Table 9. Average monthly observed flows (in m3/s) of El Kalb river during the historical period and
average future simulated flows during the periods 2021–2040 and 2041–2061 and under RCP 2.6,
RCP 4.5, and RCP 8.5.

Period 2021–2040 2041–2060

Month * Historic RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5

January 9.470 8.009 6.842 7.200 7.475 6.008 8.001
February 14.964 11.442 10.886 11.519 10.794 9.566 10.942

March 14.251 7.987 9.112 8.374 8.465 7.543 8.199
April 10.366 5.179 5.710 4.954 5.850 4.862 5.014
May 5.510 3.105 3.457 3.040 3.806 3.072 2.962
June 2.306 1.945 2.149 2.014 2.288 2.251 2.334
July 0.548 1.135 1.218 1.222 1.270 1.246 1.103

August 0.161 0.588 0.632 0.634 0.660 0.647 0.568
September 0.139 0.302 0.326 0.329 0.342 0.335 0.292

October 0.387 0.267 0.344 0.276 0.274 0.345 0.299
November 2.444 3.032 2.516 2.773 3.440 3.266 2.167
December 5.077 4.114 4.296 4.003 4.331 4.139 3.705

Minimum 0.139 0.267 0.326 0.276 0.274 0.335 0.292

Average 5.469 3.925 3.957 3.862 4.083 3.607 3.799

Maximum 14.964 11.442 10.886 11.519 10.794 9.566 10.942
* The monthly flow for each 20-year period is the average flow of each month across the 20 years.

Implications of the expected changes are of high relevance to the future as decision-
makers can now reconsider the driest and wettest months of El Kalb in their water strategies
and policies. In addition, the model can be further used for research on watershed-related
activities such as the impact of the planned dams on the hydrology of the watershed
and the impact of planned wastewater treatment plants on the river’s water quality [48].
Future studies may also address restoring the river flow lost due to climate change from
the proposed plant effluent, in addition to modeling the impact of effluent on river water
quality. Under proper design, the plant effluent comprising treated wastewater may be
used for ornamental and environmental purposes to restore the river flow lost due to
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climate change [49,50]. In addition, this model can be used to assess the impact of the
WWTP effluent on river water quality.

Table 10. Average monthly observed flows (in m3/s) of El Kalb river during the historical period
and average future simulated flows during the periods 2061–2080 and 2081–2100 and under RCP 2.6,
RCP 4.5, and RCP 8.5.

Period 2061–2080 2081–2100

Month * Historic RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5

January 9.470 8.199 6.845 5.433 8.532 7.685 5.486
February 14.964 10.993 10.048 8.574 11.594 10.917 8.633

March 14.251 8.725 7.769 6.186 8.357 7.790 6.059
April 10.366 5.311 4.941 3.915 5.651 5.302 3.656
May 5.510 3.177 2.849 2.395 3.457 3.330 2.070
June 2.306 2.446 1.832 1.404 2.335 2.478 1.169
July 0.548 1.478 1.046 0.771 1.294 1.287 0.602

August 0.161 0.772 0.539 0.389 0.675 0.667 0.298
September 0.139 0.403 0.276 0.195 0.351 0.346 0.145

October 0.387 0.455 0.300 0.189 0.445 0.416 0.301
November 2.444 2.573 2.640 1.919 3.219 3.192 3.505
December 5.077 4.341 3.740 2.797 4.444 4.107 4.286

Minimum 0.139 0.403 0.276 0.189 0.351 0.346 0.145

Average 5.469 4.073 3.569 2.847 4.196 3.960 3.017

Maximum 14.964 10.993 10.048 8.574 11.594 10.917 8.633
* The monthly flow for each 20-year period is the average flow of each month across the 20 years.

4. Conclusions

The physically based semi-distributed SWAT model was capable of satisfactorily
simulating the monthly flow of El Kalb basin in Lebanon. Climate change scenarios were
employed for three RCPs and four 20-year periods. Summarizing the results, the main
findings of this study are the following:

• The simulated flow will decrease by 28%, 28%, and 29% under RCP 2.6, RCP 4.5,
and RCP 8.5, respectively, in the near future (2021–2040). On the other hand, the
simulated flow will decrease by 23%, 28%, and 45% under RCP 2.6, RCP 4.5, and RCP
8.5, respectively, during the end of the century (2081–2100).

• The greatest change will occur under RCP 8.5, during 2061–2080. By then, the mean
annual temperature is expected to increase by 2.75 ◦C and the mean annual precipita-
tion is expected to decrease by 40.6%, which will decrease the flow from 5.47 m3/s to
2.98 m3/s (45.5% decrease).

• The maximum monthly flow will remain during the month of February for all three
RCPs and during all the four periods. The anticipated climate change RCPs showed
that the decrease in rainfall and increase in temperature will be the main factors
influencing the reduction in water availability.

• Snow melt was a significant parameter affecting the calibration phase, where the
calibration required increasing the maximum snow melt rate to 8.5 mm/◦C.d.

• Research findings could contribute to an effective management of El Kalb basin seeing
that there are projected planned WWTP along the river stretch. Recommendations
for further research include model simulation on a daily time step, simulating the
impact of climate change on water quality of El Kalb river, and assessing the effect of
the dams on the hydrological cycle in the watershed.
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