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Abstract: Due to the fact of water resource deterioration from human activities and increased demand
over the last few decades, optimization of management practices and policies is required, for which
more reliable data are necessary. Cost and time are always of importance; therefore, methods that
can provide low-cost data in a short period of time have been developed. In this study, the ability
of an artificial neural network (ANN) and a multiple linear regression (MLR) model to predict the
electrical conductivity of groundwater samples in the GallikosRiver basin, northern Greece, was
examined. A total of 233 samples were collected over the years 2004–2005 from 89 sampling points.
Descriptive statistics, Pearson correlation matrix, and factor analysis were applied to select the inputs
of the water quality parameters. Input data to the ANN and MLR were Ca, Mg, Na, and Cl. The
best results regarding the ANN were provided by a model that included one hidden layer of three
neurons. The mean absolute percentage error, modeling efficiency, and root mean square error were
used to evaluate the performances of the methods and to compare the prediction capabilities of the
ANN and MLR. We concluded that the ANN and MLR models were valid and had similar accuracy
(using the same inputs) with a large number of samples, but in the case of a smaller data set, the MLR
showed a better performance.

Keywords: artificial neural network; multiple linear regression; groundwater; electrical conductivity;
factor analysis

1. Introduction

The continuous increase in the global population over the last few decades and the
improvement in human well-being in developed countries have led to increased demands
for food production. According to Cay and Uyan [1], the total irrigated land area world-
wide increased by more than five times from 1900 to 2000. The increase in agricultural
and industrial production resulted in the increased introduction of chemical compounds
into water resources [2,3]. Nowadays, nitrates and pesticides are among the most common
pollutants of drinking and irrigation water resources [4]. In many areas of the world,
water scarcity is mainly due to thefact of quality, rather than quantity. The supply of
drinking water is a priority for modern societies [5]. Therefore, the optimal management
of this resource is important to meeting increasing demands. The key element in effective
management is the assessment of water quality, the identification of pollutants and their
source, and the monitoring of the pollutants’ fluctuations over time. Water quality is
determined by assessing biological, chemical, and physical parameter values [6,7]. Assess-
ment relies on standards developed by competent authorities of each country, which set
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maximum permissible concentrations of certain chemicals allowed in water. Groundwater
is one of the most important natural resources for drinking and irrigation purposes [8] and
supports the socio-economic development of countries. The advantages of groundwater
compared to surface water are its higher quality, lower rate of evapotranspiration, and
lower vulnerability to contamination [9,10]. Globally, agriculture is the main consumer of
groundwater [11]. Conventional investigations of groundwater quality are mainly based
on data and measurements performed in the field and analysis of groundwater sample
parameters carried out at the laboratory. The selection of parameters to be monitored
depends on the objectives of the study and the available funding [12].

Despite the detailed planning and design of the sampling procedure, there are often
restrictions regarding availability of time, sampling point accessibility, and lack of funds.
Therefore, evaluation of water quality using conventional methods results in economic costs
and reduce the decision-making capacity and effectiveness of management programs [13].
In order to overcome such data-scarcity problems, researchers have shown an interest in and
increased use of descriptive statistical analysis, multivariate statistical analysis, and artificial
neural networks for the evaluation of hydrochemical data in the field of hydrogeology.
Multivariate statistics can be used to identify hydrochemical–hydrogeological procedures
that determine groundwater quality characteristics [14,15] and distinguish anthropogenic
from geological impacts on groundwater composition control [16].

In the last few decades, artificial neural networks (ANNs) have been widely applied
in the area of water quality modeling. They are considered a prediction tool and have
been widely used in various fields such as flood prediction [17,18], land use [19], and
water quality [20], or to predict parameter values such as electrical conductivity and total
dissolved solids based on other variables measurements [21–26]. They have also been
used in hydrogeology to determine aquifer parameters [27–29], evaluate the qualitative
characteristics of groundwater [30], and predict groundwater level [31–34]. ANNs are
information processing systems consisting of nonlinear interconnected processing elements
called neurons [35].

Regression models are best for establishing an association between dependent and
independent variables, and they are considered the simplest and most straightforward
form of model. They are based on the method of least squares and are usually considered
for the first stage of an investigation of the relationship among variables.

The electrical conductivity value is an index of salinity, and it is often used as an
indicator of water quality for agricultural, industrial, or domestic demands. It can highlight
the changes over time and space in an aquifer and is usually measured in situ, but the
measurement methods are usually timeconsuming [36].

The aim of this paper was the use of an ANN and multiple linear regression (MLR)
to predict electrical conductivity (EC), a dependent variable, using independent variables.
EC was selected as the most appropriate indicator of water quality in this paper since
the GallikosRiver basin (northern Greece) is an area subject to intense anthropogenic
agricultural activities, and it has a complex geological structure.

Descriptive statistics and multivariate statistics were enabled to identify the main
hydrogeological and hydrochemical processes of the area. These methods were used to
reveal the hidden relationships among variables and determine the parameters that were
used as inputs in the ANN and MLR models. Finally, MLR and its prediction abilities
were compared with the ANN models. To check the prediction accuracy, the coefficient of
determination (R2), mean absolute percentage error (MAPE, %), root mean squared error
(RMSE), and modeling efficiency (EF) were used to select the best predictive model. To
the best of our knowledge, there have been no prior studies in the GallikosRiver basin
implementing prediction of EC using ANN and MLR models. This study introduces
the coupling of different statistical methods, along with prediction tools, establishing a
methodology that could be applied in the same area for the prediction of other parameters
or in any other area of the world.
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This paper is structured as follows. Section 2 describes the characteristics of the study
area. Section 3 explains the methodology and the theoretical background of the models.
Section 4 illustrates and explains the results. Section 5 concludes the paper.

2. Study Area

The study area was the Gallikos River basin (868 Km2) in northern Greece (Figure 1).
According to Mattas [37], 90% of the total area lies below an altitude of 600 m, while the
mean altitude is 357.7 m. The length of the river within the boundaries of the study area
is approximately 48 km. The mean annual precipitation over the basin is approximately
480 mm [37]. According to the Hellenic National Meteorological Service, the climate of
the studied area is cold semi-arid (Bsk) [38]. The Gallikos basin belongs to the Serbo-
Macedonian massif, Circum-Rhodope belt, and the zone of Peonia [39–42]. A vast area is
filled with Quaternary fluvio-lacustrine sediments, due to the existence of the river, and
Tertiary formations consisting of marls. The bedrock of the basin is formed from argilla-
ceous schists, carbonate rocks (from limestones to dolomites), quartzites, amphibolites, and
gneisses. In the study area, there are no significant surface storage constructions, and the
majority of the irrigation demands are covered by groundwater. The main cultivations in
the area are corn, tobacco, cotton, sunflower, cereals for forage, trees (mainly almonds and
oil-producing olives), and vegetables [43]. Approximately 77% of pumped groundwater is
used for irrigation according to the approved River Basin Management Plan-River Basin
District GR10-Central Macedonia [44]. Two main aquifer systems have developed in the
area. A granular system is formed in the sediments of the basin, and a fractured aquifer
system exists in the crystalline rocks of the northeast part.

Figure 1. Map showing sampling points in relation to hydrolithologic categories of aquifers within
the boundaries of the GallikosRiver basin [37].
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There are two karstic aquifers that are smaller but are of great importance, since
they provide good quality water for the drinking demands of the residents in the wider
area [44]. Increased concentrations of nitrates (>50 mg/L), sodium (>200 mg/L), and
chlorides (>250 mg/L) have been recorded in groundwater samples and are attributed to
anthropogenic activities related to the agricultural and industrial sectors [45–48].

3. Materials and Methods
3.1. Water Sampling and Analysis

Hydrochemical data from 233 groundwater samples from 89 sampling points were
examined and utilized for statistical treatment, multivariate statistics, multiple linear
regression, and artificial neural network models. The IBM SPSS Statistics 25 software was
used. Samples were collected over four different sampling periods (wet and dry periods
in the years 2004 and 2005). In addition, 18 samples were collected from selected wells in
the wet period of 2006. These samples were used as the verification dataset, to check the
reliability of the MLR and ANN models. The sampling points had an adequate spatial
distribution. In situ measurements of pH and EC were carried out, and the water samples
were filtered through 0.45 lm membrane filters. Each sample was refrigerated at 4 ◦C in the
laboratory. Extra samples were collected and acidified at pH\2 using HCl. All analyses
were conducted according to the Standard Methods for the Examination of Water and
Wastewater [49] at the laboratory of Land Reclamation Department of the Soil and Water
Resources Institute, which is accredited based on ELOT EN ISO/IEC 17025.

3.2. Multivariate Statistical Analysis

Multivariate statistical techniques can identify the factors that determine groundwater
quality and are considered a reliable tool for finding pollutant sources and distinguishing
anthropogenic or geogenic origins [50–52]. Multivariate statistical techniques, such as fac-
tor analysis, are widely employed in environmental studies [53,54]. One of the techniques
commonly applied to identify the relationship between water quality parameters is the
factor analysis method. In the present study, R-type factor analysis was performed. Selec-
tion of the input parameters for successful forecasting using an artificial neural network is
crucial. The factor analysis outcomes were used to select the most suitable variables for the
implementation of the ANN model.

3.3. Artificial Neural Networks

ANNs are used as a supplementary method to conventional statistics, contributing
as an ultimate objective the elaboration and storage of the experimental knowledge and
its modification into a useful form for the user to handle [55–57]. A typical ANN consists
of artificial processing elements, called neurons or nodes, which interact with each other
through synapses (see Figure 2).

The neurons are grouped in layers, and the encoding information is achieved during
the process of training and learning. This structure is a widely used model in hydroge-
ology applications with the ability to recognize patterns among parameters. The most
efficient transfer functions are the sigmoid logistic function and the hyperbolic tangent
function, which are implemented in most ANN models [58]. Supervised training is based
on an “external teacher” that provides the target value for each training phase. The model
learns to adjust the synaptic weights, taking into consideration the targets. The objective
is to minimize the error by searching for the optimal weights [59]. A standard statisti-
cal criterion that is used to evaluate an ANN’s performance is the mean squared error
(MSE), which compares the predicted output with the desired output and the coefficient of
determination (R2).
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Figure 2. Structure of the artificial neural network based on the available data of the study area.

In the present study, a feed-forward, supervised, back-propagation learning algorithm
ANN model was used for predicting the EC of groundwater, using data from the years
2004–2005, in the GallikosRiver basin. The ANN model consisted of one input layer
with four elements (i.e., Ca, Mg, Na, and Cl), one hidden layer including three nodes,
and the output layer where the EC value was calculated. Of the total sample, 80% was
used for training and 20% for testing. The specific artificial neural network structure was
selected because it showed the best performance after using the “trial and error” method by
modifying the input parameters (number of hidden neurons, number of nodes, percentages
of the training–testing sample sets, etc.).

3.4. Multiple Linear Regression

Multiple linear regression (MLR) is considered a very useful and accurate tool that
provides equation linking between a dependent variable and a number of independent
variables that act as predictors [60].

Different authors have successfully applied this method in hydrogeology and hydro-
chemistry to predict water quality [60,61] or to establish a statistical model [62]. In the
present paper, MLR was employed to provide the equation to predict electrical conductivity.
The predictors were selected after implementing the Pearson correlation coefficient, since
selecting the appropriate predictor variables is necessary to improve the prediction level
and minimize the required dataset [63]. The correlation coefficient (Pearson) is a statistical
tool that is widely used to measure and establish the interrelationship and coherence
pattern between two variables [63,64]. The advantage of MLR compared to ANNs is that it
can provide an equation.

3.5. Performance Evaluation of the Models

The performance evaluation and, hence, the forecasting ability of the models was
evaluated using the following statistical indexes:

The coefficient of determination (R2) gives the percentage variation of variables on
the y-axis, explained by variables on the x-axis. The range is from 0 to 1;

The mean absolute percentage error (MAPE, %) is a measure of prediction accuracy of
a forecasting method, defined by Equation (1):

MAPE =
100
n

n

∑
i=1

∣∣∣∣At − Ft

At

∣∣∣∣ (1)
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where At is the actual value, Ft is the forecast value, and n is the number of samples;
The root meansquare error (RMSE) is the square root of the mean of the square of the

total error (Equation (2)):

RMSE =

√√√√√ n
∑

i=1
(Si −Oi)

2

n
(2)

where Oi are the observations, Si are the predicted values of a variable, and n is the number
of observations. Thus, RMSE is a good measure of accuracy, but only to compare prediction
errors of different models or model configurations for a particular variable and not between
variables [65];

Modeling efficiency (EF) is used to compare predicted versus observed values (Equation (3)).
A value equal to 1 indicates a perfect model performance. Generally, values that range be-
tween 0 and 1 indicate that the values predicted by the model’s results are more appropriate
for use than the mean value of a dataset, and negative values are worse [66]:

EF = 1−

n
∑

i=1
(Oi − Si)

2

n
∑

i=1

(
Oi −O

)2
(3)

where Oi are the observations, Si are the predicted values of a variable, and n is the number
of observations.

A high R2 and EF, a low MAE and MAPE, and a low RMSE indicate good model performance.

4. Results and Discussion

The results from the descriptive analysis of the samples for each period are presented
in Table 1. The mean value of the nitrates was equal to 38.8 and is considered relatively
high, and this cannot be attributed to natural causes. Given that this is an agricultural area,
the high values are mainly related to the use of fertilizers and to the lack of a sewerage
network for the settlements scattered in the study area during the sampling time periods.
The GallikosRiver basin has been characterized as an area vulnerable to nitrate pollution
from agriculture. Guidelines for fertilization practices that should be implemented for the
protection of the water resources according to crop type, soil slope, and classification are
described in the Official Government Gazette of the Hellenic Republic n.1496/v.2/3-05-
2019 http://www.et.gr/idocs-nph/search/pdfViewerForm.html?args=5C7QrtC22wFqnM3
eAbJzrXdtvSoClrL8JfWk9tSupxYfP1Rf9veiteJInJ48_97uHrMts-zFzeyCiBSQOpYnTy36Mac
mUFCx2ppFvBej56Mmc8Qdb8ZfRJqZnsIAdk8Lv_e6czmhEembNmZCMxLMtUhnwnTxy
ShEgwBm79OuvSkRyUUHxgps8WhFndSwtJl1 (Last accessed: 24 August 2021).The max-
imum values of many samples exceeded the maximum permissible value for potable
water, set by the World Health Organization and National Legislation, for the following
parameters: EC (7 samples), Na (16 samples), Cl (21 samples), and NO3 (57 samples).

Table 1. Descriptive statistics of the groundwater samples.

Number
of

Samples
Period EC

(µS/cm) pH Ca
(mg/L)

Mg
(mg/L)

Na
(mg/L)

K
(mg/L)

HCO3
(mg/L)

SO4
(mg/L)

NO3
(mg/L)

Cl
(mg/L)

233 2004–
2005

minimum 282 6.24 12.20 11.00 12.00 0.80 85.40 1.0 0.00 1.0

maximum 6010 9.78 308.6 120.0 850.0 129.0 878.7 530.7 497.0 886.0

mean 1139 7.38 112.4 44.16 77.25 12.8 410.8 61.8 38.8 103.5

SD 686.8 0.4 56.04 21.79 84.66 16.60 117.2 62.9 62.5 135.0

This can be attributed to the operation of fabric dyeing units during the sampling
period for Na and Cl, and fertilizers for NO3, as aforementioned. Except for the pH, the

http://www.et.gr/idocs-nph/search/pdfViewerForm.html?args=5C7QrtC22wFqnM3eAbJzrXdtvSoClrL8JfWk9tSupxYfP1Rf9veiteJInJ48_97uHrMts-zFzeyCiBSQOpYnTy36MacmUFCx2ppFvBej56Mmc8Qdb8ZfRJqZnsIAdk8Lv_e6czmhEembNmZCMxLMtUhnwnTxyShEgwBm79OuvSkRyUUHxgps8WhFndSwtJl1
http://www.et.gr/idocs-nph/search/pdfViewerForm.html?args=5C7QrtC22wFqnM3eAbJzrXdtvSoClrL8JfWk9tSupxYfP1Rf9veiteJInJ48_97uHrMts-zFzeyCiBSQOpYnTy36MacmUFCx2ppFvBej56Mmc8Qdb8ZfRJqZnsIAdk8Lv_e6czmhEembNmZCMxLMtUhnwnTxyShEgwBm79OuvSkRyUUHxgps8WhFndSwtJl1
http://www.et.gr/idocs-nph/search/pdfViewerForm.html?args=5C7QrtC22wFqnM3eAbJzrXdtvSoClrL8JfWk9tSupxYfP1Rf9veiteJInJ48_97uHrMts-zFzeyCiBSQOpYnTy36MacmUFCx2ppFvBej56Mmc8Qdb8ZfRJqZnsIAdk8Lv_e6czmhEembNmZCMxLMtUhnwnTxyShEgwBm79OuvSkRyUUHxgps8WhFndSwtJl1
http://www.et.gr/idocs-nph/search/pdfViewerForm.html?args=5C7QrtC22wFqnM3eAbJzrXdtvSoClrL8JfWk9tSupxYfP1Rf9veiteJInJ48_97uHrMts-zFzeyCiBSQOpYnTy36MacmUFCx2ppFvBej56Mmc8Qdb8ZfRJqZnsIAdk8Lv_e6czmhEembNmZCMxLMtUhnwnTxyShEgwBm79OuvSkRyUUHxgps8WhFndSwtJl1
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values of other parameters varied in a wide range, as indicated by the high values of the
standard deviations due to the different conditions that prevail in the different parts of
the basin.

The Pearson correlation matrix identified the influence of Ca, Mg, Na, and Cl on EC,
finding a significantly positive correlation (Table 2).

Table 2. Pearson correlation matrix.

pH EC
(µS/cm)

Ca
(mg/L)

Mg
(mg/L)

Na
(mg/L)

K
(mg/L)

HCO3
(mg/L)

SO4
(mg/L)

NO3
(mg/L)

Cl
(mg/L)

pH 1 −0.075 −0.093 −0.063 0.063 0.135 * −0.045 −0.142 * 0.075 −0.088

EC −0.075 1 0.761 ** 0.711 ** 0.853 ** 0.116 0.394 ** 0.408 ** 0.343 ** 0.657 **

Ca −0.093 0.761 ** 1 0.721 ** 0.450 ** 0.150 * 0.436 ** 0.451 ** 0.488 ** 0.525 **

Mg −0.063 0.711 ** 0.721 ** 1 0.426 ** 0.085 0.532 ** 0.472 ** 0.522 ** 0.498 **

Na 0.063 0.853 ** 0.450 ** 0.426 ** 1 −0.026 0.266 ** 0.196 ** 0.096 0.464 **

K 0.135 * 0.116 0.150 * 0.085 −0.026 1 0.139 * 0.000 0.456 ** 0.144 *

HCO3 −0.045 0.394 ** 0.436 ** 0.532 ** 0.266 ** 0.139 * 1 0.102 0.362 ** 0.188 **

SO4 −0.142 * 0.408 ** 0.451 ** 0.472 ** 0.196 ** 0.000 0.102 1 0.193 ** 0.510 **

NO3 0.075 0.343 ** 0.488 ** 0.522 ** 0.096 0.456 ** 0.362 ** 0.193 ** 1 0.274 **

Cl −0.088 0.657 ** 0.525 ** 0.498 ** 0.464 ** 0.144 * 0.188 ** 0.510 ** 0.274 ** 1

* Correlation was significant at the 0.05 level (two-tailed). ** Correlation was significant at the 0.01 level (two-tailed).

The factor analysis was valid for the four periods, since the Keiser–Meyer–Olkin
coefficient had a value of 0.681 (>0.5). At each period, three factors showed eigenvalues
higher than 1, based on the selection criteria. These factors explain more than 68.2% of the
total variance, which is statistically significant.

The results (Table 3) showed that Na, Cl, Ca, Mg, and EC participated in the first
factor, revealing that the main processes defining groundwater quality are pollution from
industrial activities in the area and carbonate rock dissolution. Nitrate pollution due to the
agricultural activities did not have a strong impact on the EC value, since the nitrates and
potassium from agricultural pollution participate in the second factor [67].

Table 3. Results of the R-type factor analysis of the groundwater samples from the years 2004–2005.

Component Initial Eigenvalues FACTORS

Total Cumulative % 1 2 3

1 4.263 42.631 pH 0.047 0.138 −0.814

2 1.459 57.221 EC 0.951 0.152 0.053

3 1.097 68.195 Ca 0.719 0.401 0.259

4 0.961 77.802 Mg 0.701 0.425 0.268

5 0.749 85.289 Na 0.883 −0.141 −0.242

6 0.496 90.245 K −0.069 0.760 −0.182

7 0.388 94.123 HCO3 0.391 0.466 0.047

8 0.314 97.258 SO4 0.451 0.100 0.572

9 0.240 99.660 NO3 0.221 0.843 0.064

10 0.034 100.000 Cl 0.692 0.144 0.259

The participation of SO4 in the third factor can also be attributed to pollution from
agriculture due to the fertilization [68,69].

Therefore, EC cannot be used for the detection of agricultural pollution.



Hydrology 2021, 8, 127 8 of 14

A farmer’s income depends on the crop yield which, in turn, relies on irrigation water
availability and quality [70]. Application of saline irrigation water causes degradation
of soil fertility, and crop problems can develop [71]. Factor analysis can be effectively
employed to identify the main factors that affect irrigation water quality.

After the evaluation of the results using descriptive and multivariate statistics, the
impact of Ca, Mg, Na, and Cl (independent variables) on electrical conductivity (dependent
variable) were established.

The implementation of multiple linear regression using the outcomes of the correlation
coefficient and factor analysis resulted in Equation (4) for the total number of samples:

EC (µS/cm) = 3.645 Ca + 5.668 Mg + 4.675 Na + 0.728 Cl + 42.839 (4)

The MLR method results revealed that the prediction of the dependent parameter (EC)
using the parameters that were indicated by the Pearson coefficient was valid, since the
coefficient of determination (R2) was statistically significant (0.94). As depicted in Figure 3,
the measured versus predicted values using the MLR method were close to the 1:1 axis. In
Figure 4, the error values are plotted very close to the horizontal axis.

Figure 3. Coefficient of determination of observed versus predicted values of EC using the
MLR model.

Figure 4. Observed, predicted, and error values of EC (µS/cm) using the MLR model.

The structure of the ANN model is depicted in Figure 2. The results of the ANN are
depicted in Figures 5 and 6. According to these figures, the observed and predicted values
for the majority of the samples were very close (R2 = 0.927), and the absolute error was
around the horizontal axis.
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Figure 5. Coefficient of determination of observed versus predicted EC (µS/cm) values using the
ANN model.

Figure 6. Observed, predicted, and error values of EC (µS/cm) using the ANN model.

In Table 4, the coefficient of determination, efficiency model, mean absolute percentage
error, and root mean square error were calculated based on the results of the MLR and
ANN models. The values of these indices were considered statistically significant, verifying
that forecasting of electrical conductivity using Ca, Mg, Na, and Cl values was valid for
the examined data set for both methods. The high R2 values and the high EF values of
both models indicate that they provided a reliable prediction of the EC, along with the
small MAPE (%) and RMSE values. In addition, the comparison of the indices values
highlights that the performances of ANN and MLR were similar on this large dataset,
which included 233 samples taken from sampling points scattered around a large area with
different geological conditions and land uses.

Table 4. Evaluation criteria of the EC prediction employing the ANN and MLR.

R2 EF MAPE (%) RMSE

Artificial Neural Networks

0.927 0.93 14.12 175.9

Multiple Linear Regression

0.94 0.94 12.15 168
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In order to verify the accuracy and reliability of the two methods, a small dataset of 18
samplescollected during the wet period of 2006 was used.

The results of the MLR and ANN are depicted in Figures 7 and 8, respectively.

Figure 7. Coefficient of determination of observed versus predicted values of EC using the
MLR model.

Figure 8. Coefficient of determination of observed versus predicted EC (µS/cm) values using the
ANN model.

The evaluation criteria of the models’ performance, depicted in Table 5, verify that the
predicted values of EC are valid, but for a small set of data, the performance of the MLR
than that of the ANN. The dependent variable (EC) was explained better in the MLR model
by the independent variables (i.e., Ca, Mg, Na, Cl), since the coefficient of determination
was much higher and the mean absolute percentage error was significantly smaller.

Table 5. Evaluation criteria of the EC prediction employing ANN and MLR.

R2 EF MAPE (%) RMSE

Artificial Neural Network

0.75 0.979 20 138.2

Multiple Linear Regression

0.88 0.976 13.8 145.8

Forecasting models are very useful tools for water managers and can be used to predict
the water quality with respect to changes in hydrological and hydrogeological regimes,



Hydrology 2021, 8, 127 11 of 14

showing better performance than traditional statistical methods [72,73]. With the use of
these models, complex data as a result of various natural or human processes are easily
transformed into practical and understandable information for scientists, stakeholders, and
policy makers involved in water management or even for the general population [74].

5. Conclusions

The aquifers within the boundaries of the GallikosRiver basin have developed in an
area with intensive agricultural activities and small-scale enterprises, receiving different
types of pollutants. Agriculture determines the economy of the area and, hence, farmer’s
income, since it constitutes the most important employer. Crop yield and soil quality
depend on irrigation water quantity and quality. Therefore, special management practices
may be required.

Irrigation water salinity, which is a measure of quality, can be described through elec-
trical conductivity. Artificial neural networks and multiple linear regression are commonly
used with great success in the prediction of water parameters due to the fact of their good
performance, simplicity, and low data requirements. This was the motivating factor for
their application to the present study.

Samples collected during a three-year experimental period (2004–2006) were used for
the calibration, validation, and evaluation of the models. The multiple linear regression and
artificial neural networks models had similar performances in the case of a large dataset
(233 samples). Both models provided reliable results, since all the evaluation indices that
were used were statistically valid (R2 > 0.927, EF > 0.93, MAPE (%) < 14.5). In the case of
implementing the two models on a smaller verification dataset (18 samples), the forecasting
ability remained statistically significant (R2 > 0.75, EF > 0.976, MAPE (%) < 20) for both,
but the MLR method achieved a better performance. Factor analysis is a suitable method
for the selection of the input parameters for the MLR and ANN models, based on the
evaluation of their accuracy and reliability.

The outcomes of this research in the specific case study area have practical importance,
since the in situ measurement of EC is time consuming and costly. According to this study,
these measurements could be avoided. The methodology followed in this study could
be used as an effective tool for quality parameter forecasting in any other region that
faces environmental problems. This study provides the necessary steps and techniques for
parameter selection and model performance evaluation.
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