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Abstract: The flow in rivers is turbulent. The main parameter related to turbulence in rivers is the
eddy viscosity, which is used to model a turbulent flow and is involved in the determination of both
velocities and sediment concentrations. A well-known and largely used vertical distribution of eddy
viscosity in free surface flows (open channels and rivers) is given by the parabolic profile that is
based on the logarithmic velocity profile assumption and is valid therefore only in the log-law layer.
It was improved thanks to the log-wake law velocity profile. These two eddy viscosities are obtained
from velocity profiles, and the main shortcoming of the log-wake profile is the empirical Coles’
parameter. A more rigorous and reliable analytical eddy viscosity model is needed. In this study, we
present two analytical eddy viscosity models based on the concepts of velocity and length scales,
which are related to the exponentially decreasing turbulent kinetic energy (TKE) function and mixing
length, namely, (1) the exponential-type profile of eddy viscosity and (2) an eddy viscosity based on
an extension of von Karman’s similarity hypothesis. The eddy viscosity from the second model is
Re∗-independent, while the eddy viscosity from the first model is Re∗-dependent (where Re∗ is the
friction Reynolds number). The proposed analytical models were validated through computation
of velocity profiles, obtained from the resolution of the momentum equation and comparisons to
experimental data. With an additional correction function related to the damping effect of turbulence
near the free surface, both models are similar to the log-wake-modified eddy viscosity profile but
with different values of the Coles’ parameter, i.e., Π = 0.2 for the first model and Π = 0.15 for the
second model. These values are similar to those found in open-channel flow experiments. This
provides an explanation about the accuracy of these two analytical models in the outer part of free
surface flows. For large values of Re∗ (Re∗ > 2000), the first model becomes Re∗ independent, and
the two coefficients reach asymptotic values. Finally, the two proposed eddy viscosity models are
validated by experimental data of eddy viscosity.

Keywords: river flow; open channels; eddy viscosity; parabolic profile; streamwise velocity distribu-
tion; turbulent kinetic energy (TKE); mixing length; log law; log wake

1. Introduction

Determination of velocity distribution in open-channel flows and rivers is a topic of high
interest and is involved in different practical applications [1–7]. However, the hydrodynamic
in rivers and open-channel flows is strongly influenced by turbulence [8–11]. Different
experimental studies were conducted to better understand the effect of turbulence on the
streamwise velocity distribution [12–16].

Open-channel flow studies are considered an important preliminary step to investigate
more complex river flows. The main interest in laboratory investigations of free surface
turbulent flows is related to the experimental conditions that are chosen to be in agreement
with the assumptions related to the models. Therefore, experiments in laboratory flumes
allowed analytical models of turbulence to be developed that are in the form of analytical
solutions, semi-theoretical or empirical relationships [17–20]. These models were proposed
for mean velocities, turbulent kinetic energy (TKE), mixing length, eddy viscosity with their
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link to flow parameters (flow depth, friction velocity) [11,18]. The developed analytical
models are mostly two-dimensional and for uniform flows, while free surface turbulent
flows in rivers are generally strongly three-dimensional and non-uniform. Even if the
assumptions are far from the real-life conditions in rivers, and the developed analytical
models cannot account for the full complexity of turbulent river flows, these models present
high practical interest. For example, measured data in the central part of rivers are well
described by the analytical expressions obtained from laboratory open-channel flows [21].

In open-channel flows and rivers, in the classical two-layer approach, the flow is
divided into two regions: an inner (ξ < 0.2) and an outer (ξ > 0.2) region (where ξ = y/h
is the ratio of the distance from the bed y to flow depth h). For smooth open-channel
flows, log law allows accurate description of mean streamwise velocities U+(y+) in the
logarithmic layer (30 < y+ < 0.2Re∗ or 30/Re∗ < ξ < 0.2, where in wall unit y+ = y u∗/ν,
u∗ is the friction velocity, ν the kinetic viscosity, and Re∗ = h u∗/ν is the friction Reynolds
number) [11]. For river flows, Franca and Lemmin [22] found from analysis of experimental
data from a field study of extremely rough, three-dimensional river flows, that in more
than 65% of the profiles, the log law can be applied up to ξ = 0.4, while above this value,
mean velocities show deviations from the logarithmic profile.

In the outer region, in addition to the simple power law [23,24], the log-wake law
is largely used. It is an extension of the log law by adding the Coles’ wake function,
which contains the Coles’ parameter Π [25,26]. However, this method is empirical and no
physical-based approach is available to determine the Coles’ parameter Π [27]. The value
of Π is therefore not universal. From experiments in zero-pressure-gradient boundary
layers, Cebeci and Smith [28] found that Π increases with the Reynolds number and
becomes Π = 0.55 at high Reynolds numbers. For open-channel flows over smooth beds,
the following values were found: Π increases from zero with Re∗ and becomes Π ≈ 0.2 for
Re∗ = 2000 [18], Π ≈ 0.08 [29], Π = 0.1 [30], Π = 0.3 [31], Π = 0.45 for velocity distribution
with dip-phenomenon in narrow open channels [32].

However, the more rigorous method for the prediction of velocity profiles is based
on the resolution of the momentum equation. This method needs a reliable model for the
eddy viscosity, which is the main parameter related to turbulence used in free surface flows
since it is involved in the determination of both velocities and sediment concentrations
(through the sediment diffusivity, i.e., the product of the eddy viscosity by the inverse of the
turbulent Schmidt number) [33,34]. A well-known and largely used vertical distribution of
eddy viscosity in free surface flows (open channels and rivers) is given by the parabolic
profile [11]. This profile is based on the logarithmic velocity profile assumption and is valid
therefore only in the log-law layer. It was improved thanks to the log-wake law velocity
profile. These two eddy viscosities are obtained from velocity profiles. As for velocity
profiles in the outer region, the main shortcoming of the log-wake eddy viscosity profile is
the non-universal Coles’ parameter Π.

An analytical eddy viscosity model is therefore needed to predict velocity profiles. In
this study, we present two eddy viscosity models based on the concepts of velocity and
length scales, which are related, respectively, to the exponentially decreasing turbulent
kinetic energy (TKE) function [11] and mixing length, namely, (1) the exponential-type
profile of eddy viscosity [35,36] and (2) an eddy viscosity based on an extension of von
Karman’s similarity hypothesis [37–39]. An additional correction is used in order to account
for the damping effect of turbulence near the free surface. The proposed analytical models
are validated through computation of velocity profiles, obtained from the resolution of
the momentum equation, and comparisons to experimental data. This study aims to
provide an explanation and a theoretical foundation to the empirical well-known eddy
viscosity profiles.
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2. Literature for Eddy Viscosity Models for Open-Channel Flows
2.1. Parabolic Eddy Viscosity

The widely used eddy viscosity (νt) formulation is the parabolic profile given
by [40,41]

νt(y) = κu∗y
(

1− y
h

)
, (1)

where y is the vertical distance from the bed, κ is the von Karman constant, h the flow
depth, and u∗ the friction or shear velocity. Equation (1) is based on shear stress, which
decreases linearly with distance from channel bed y and a logarithmic velocity profile [33].

2.2. Log-Wake-Modified Eddy Viscosity Profile

When used for the resolution of the momentum equation, the parabolic eddy viscosity
profile (1) is unable to predict accurately velocities outside the log layer [36]. In order to
improve the parabolic eddy viscosity (Equation (1)), it is corrected in accordance with
Coles’ log-wake law for velocities as [18]

νt(y) =
κu∗y

(
1− y

h
)

1 + π Π y
h sin

(πy
h
) (2)

where Π is the Coles’ parameter. In Equation (2), the eddy viscosity (1) is corrected by
dividing the parabolic eddy viscosity profile by the term 1 + πΠ(y/h) sin(πy/h) of the
log-wake velocity profile.

2.3. Mixing Length and Mixing Velocity

In order to predict the velocity profile over the entire flow depth, it is more suitable to
define the eddy viscosity from the concepts of velocity and length scales, which are here
given by mixing velocity and mixing length as

νt = wmlm (3)

From the parabolic profile given by Equation (1), mixing length and mixing velocity
are given, respectively, by lm = κy

√
1− y/h and wm = u∗

√
1− y/h. The eddy viscosity

of Equation (2) allows for the following expression:

lm(y) =
κy
√

1− y/h
1 + πΠ(y/h) sin(πy/h)

(4)

Equation (4) consists of a correction of the “parabolic” mixing length κy
√

1− y/h
by dividing it by the term 1 + πΠ(y/h) sin(πy/h) as in Equation (2). The related mixing
velocity is given by wm = u∗

√
1− y/h [42].

3. Proposed Eddy Viscosity Models for Free Surface Flows

The eddy viscosity is related to turbulent kinetic energy (TKE) as

νt = Cµ
1
4
√

klm (5)

where k is the turbulent kinetic energy (TKE), and Cµ = 0.09.

3.1. Mixing Velocity from TKE Profile

A semi-theoretical function for TKE is given by [11]:

k(ξ) = Dku∗2e−2Ckξ (6)

where ξ = y/h, Ck and Dk are empirical constants, Dk = 4.78, and Ck = 1 [11].
Equation (6) was validated by direct numerical simulation DNS data [43]. Instead of
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the mixing velocity given in the above section by wm = u∗
√

1− y/h, the shape of mixing
velocity should be supported by turbulence intensity measurements [38] and in agreement
with the TKE formulation of Equation (6).

From Equations (3) and (5), the mixing velocity is related to TKE as follows:

wm = Cµ
1
4
√

k = Cµ
1
4
√

Dku∗e−Ckξ (7)

With the assumption
√

Dk = 1/Cµ
1
4 (based on log-law and local equilibrium assump-

tion [39]) and with Ck = 1, the mixing velocity reverts to

wm(ξ) = u∗e−ξ , (8)

which shows that the mixing velocity decreases exponentially with distance from the bed
and is in agreement with observations of turbulence intensity and TKE.

3.2. Damping Function for Free Surface

An additional correction is required in order to account for the damping effect of
turbulence near the free surface [44–46]. In order to decrease turbulent viscosity near the
free surface, Hosoda [47] proposed a damping function as

f (ξ) = 1− e−B f (1−ξ) (9)

where B f is a damping coefficient.
If we include the free surface damping function in Equation (3), the eddy viscosity

reverts to
νt = wmlm f (ξ) (10)

In the following sections, two eddy viscosity formulations will be presented.

3.3. First Formulation: Exponential-Type Profile of Eddy Viscosity

In the equilibrium region, where TKE production is balanced by dissipation, the

velocity gradient is given by dU
dy =

Cµ
1/4
√

k
lm

. In the log-law layer, dU
dy = u∗

κ y , and with a TKE

given by
√

k = Cµ
−1/4u∗ f (y), the mixing length should read as lm = κy f (y) [38]. Since in

the equilibrium region (y+ > 50), TKE is given by Equation (6), and the velocity profile is
given by the log law for (y+ > 30). These two conditions that are given by dU

dy ≈
√

k
lm

= u∗
κ y

show that the mixing length should be as lm = κ y e−Ck(y/h). The 1st eddy viscosity is
therefore given by

νt(y) = α1κu∗ye−C1ξ (11)

where α1 and C1 are two coefficients, α1 is related to Cµ and Dk, while C1 is related to
Ck. Equation (11), i.e., the exponential-type profile of eddy viscosity is consistent with the
exponentially decreasing mixing velocity (8). Equation (11) was proposed empirically and
was used in the planetary boundary layer [48] and coastal engineering [49–53]. However,
in order to allow accurate description for different flow conditions, Equation (11) was
written in a Re∗-dependent form as [35,36]

νt(y) = u∗ye−
y++0.34Re∗−11.5

0.46Re∗−5.98 (12)

where in the wall units, y+ = yu∗/ν, and the friction Reynolds number Re∗ = hu∗/ν. In
other words,

νt
+
(
y+
)
= y+e−

y++0.34Re∗−11.5
0.46Re∗−5.98
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where νt
+ = νt/ν. The link between Equations (11) and (12) is given by

Cα = α1κ = e−
0.34Re∗−11.5
0.46Re∗−5.98 and C1 =

Re∗
0.46Re∗ − 5.98

3.4. Second Formulation: Eddy Viscosity Formulation Based on Miwing Length Equation from
Similarity Hypothesis

This formulation uses a mixing length, which was derived from an extension of von
Karman’s similarity hypothesis, energy equilibrium assumption, and Nezu and Naka-
gawa’s (1993) TKE function as [37–39,54] (Appendix A)

lm(ξ) = κh
(

1− e−ξ
)

(13)

Using Equations (8)–(10) and (13), the second proposed eddy viscosity is given by

νt(ξ) = κhu∗e−ξ
(

1− e−ξ
)(

1− e−B f (1−ξ)
)

(14)

4. Results

The following ordinary differential equation for velocity distribution U in open-
channel flows was obtained from analysis of the Reynolds-averaged Navier–Stokes
equations [32,55].

dU
dy

=
u2

τ

ν + νt

[(
1− y

h

)
− αy

h

]
(15)

where α is a parameter related to dip-phenomenon. For wide-open channels (ratio of
channel width to flow depth >5) α = 0, and Equation (15) reverts in the outer region (in
the wall units) to the following:

dU+

dy+
=

1
νt+

(
1− y+

Re∗

)
(16)

Mean streamwise velocities are obtained from the numerical resolution of
Equation (16). To solve Equation (16), the eddy viscosity νt

+ is calculated using the
two proposed analytical eddy viscosity models given above, i.e., the first is given by
Equation (12), while the second by Equation (14).

Both proposed models are validated by experimental data of velocities in open-channel
flows for 923 < Re∗ < 6139 [18]. The measurements were carried out in a rectangular cross
section and a hydraulically smooth wall open channel. The total length of the channel is
20 m with a cross-sectional size (60 cm wide × 65 cm deep). The width of the channel
is sufficiently large to neglect the wall effect. A flow depth of 10 cm was kept constant
with varying discharge to examine at various Froude and Reynold numbers. Moreover,
measurement was carried out at a length of 18 m from the inlet position. Laser Doppler
Anemometer (LDA) was used to carry out velocity measurements under different flow
conditions. Table 1 summarizes experimental hydraulic conditions. The flow conditions
are listed in Table 1 [18].

Table 1. Flow conditions [18].

Case Depth of Flow,
h (cm)

Width to Depth
Ratio Reynolds Number 1, Re= 4RUm

ν
Froude Number, Fr= Um√

gh
Friction Reynolds Number, Re*= hu*

ν

P2 10.3 5.9 5.5 × 104 0.189 923
P3 10.0 6.0 14.3 × 104 0.488 2156
P4 10.0 6.0 21.0 × 104 0.704 3001
P5 10.5 5.7 44.0 × 104 1.170 6139

1 Um = mean bulk velocity, R = hydraulic radius.
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4.1. Velocity Profiles from the First Eddy Viscosity Formulation: Exponential-Type Profile

Computed mean streamwise velocity profiles are obtained from (16) with the first
eddy viscosity given by Equation (12) and are validated by experimental data [18]. The
following boundary condition for the velocity is applied at ξ = 0.2 (or y+ = 0.2 Re∗):
U+(y+ = 0.2Re∗) = (1/κ) ln(0.2Re∗) + B; where κ = 0.41 and B = 5.29 [11].

Figures 1 and 2 show comparisons between computed velocity profiles (red solid
lines) and experimental data (symbols). The model allows the prediction of log law (black
thin dashed lines) to be improved in the outer region.

In order to improve the results, the first eddy viscosity given by (12) is used with the
condition of an eddy viscosity equal to zero at the free surface, which requires the use of
the damping function given by Equation (9), Equation (12) reverts to

νt
+ = y+e−

y++0.34Re∗−11.5
0.46Re∗−5.98

(
1− e−B f (1−

y+
Re∗ )
)

(17)

Results obtained with Equation (17) (magenta thick dashed curves) allow the predic-
tion to be improved, particularly for high Reynolds numbers.
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Figure 2. Velocity profiles obtained from (16) with the first eddy viscosity (12) (red solid lines) and from (16) with (17)
(B f = 6) magenta thick dashed lines; symbols: experimental data [18]; dashed lines: log law (profiles shifted by 5 units).

4.2. Velocity Profiles from the Second Eddy Viscosity Formulation Based on Von Karman’s
Similarity Hypothesis

Computed mean streamwise velocity profiles are obtained from (16), and the second
eddy viscosity given by (14) and are validated by experimental data [18] (Table 1). The
same boundary condition is applied (velocity equal to the log-law value at y+ = 0.2 Re∗).
Figure 3 shows comparisons between computed velocity profiles (red solid lines) and
experimental data (symbols). The model allows log-law profiles (black thin dashed lines) to
be improved in the outer region. Figure 3 shows that computed velocity profiles (red solid
lines) show good agreement and improve the prediction of log law (black dashed thin lines).
In order to improve the results, the momentum equation is resolved with a second boundary
condition at the lower limit of the logarithmic layer, i.e., y+ = 30, where the velocity is
given by the log law as U+(30) = (1/κ) ln(30) + B. Results (magenta thick dashed curves)
allow the prediction to be improved, particularly for high Reynolds numbers.
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4.3. Eddy Viscosity Profiles

In order to compare the two proposed analytical eddy viscosity models (Equations (12),
(14) and (17)) with the existing parabolic and log-wake-modified eddy viscosity profiles
(Equations (1) and (2)), all equations are written in the same dimensionless form as

νt

h u∗
= κ

y
h

(
1− y

h

)
(18)

νt

h u∗
=

κ
y
h
(
1− y

h
)

1 + πΠ y
h sin

(πy
h
) (19)

νt

h u∗
= ξe−

(ξ+0.34)Re∗−11.5
0.46Re∗−5.98 (20)

νt

h u∗
= ξe−

(ξ+0.34)Re∗−11.5
0.46Re∗−5.98

(
1− e−B f (1−ξ)

)
(21)

νt

h u∗
= κe−ξ

(
1− e−ξ

)(
1− e−B f (1−ξ)

)
(22)

We notice that eddy viscosities from Equations (18), (19), and (22) are Re∗-independent,
while Equations (20) and (21) are Re∗ dependent.

Figures 4 and 5 show comparisons of the vertical distribution of the different eddy vis-
cosity models. The three Re∗-independent Equations (18), (19), and (22) are first compared.
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Figure 4 shows that the shape of the eddy viscosity given by the second model (Equation
(22)) (red solid line) is similar to the parabolic profile (green dashed line), where the maxi-
mum value is located at the same position, i.e., half water depth (ξ = 0.5). Even though
the second model exhibits a similar shape, it predicts smaller values than the parabolic
profile. The profile obtained from the second model is compared to log-wake-modified
(dash-dotted lines) profiles. The magenta dash-dotted curve is from the log-wake-modified
eddy viscosity given by Equation (19) with a Coles’ parameter Π = 0.2. With a smaller
value of Π, the blue dash-dotted curve (for Π = 0.15) is closer to the eddy viscosity given
by the second model. This value (Π = 0.15) is close to values found for open-channel flow
experiments [18,30]. This provides an explanation about the accuracy of the computed
velocity profiles obtained by the second model in the outer part of free surface flows.
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For the Re∗-dependent eddy viscosity given by the first model (Equations (20) and (21)),
Figure 5 shows comparisons for the vertical distribution of the eddy viscosity for the four
friction Reynolds number. The eddy viscosity curves (thick red solid lines) obtained from
the first model (Equation (20)) show that the eddy viscosity increases from the bed—the
maximum value is located at around the half water depth and then decreases until the free
surface. However, the eddy viscosity does not vanish at the free surface. With the condition
of an eddy viscosity equal to zero at the free surface, the profiles with the damping function
(Equation (21)) predict everywhere smaller values than the parabolic eddy viscosity (thin
magenta solid lines) and have a shape similar to the log-wake-modified eddy viscosity
profile (blue dash-dotted lines). Interestingly, with a value of Coles’ parameter Π = 0.2,
eddy viscosities from both the first model (Equation (21)) and log-wake-modified profile
(Equation (19)) are almost superimposed. The value Π = 0.2 of Coles’ parameter is
the same as that proposed from open-channel flow experiments [18]. This provides an
explanation about the accuracy of the computed velocity profiles obtained by the first model
(Equation (21)) in the outer part of free surface flows.

The profiles obtained for the four Re∗. numbers seem similar. For large values of
Re∗, the two coefficients Cα = α1κ and C1. of the first model reach asymptotic values
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equal, respectively, to Cα = α1κ = e−(0.34/0.46) = 0.477 and C1 = 1/0.46 = 2.17 (Figure 6).
Equations (20) and (21) reverts to the following Re∗-independent forms:

νt

h u∗
= Cαξe−C1ξ (23)

νt

h u∗
= Cαξ

(
1− e−B f (1−ξ)

)
e−C1ξ (24)

where Cα = 0.477 , C1 = 2.17, and B f = 6.
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Figure 7 shows the comparison between the two proposed eddy viscosity models
(24, 22), both with free surface damping function and parabolic and log-wake-modified
eddy viscosity profiles. Figure 7 shows that with the free surface damping function both
exhibit smaller values than the parabolic profile. Both models predict profiles similar to
log-wake-modified eddy viscosity (Equation (19)). The first model (Equation (24)) (red solid
line) is similar to (Equation (19))with a Coles’ parameter Π = 0.2 (red dash-dotted line),
while the second model (Equation (22)) (blue solid line) is similar to (Equation (19))with a
Coles’ parameter Π = 0.15 (blue dash-dotted line). Interestingly, the two coefficients of
the first model are found to be equal, respectively, to Cα = α1κ = 0.477 and C1 = 2.17.
The value of the first coefficient Cα results in α1 = 1.16 (with κ = 0.41), which is close
to α1 = 1 (related to the assumption

√
Dk = 1/Cµ

1
4 ) (see also [49,50]). The value of

Cα is also between the two values 0.41 < 0.478 < 0.49 obtained, respectively, with the
assumption

√
Dk = 1/Cµ

1
4 ,
√

DkCµ
1
4 κ = κ = 0.41 and the empirical value Dk = 4.78 [56],

√
DkCµ

1
4 κ = 0.49. The value of the second coefficient allows the coefficient in TKE to be

defined as Ck = C1/2 = 1.088, which is close to the empirical value Ck = 1 [55].
Figure 8 shows a comparison between the two proposed eddy viscosity models

(24, 22) and experimental data of eddy viscosity [18,57]. In addition to the experimental
data of Nezu and Rodi [18], data from experiments of Ueda et al. [57] are used, which seem
to confirm the same behavior. Figure 8 shows that profiles obtained from both models
show good agreement with experimental data of eddy viscosity.
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5. Conclusions

The parabolic eddy viscosity is based on the log-law velocity profile and is valid only
in the log layer. The improved log-wake-modified eddy viscosity was obtained from the
log-wake law velocity profile. However, both were obtained from velocity profiles. The
main shortcoming of the log-wake profile is the uncertainty in the value of the empirical
Coles’ parameter.

In this study, the eddy viscosity is defined as a product between a velocity scale
(related to the root-square of TKE, which is given by a semi-theoretical exponentially
decreasing function) and a length scale (related to mixing length). From this definition, two
analytical eddy viscosity models are proposed, namely, (1) the exponential-type profile of
eddy viscosity and (2) an eddy viscosity based on an extension of von Karman’s similarity
hypothesis with an additional correction in order to account for the damping effect of
turbulence near the free surface. As for the parabolic and log-wake-modified profiles, the
eddy viscosity from the second model is Re∗ independent, while the eddy viscosity from
the first model is Re∗ dependent. The proposed analytical models are validated through
computation of velocity profiles, obtained from the resolution of the momentum equation
and comparisons to experimental data.

Mean streamwise velocity profiles were obtained by solving the momentum equation.
For both the first and second proposed analytical eddy viscosity models, a boundary
condition is applied at the lower limit of the outer region, i.e., y+ = 0.2 Re∗ or ξ = 0.2,
where the velocity is given by the logarithmic law. Computed mean velocities are compared
to experimental data of open-channel flows for 923 < Re∗ < 6139. Computed velocity
profiles show good agreement in the outer region.

In order to improve the results, the first eddy viscosity was used with the free surface
damping function. Results allow the prediction to be improved, particularly for high
Reynolds numbers. For the second analytical eddy viscosity model, a second boundary
condition was used at the lower limit of the logarithmic layer, i.e., y+ = 30 where the
velocity is given by the log law. Results allow predicted velocity profiles to be improved,
particularly for high Reynolds numbers. The results for velocity profiles show the ability
of these analytical eddy viscosity models to predict accurately the velocities in the outer
region from the momentum equation.

Finally, the vertical distribution of eddy viscosity from both proposed analytical
models was analyzed. Both profiles from the first and second analytical eddy viscosity
models with the free surface damping function are similar to the log-wake-modified profiles
but with different values of Coles’ parameter. Π = 0.2 for the first model and Π = 0.15
for the second model. These values are close to values found from open-channel flow
experiments. This provides an explanation of the accuracy of the computed velocity profiles
in the outer part of free surface flows.

For large values of Re∗ (Re∗ > 2000), the first model becomes Re∗ independent, and
the two coefficients reach asymptotic values equal to Cα = α1κ = 0.477 and C1 = 2.17.
Interestingly, with a value of Coles’ parameter Π = 0.2, eddy viscosities from both the
first model and log-wake-modified profile are almost superimposed. The value Π = 0.2
of Coles’ parameter is the same as that proposed from open-channel flow experiments.
The analysis of these two coefficients allowed the models’ assumptions to be verified
and former empirical values to be found. The two proposed eddy viscosity models are
validated by two experimental data. The comparison shows that profiles from both models
show good agreement with experimental data of eddy viscosity.
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Appendix A

The von Karman’s similarity hypothesis allows writing the mixing length as [58]

lm+ = −κ
dU+/dy+

d2U+/dy+2 (A1)

where U+ is the streamwise mean velocity. With dU+/dy+ ≈
√

k+/lm+, Equation (A1)
becomes

lm+ = −κ

√
k+/lm+

d
(√

k+/lm+
)

/dy+
(A2)

Introducing the function f+ =
√

k+/lm+, (A2) becomes

√
k+ = −κ

f+2

d f+/dy+
(A3)

We write (A3) in the following form:

− d f+/dy+

f+2 =
κ√
k+

(A4)

The integration of the LHS term of Equation (A4) from A0 to y+¸ is given by

∫ y+

A0

−d f+/dy+

f+2 dy+ =
1

f+(y+)
− 1

f+(A0)
(A5)

Integrating (A4) from A0 to y+¸ provides, therefore, the mixing length as

lm+
(
y+
)
=
√

k+
(

κ
∫ y+

A0

1√
k+

dy+ +
lm+(A0)√

k+(A0)

)
(A6)

Using Equation (6) for TKE and taking the boundary condition lm+(A0) = κA0 yields

lm+
(
y+
)
= κe−Cky+/Re∗

(
Re∗
Ck

(
eCky+/Re∗ − eCk A0/Re∗

)
+ A0eCk A0/Re∗

)
(A7)

Rearranging the terms of (A7) allows writing the mixing length as [37–39,54]

lm+
(
y+
)
= α

(
Re∗ − (Re∗ − Ck A0)e−Ck(y+−A0)/Re∗

)
(A8)

where α = κ/Ck. Since A0 � Re∗ we write (18) in a simplified form that does not depend
on A0, as

lm+
(
y+
)
= α Re∗

(
1− e−Cky+/Re∗

)
(A9)

By taking Ck = 1, Equation (A9) reverts to Equation (13).
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