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Abstract: Extreme rainfall events have made significant damages to properties, public infrastructure
and agriculture in some provinces of South Africa notably in KwaZulu-Natal and Gauteng among
others. The general global increase in the frequency and intensity of extreme precipitation events
in recent years is raising a concern that human activities might be heavily disturbed. This study
attempts to model long-term monthly rainfall variability in the selected provinces of South Africa
using various statistical techniques. The study investigates the normality and stationarity of the
underlying distribution of the whole body of rainfall data for each selected province, the long-term
trends of the rainfall data and the extreme value distributions which model the tails of the rainfall
distribution data. These approaches were meant to help achieve the broader purpose of this study of
investigating the long-term rainfall trends, stationarity of the rainfall distributions and extreme value
distributions of monthly rainfall records in the selected provinces of South Africa in this era of climate
change. The five provinces considered in this study are Eastern Cape, Gauteng, KwaZulu-Natal,
Limpopo and Mpumalanga. The findings revealed that the long-term rainfall distribution for all the
selected provinces does not come from a normal distribution. Furthermore, the monthly rainfall data
distribution for the majority of the provinces is not stationary. The paper discusses the modelling of
monthly rainfall extremes using the non-stationary generalised extreme value distribution (GEVD)
which falls under the block maxima extreme value theory (EVT) approach. The maximum likelihood
estimation method was used to obtain the estimates of the parameters. The stationary GEVD was
found as the best distribution model for Eastern Cape, Gauteng, and KwaZulu-Natal provinces.
Furthermore, model fitting supported non-stationary GEVD model for maximum monthly rainfall
with nonlinear quadratic trend in the location parameter and a linear trend in the scale parameter for
Limpopo, while in Mpumalanga the non-stationary GEVD model with a nonlinear quadratic trend in
the scale parameter and no variation in the location parameter fitted well to the monthly rainfall data.
The negative values of the shape parameters for Eastern Cape and Mpumalanga suggest that the data
follow the Weibull distribution class, while the positive values of the shape parameters for Gauteng,
KwaZulu-Natal and Limpopo suggest that the data follow the Fréchet distribution class. The findings
from this paper could give information that can assist decision makers establish strategies for proper
planning of agriculture, infrastructure, drainage system and other water resource applications in the
South African provinces.

Keywords: Mann-Kendall test; maximum likelihood method; non-stationary GEVD; normality tests;
rainfall variability; Sen’s slope estimator

1. Introduction

According to [1], climate change is possibly the biggest environmental problem facing
the globe. Masereka et al. [2] stated that flood risks are caused by extreme rainfall events
that have resulted in flood disasters that accounted for about 47% of all weather-related
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calamities, affecting 2.3 billion people worldwide. In the past decades, extreme precipitation
events have made significant damages to properties, public infrastructure, agriculture,
finance and tourism in the Hawaiian Islands [3].

Muchuru et al. [4] stated that Southern Africa is a region of high rainfall variability and
is disposed to serious events such as floods and droughts. Recent increases in the frequency
and intensity of extreme rainfall events have raised concern that human activities might
have resulted in a change of the climate system [5]. On the contrary, [6] argued that there is
a growing concern in Southern Africa about the declining rainfall patterns as a result of
global warming. Manhique et al. [7] reported that the flood that occurred in January 2013
left almost 20,000 people homeless and about 100 dead in central and southern parts of
Mozambique.

South Africa is classified as a predominantly semi-arid country. The climate of South
Africa ranges from desert and semi-desert in the dry north-western region to sub-humid
and wet along the eastern coastal area [8]. According to [1], South Africa is a water-stressed
country with high spatio-temporal rainfall variability. This climate variability in South
Africa is a result of the location of South Africa in the tropical and subtropical zones. South
Africa has nine provinces, namely: Eastern Cape, Free State, Gauteng, KwaZulu-Natal,
Limpopo, Mpumalanga, Northern Cape, North-West and Western Cape. The present
study is carried out in the provinces of Eastern Cape, Gauteng, KwaZulu-Natal, Limpopo
and Mpumalanga.

According to [9], KwaZulu-Natal is the wettest province of South Africa, with rainfall
along the northeast coast exceeding 1300 mm per annum, but declining to 800 mm per
annum inland. Dyson [10] stated that Gauteng province receives most of its rainfall
in summer months, with the north-western part of the province obtaining rainfall more
frequently as compared to the south and south-east part of the province. A study conducted
by [11] showed no significant trend, but increases in summer rainfall and decreases in
autumn and winter rainfall in KwaZulu-Natal. Thomas et al. [12] observed an increase in
early-season rainfall and a decrease in late-season rainfall in north-west KwaZulu-Natal for
the period 1950–2000. In the same study [12], found a tendency for a later seasonal rainfall
onset accompanied by increased dry spells and fewer rain days in the Limpopo province.
Rainfall variability in the Eastern Cape province causes water reduction in reservoirs [13].
Oduniyi [14] highlighted that over the past decade in Mpumalanga province, there has
been occurrence of climate change such as excessive temperature, fire outbreaks, rainfall
and floods which caused a damage to agricultural productions. The Western Cape has been
impacted by severe storms occurring almost annually over the past two decades, resulting
in damages to homes, agricultural produces and infrastructure [15].

The present study seeks to model long-term monthly rainfall variability in selected
provinces of South Africa using time series and extreme value theory (EVT) approaches.
Results from this study can contribute positively to the body of knowledge in EVT applica-
tion to rainfall data and recommendations will be suggested to the government agencies
on the long-term rainfall variability and their negative impact on the economy. To the best
of our knowledge, there are no studies available on the public domain that have modelled
long-term monthly rainfall variability in these selected provinces of South Africa using the
trend analysis and EVT approaches employed in this present study.

2. Materials and Methods
2.1. Data Source and Study Area

Aggregated provincial monthly rainfall data from 1900 to 2017 for the five selected
provinces of South Africa were obtained from the South African Weather Service (SAWS)
and the secondary data were time series measured in millimeters (mm). Two provinces,
Limpopo and Mpumalanga, had monthly rainfall data for the period 1904–2017, while the
rest of the provinces had monthly rainfall data from 1900 to 2017.
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2.2. Test for Stationarity

Statistical theory offers a wide range of unit root tests, with the most commonly used
being augmented Dickey-Fuller (ADF) test, Phillips-Perron (PP) test and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test [16]. In this study ADF, PP and KPSS are used to test
whether the monthly rainfall data for selected provinces of South Africa are stationary.

2.2.1. Augmented Dickey-Fuller (ADF) Test

The ADF test was employed in this study to check whether the monthly rainfall data
for selected provinces of South Africa are stationary.

The ADF test is assessed under the following hypotheses:

H0: There exists a unit root and the time series is non-stationary,
H1: The time series is stationary.

The ADF test consists of estimating the following regression model:

yt = β + β1t + δYt−1 +
m

∑
i=1

αi4Yt−1 + εt, (1)

where β is a constant, β1 is the coefficient on time trend. The null hypothesis is δ = 1,
and the alternative hypothesis is δ 6= 1, while εt is a pure white noise error term and the
ADF follows an asymptotic distribution [17].

2.2.2. Phillips-Perron (PP) Unit Root Test

The Phillips-Perron test is a more developed test, introduced in 1988 and it has the
same null hypothesis with ADF test and also uses the same critical values with it [18,19] .
The PP test makes a non-parametric correction to the t-statistic. The PP test involves the
equation coming from Dickey-Fuller test:

4Yt = µ + v + λt + εt, (2)

where εt is I(0) and it can be heteroscedastic. For this reason, the test estimates the equation:

yt = yt−1 + v + λt + εt. (3)

The PP method estimates the non-augmented DF test equation and modifies the t-ratio
of the coefficient, so that serial correlation does not affect the asymptotic distribution of the
test statistic. The PP test is based on the statistic:

t̄µ = tµ

(
γ0

f0

) 1
2
− T( f0 − γ0[se(µ)]

2 f
1
2

0 s
. (4)

The PP test is assessed under the following hypotheses:

H0: There is a unit root,
H1: There is no unit root.

2.2.3. Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

The ADF and PP test mentioned in the previous sections are testing the null hypothesis
that the time series yt is integrated of order one, I(1). The opposite case, that is, testing the
null hypothesis that the time series yt is I(0) is described by the KPSS test [20]. KPSS builts
on the idea that the time series is stationary around a deterministic trend and is calculated
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as the sum of deterministic trend, random walk and stationary random error. It is based on
the model:

yt = dt + rt + εt,

rt = rt−1 + ut,
(5)

where dt = ∑
p
i=o βiti, for p = 0, 1, contains deterministic parts of the model constant

or deterministic trend, εt are independent and identically distributed (iid) error terms
∼ N(0, σ2

ε ), and rt is a random walk with variance σ2
u and ut. KPSS test is based on

the likelihood method test of the hypothesis that random walk has a zero variance, i.e.,
H0:σ2

u = 0, which means that rt is a constant, against the alternative H1:σ2
u > 0. The test

statistic is written as:

LM =
T

∑
t=1

s2
t /σ̂ε, (6)

where st = ∑T
t=1 ε̂, t = 1, 2, ..., T, and σ̂2

ε is the estimate of variance σ2
ε of process εt from

equation (5). Critical values are derived by a simulation method and are listed in [20].
The advantage of the KPSS is that to some extent KPSS alleviates the problem that is present
with the ADF test [21].

Kwiatkowski et al. [20] argue that KPSS test can differentiate a series that appears to
be stationary, series that appears to have a unit root, and series for which the data are not
sufficiently informative to be sure whether they are stationary or integrated.

The KPSS test is assessed under the following hypotheses:

H0: The series does not have a unit root or is stationary,
H1: The series has a unit root or is not stationary.

2.3. Trend Test

This study used non-parametric Mann-Kendall (M-K) test statistic, Sen’s slope estima-
tor and time series plots to investigate the long-term trend of the monthly rainfall and its
variability across the selected provinces.

2.3.1. Non-Parametric Mann-Kendall (M-K) Test Statistic

The non-parametric Mann-Kendall (M-K) test statistic is frequently used to quantify
the significance of monotonic trend in hydrometeorological time series [22,23]. The M-K
test statistic is defined as

S =
n−1

∑
j=1

n

∑
i=j+1

sgn(ei − ej), (7)

where n is the number of extreme values. If S is positive, then there is an increasing trend,
but if S is negative, then there is a decreasing trend, and sgn(ei − ej) is a sign function
given by:

sgn(ei − ej) =


1, if ei − ej > 0,
0, if ei − ej = 0,
−1. if ei − ej < 0.

(8)

Under the null hypothesis of no trend, the theoretical mean of S is 0 and its variance is
given by

Var(S) =

[
n(n− 1)(2n + 5)−

g

∑
p=1

tp(tp − 1)(2tp + 5)

]
/18, (9)

where g is the number of tied groups (a tied group is a set of sample data having the same
value), and tp is the number of data points in the pth tied group. If no tied group exist,
this process can be ignored [23]. In cases where the sample size n > 30, the normalised test
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statistic Z can be used to statistically quantify the significance of the trend. Z is calculated
using the following equation:

Z =


S−1√
Var(S)

, if S > 0,

0, if S = 0,
S+1√
Var(S)

, if S < 0.

(10)

Positive values of Z indicate an increasing trend, while negative Z values show
decreasing trends. In a one-tailed test at a significance level of α, the null hypothesis of
no trend is rejected if | Z | > zα, where z is the standard normal variable. In this study,
the significance level was set to be 5%.

2.3.2. Sen’s Slope Estimator

Sen’s slope estimator non-parametric method was used to estimate the magnitude of
trends in the time series data [24]. The slope of “n” pairs of data can be first estimated by
using the following equation:

βi = Median
[Xj − Xk

j− k

]
∀k < j. (11)

In this equation, Xj and Xk denote data values at time j and k, respectively, and time
j is after time k (k ≤ j). The median of “n” values of βi is the Sen’s slope estimator
test. A negative βi value represents a decreasing trend, a positive βi value represents an
increasing trend over time.

If “n” is an even number, then the Sen’s slope estimator is computed by using the
following equation:

βmed =
1
2
(β[n/2] + β[(n+2)/2]). (12)

If “n” is an odd number, then the estimated slope by using the Sen’s slope method can
be computed as follows:

βmed = (β[n+/2]). (13)

βmed is tested by a two tailed test at 100 (1−α) % confidence level, and the true slope
of monotonic trend can be estimated by using a non-parametric test [25,26].

2.3.3. Time Series Plots

A time series plot is simply a graph in which the data values are arranged sequentially
in time. It is commonly used to give a pictorial view of the data series over time.

2.4. Test for Normality

According to [27], there are several parametric and non-parametric methods of as-
sessing whether data are normally distributed or not. These methods can be split into two
groups: graphical and statistical. The most frequently used methods include: Quantile-
quantile (Q-Q) plots, density plots, probability-probability (P-P) plots, Anderson–Darling
test (AD), Shapiro–Wilk (SW) test, D’Agostino-Pearson K2 (DPK) test, chi-square test,
Jarque-Bera (JB) test, kurtosis test, Shapiro-Francia (SF), skewness test, robust Jarque-Bera
(RJB) test among others. In this study the JB, SW and chi-square methods are employed to
check whether the monthly rainfall data are normally distributed. The SW test is one of the
most popular tests for normality assumption diagnostics, and has good properties of power
based on correlation within given observations and associated normal scores [28]. The JB
and chi-square tests are among the most widely used techniques for testing normality of
the data.
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2.4.1. Jarque-Bera (JB) Test

The JB test statistic is expressed as:

JB = n
(
(
√

b1)
2

6
+

(b2 − 3)2

24

)
, (14)

where
√

b1 and b2 are the skewness and kurtosis measures and are given by m3
(m2)3/2 and

m4
(m2)3 , respectively; and m2, m3 and m4, are second, third and fourth central moments,
respectively. The JB test statistic is chi-square distributed with two degrees of freedom.

The hypothesis test for the JB test procedure is

H0: The monthly rainfall data is normally distributed, versus,
H1: The monthly rainfall data do not come from a normal distribution.

2.4.2. Shapiro–Wilk (SW) Test

The SW test is of the form:

W =
1
D

[
m

∑
i=1

ai(x(n−i+1) − x(i)

]2

, (15)

where m = n
2 if n is even, while m = (n−1)

2 if n is odd. D = ∑n
i=1(xi − x̄)2 and x(i) represent

the ith order statistic of a sample. The constants ai are given by:
(a1, a2, ..., an) =

mTV−1

(mTV−1V−1m)
1
2

and m is given by m = (m1, m2, ..., mn)T , where m1, m2, ...,

mn are the expected values of order statistics of iid random variables sampled from the
standard normal distribution, and V is the covariance matrix of those order statistics [27].

The SW test is assessed under the following hypotheses:

H0: The monthly rainfall data is normally distributed,
H1: The monthly rainfall data does not come from a normal distribution.

2.4.3. Chi-Square Test

The chi-square goodness-of-fit test is defined as:

χ2 =
n

∑
i=1

(Oi − Ei)
2

Ei
, (16)

where (Oi) and (Ei) refer to the ith observed and expected frequencies, respectively, and n
is the number of groups. When the null hypothesis is true, the above test statistic follows a
chi-square distribution with k− 1 degrees of freedom [27].

The chi-square test is assessed under the following hypotheses:

H0: The monthly rainfall data are sampled from a normal distribution,
H1: The monthly rainfall data are not sampled from a normal distribution.

2.5. Extreme Value Theory Techniques

In extreme value theory (EVT) two approaches exist: the block maxima (BM) and the
peaks-over-threshold (POT) methods. According to [29], the BM is an approach in EVT
that consists of dividing the observation period into non-overlapping periods of equal
sizes. The current study utilises the BM approach in a changing climate to model monthly
rainfall of the five selected provinces of South Africa.
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2.5.1. Stationary Generalised Extreme Value Distribution

Generalised extreme value distribution (GEVD) is the family of asymptotic distribution
that describes the behaviour of extreme conditions. The GEVD consists of three extreme
value distributions namely: Gumbel, Fréchet and Weibull families which are also referred
to as type I, II and III extreme value distributions [30–32]. The cumulative probability
distribution for GEVD is of the form:

GEV(x, µ, σ, ξ) =

exp−
[
1 + ξ

(
x−µ

σ

)]−1
ξ ; ξ 6= 0,

exp
(
− exp

(
− x−µ

σ

))
; ξ = 0,

(17)

where x are the extreme values from the blocks, µ, σ and ξ are the location, scale and shape
parameters, respectively. For ξ > 0, we obtain the Fréchet distribution, for ξ = 0, we get
the Gumbel distribution and for ξ < 0, we get the Weibull distribution.

2.5.2. Non-Stationary Generalised Extreme Value Distribution

The non-stationary GEVD model is the fundamental modification of the stationary
GEVD model [30]. To account for non-stationary GEVD, the location parameter µ and the
scale parameter σ are assumed to vary with time t and possibly other covariates [32,33].
The non-stationary GEVD is given by:

GEVD(x; µ(t), σ(t), ξ(t) = exp−
[

1 + ξ
x− µ(t)

σ(t)

]− 1
ξ(t)

, ξ 6= 0. (18)

In the simplest case, the following regression structures could be examined for the
location and scale parameters:

µ(t) = µ0 + µ1t + µ2t2, (19)

σ(t) = exp(σ0 + σ1t + σ2t2, (20)

ξ(t) = ξ, (21)

allowing up to quadratic dependence on time t and keeping the shape parameter constant [34].

2.5.3. Parameter Estimation of Non-Stationary GEVD

Parameters of the non-stationary GEVD are estimated using the method of maximum
likelihood (ML). For a sample of N observations, the ML of the time-dependent GEVD
in (18) was determined by maximising the log-likelihood function, expressed with time-
varying parameters:

l(µ(t), σ(t), ξ) = −
N

∑
t=1

log σ(t) +
(

1 +
1
ξ

)
log
[

1 + ξ

(
xi − µ(t)

σ(t)

)]

+

[
1 + ξ

(
xi − µ(t)

σ(t)

)]−1/ξ

,

(22)

where N is the number of years of observation. To obtain the GEVD parameter estimators
that maximise Equation (18) we use the interior algorithm based nonlinear optimisation in
the MATLAB Optimisation Toolbox [22].

2.6. Goodness-of-Fit

Goodness-of-fit test statistics are used for checking the validity of a specified or
assumed probability distribution model. In this study, Kolmogorov-Smirnov (K-S) test,
Anderson-Darling (A-D) and graphical methods, were applied to identify the best model.
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2.6.1. Kolmogorov-Smirnov (K-S) Test

The K-S test, based on the empirical cumulative distribution function is used to decide
if a sample comes from a hypothesised continuous distribution [35–37]. The K-S statistic D
is defined as the largest vertical distance between theoretical and the empirical cumulative
distribution (CDF) and is formulated as follows:

Dmax = max
1≤i≤n

(
F(xi)−

i− 1
n

;
i
n
− F(xi)

)
, (23)

where Xi are random samples, i = 1, 2, ..., n, and the CDF is

Fn(x) =
1
n
[Number o f observations ≤ x]. (24)

The K-S test is estimated under the following hypotheses:

H0: The monthly rainfall data follow a specified distribution,
H1: The monthly rainfall data do not follow the specified distribution.

2.6.2. Anderson-Darling (A-D) Test

The A-D test statistic (A2) is defined as:

A2 = −n− 1
n

n

∑
i=1

(2i− 1)[ln F(Xi) + ln(1− F(Xn−i+1))]. (25)

The A-D test is used to compare the fit of an observed CDF to an expected CDF. This
test gives more weight to the tails of the distribution than the K-S test [36,37].

The A-D test is estimated under the following hypotheses:

H0: The monthly rainfall data follow a specified distribution,
H1: The monthly rainfall data do not follow the specified distribution.

2.6.3. Graphical Test

Alam et al. [35] stated that graphical test is one of the most simple powerful techniques
for selecting the best-fit model. To check if the time-dependent GEVD fit well to the monthly
rainfall data, the following graphical tests were used.

Quantile-quantile (Q-Q) plots
Quantile-quantile (Q-Q) plot, is a comparison of an empirical form for estimating the

exceedance and the inverse of fitted distribution function. Any departure from linearity
indicates model failure in perfectly fitting the data [38].

Probability-probability (P-P) plots
Probability-probability (P-P) plot is a comparison of an empirical (usually percentage

rank) and the fitted distribution function. In case of perfect fit, the data would line up on
the diagonal of the probability plots [35,38].

Return level plots
In these plots the empirical estimates of the return level functions are added. If there

is an agreement between the model-based curve and empirical estimates, then the model is
suitable for the data [35,38].

2.6.4. Choice of Preferred Model

When time-dependent GEVD is considered with covariates, there are a number of
possible models to select from [39]. In order to select between model fits, a test of the
likelihood ratio test also known as the deviance (D) statistic is used. For models M0 ⊂ Mi,
we define the D statistic as:

D = 2{li(Mi)− l0(M0)}, i = 1, 2, 3, ... (26)
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where l0(M0) and li(Mi) are the maximised log-likelihood under models M0 and Mi,
respectively. The asymptotic distribution of D is given by χ2

k distribution with k degrees of
freedom, where k is the difference in dimensionality of Mi and M0. The calculated deviance
statistic, D, is compared to critical values from χ2

k at α level of significance. Large values
of D suggest that Mi explains substantially more of the variation in the data than M0 [32]
and [39].

3. Exploratory Data Analysis

This section is divided into three sections: descriptive statistics, stationarity tests and
normality tests.

3.1. Descriptive Statistics

The descriptive statistics evaluated are the mean, standard deviation, median, kur-
tosis, skewness, minimum and the maximum monthly rainfall amount for each province.
The summary of the descriptive statistics for each province is presented in Table 1.

From Table 1, the monthly rainfall data for each province has a mean value X̄ > Q2
(Median), indicating that the monthly rainfall data is positively skewed and this is con-
firmed by the positive values of skewness. Eastern Cape, Gauteng, KwaZulu-Natal
provinces have kurtosis greater than three which indicate heavy tails than a normal dis-
tribution, while Limpopo and Mpumalanga have kurtosis less than three which indicate
lighter tails than a normal distribution.

The standard deviation for all the five provinces ranges from 31.28 to 57.23 mm
per month. KwaZulu-Natal province has the highest standard deviation with the value
of 57.23 mm per month which indicates a large variation in the monthly rainfall series,
while Mpumalanga province has the lowest standard deviation of 31.28 mm per month
which implies a small variation in the monthly rainfall series.

The minimum monthly rainfall ranges between 0.01 mm and 0.50 mm per month
where Eastern Cape receives the highest minimum rainfall of 0.50 mm per month, while Gaut-
eng and KwaZulu-Natal receive the lowest minimum rainfall of 0.01 mm per month.

The maximum monthly rainfall lie between 111.00 mm and 478.80 mm per month
where KwaZulu-Natal receives the highest maximum monthly rainfall of 478.80 mm
per month followed by Gauteng with the maximum rainfall of 438.10 mm per month.
Mpumalanga receives the lowest maximum rainfall of 111.00 mm per month.

Table 1. Descriptive statistics of the monthly rainfall data.

Provinces Min Max Median Mean Std.dev Kurt Skew

Eastern Cape 0.50 211.00 42.50 49.03 34.46 4.06 0.99
Gauteng 0.01 438.10 45.45 58.45 55.62 5.22 1.18

KwaZulu-Natal 0.01 478.80 67.75 73.92 57.23 5.68 1.10
Limpopo 1.00 112.00 45.00 46.74 31.40 1.93 0.26

Mpumalanga 1.00 111.00 47.00 48.19 31.28 1.85 0.16

Note: Min = Minimum, Max = Maximum, Std.dev = Standard deviation, Kurt = Kurtosis, Skew = Skewness.

3.2. Test for Stationarity Results

The augmented Dickey-Fuller(ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests were used to check for stationarity of monthly rainfall data for
selected provinces of South Africa. Table 2 shows the results of the ADF, PP and KPSS tests.

The ADF and PP tests were assessed under the following hypotheses:

H0: There exists a unit root and the time series is non-stationary,
H1: The time series is stationary.
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The KPSS test was tested under the following hypotheses:

H0: The series does not have a unit root test (or series is stationary).
H1: The series has a unit root (or series is not stationary).

From Table 2 the p-values of the ADF test statistics for Eastern Cape, Limpopo and
Mpumalanga are significant (p < 0.05), suggesting that the monthly rainfall data for these
three provinces are stationary. The ADF p-values for Gauteng and KwaZulu-Natal are
insignificant (p > 0.05), suggesting that the monthly rainfall data for these two provinces
are not stationary at 5% level of significance.

Also, from Table 2 the p-values of the KPSS test for all five provinces are significant
(p < 0.05), suggesting that the monthly rainfall data are not stationary. Furthermore,
from Table 2 the p-values of the PP test for all five provinces are significant (p < 0.05),
implying that the monthly rainfall data are stationary.

Overall, based on all the stationarity test findings, we conclude that the monthly
rainfall data are not stationary for the majority of the provinces.

Table 2. ADF, KPSS and PP stationarity test results of monthly rainfall data.

Provinces Test Test Statistic p-Value

Eastern Cape ADF −3.7614 0.02092
KPSS 3.7258 0.01

PP −1432 0.01

Gauteng ADF −2.6238 0.3143
KPSS 4.205 0.01

PP −840.85 0.01

KwaZulu-Natal ADF −2.6452 0.3052
KPSS 4.1714 0.01

PP −1003.5 0.01

Limpopo ADF −7.1461 0.01
KPSS 1.8398 0.01

PP −1502.6 0.01

Mpumalanga ADF −8.1155 0.01
KPSS 0.96204 0.03041

PP −1312.9 0.010

3.3. Test for Normality Results

In this study we formally tested for normality of the monthly rainfall data using the
Jarque-Bera (JB), Shapiro-Wilk (SW) and chi-square tests. Table 3, presents the results of
the normality tests.

The JB, SW and chi-square tests are assessed under the following hypotheses:

H0: The monthly rainfall data are normally distributed, versus,
H1: The monthly rainfall data do not come from a normal distribution.

From Table 3, the results for all the three normality tests are significant (p < 0.05),
which suggests that the monthly rainfall data for all the five provinces do not come from a
normal distribution.
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Table 3. JB, SW and chi-square normality test results of monthly rainfall data.

Provinces Test Test Statistic p-Value

Eastern Cape JB 298.15 <0.01
SW 0.93113 <0.01

Chi-square 34276 <0.01

Gauteng JB 618.22 <0.01
SW 0.88137 <0.01

Chi-square 78541 <0.01

KwaZulu-Natal JB 710.9 <0.01
SW 0.92103 <0.01

Chi-square 62693 <0.01

Limpopo JB 83.244 <0.01
SW 0.9511 <0.01

Chi-square 29843 <0.01

Mpumalanga JB 83.833 <0.01
SW 0.95219 <0.01

Chi-square 28739 <0.01

4. Results and Discussion

This section is divided into two sections namely; trend analysis and model fitting.

4.1. Trend Analysis Results

Mann-Kendall test statistic, Sen’s slope estimator and time series plots were used to
analyse the long-term trends of the monthly rainfall data for the five provinces. The Mann-
Kendall test statistic and Sen’slope results are presented in Table 4. The outcome of the
Mann-Kendall test results revealed that in Eastern Cape, Gauteng and KwaZulu-Natal
provinces there were significant monotonic decreasing long-term trends (p < 0.05 and
τ negative), while in Limpopo and Mpumalanga there were no significant monotonic
decreasing long-term trends (p > 0.05 and τ negative). Sen’s slope values for Eastern
Cape, Gauteng and KwaZulu-Natal showed significant decreasing magnitudes of trends,
which were corresponding with the Mann-Kendall test results. While in Limpopo, Sens’
slope value revealed an insignificant decreasing magnitude of trend, which also supports
the findings from Mann-Kendall test. On the other hand, Sen’s slope value for Mpumalanga
showed no magnitude of trend, which slightly differs from the results of Mann-Kendall
test. The latter findings illustrate the insignificance of the decreasing monotonic trend
for Mpumalanga.

Figure 1 illustrate the monthly rainfall data time series plots for Eastern Cape, Gauteng,
KwaZulu-Natal, Limpopo and Mpumalanga provinces. The time series plots in Figure 1 do
not exhibit any significant discernible long-term trends for all the provinces. This justifies
the use of Mann-Kendall test to help uncover the hidden long-term trends in the monthly
rainfall series in Table 4.

Table 4. Results for Mann-Kendall test statistic and Sen’s slope estimator.

Provinces M-K Test Statistic Kendall’s Tau (τ) p-Value Sen’s Slope

Eastern Cape −4.130 −0.073 0.01 −0.009
Gauteng −3.057 −0.054 0.002 −0.008

KwaZulu-Natal −2.399 −0.043 0.016 −0.009
Limpopo −0.832 −0.015 0.405 −0.002

Mpumalanga −0.487 −0.009 0.626 0.000
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Figure 1. Time series plot for monthly rainfall in (a) Eastern Cape 1900–2017, (b) Gauteng 1900–2017,
(c) KwaZulu-Natal 1900–2017, (d) Limpopo 1904–2017 and (e) Mpumalanga 1904–2017.
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4.2. Non-Stationary GEVD Modelling of Annual Block Maxima Rainfall Data

The time series plots of the annual block maxima rainfall series are shown in Figure 2.
There seems to be some strong evidence for a positive long-term trend over the years, for all
the provinces. A substantial part of the variability in the data can probably be explained
by a systematic variation in rainfall over the years. One way of capturing this trend is by
allowing the GEVD location and scale parameters to vary with time [40]. From Figure 2 a
simple linear trend in time seems plausible for our annual maximum rainfall Xt, and we
can use the model

Xt ∼ GEV(µ(t), σ(t), ξ), (27)

where µ(t) and σ(t) are the time-dependent location and scale parameters, respectively.
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Figure 2. Time series plot of the annual block maximum rainfall observed in (a) Eastern Cape
1900–2017, (b) Gauteng 1900–2017, (c) KwaZulu-Natal 1900–2017, (d) Limpopo 1904–2017 and
(e) Mpumalanga 1904–2017.

In the present study, eight models are proposed for the non-stationary GEVD: M1, M2,
M3, M4, M5, M6, M7 and M8. The reference model is denoted by M0 and is the stationary
GEVD [40]. Model M1 has a linear trend in the location parameter such that µ(t) = µ0 +µ1t,
σ(t) = σ and ξ(t) = ξ; Model M2 has a linear trend in the scale parameter such that
µ(t) = µ, log σ(t) = exp(σ0 + σ1t) and ξ(t) = ξ; Model M3 has a linear trend in both
location and scale parameters such that µ(t) = µ0 + µ1t, log σ(t) = exp(σ0 + σ1t) and
ξ(t) = ξ; Model M4 has a nonlinear quadratic trend in the location parameter and a linear
trend in scale parameter such that µ(t) = µ0 + µ1t + µ2t2, log σ(t) = exp(σ + σ1t) and
ξ(t) = ξ; Model M5 has a linear trend in the location parameter and a nonlinear quadratic
trend in the scale parameter such that µ(t) = µ0 + µ1t, log σ(t) = exp(σ0 + σ1t + σ2t2) and
ξ(t) = ξ; Model M6 has a nonlinear quadratic trend in both location and scale parameters
such that µ(t) = µ0 + µ1t + µ2t2, log σ(t) = exp(σ0 + σ1t + σ2t2) and ξ(t) = ξ; Model M7
has a nonlinear quadratic trend in the location parameter with no variation in scale such
that µ(t) = µ0 + µ1t + µ2t2, σ(t) = σ and ξ(t) = ξ; Model M8 has a nonlinear quadratic
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trend in the scale parameter with no variation in the location parameter such that µ(t) = µ,
log σ(t) = exp(σ0 + σ1t + σ2t2) and ξ(t) = ξ.

4.2.1. Eastern Cape

The stationary GEVD model for Eastern Cape data (i.e., model M0) has a maximum
negative log-likelihood (NLLH) of 556.765 (see Table 5). A GEVD model with linear trend
in the location parameter (i.e., M1) has a maximum NLLH of 555.820. The deviance statistic
for comparing these two models is therefore, D = 2(556.769 − 555.820) = 1.898, which
is small compared to χ2

1(0.05) = 3.841. Thus, allowing for a linear trend in the location
parameter does not improve on our stationary GEVD model, M0. Therefore, M1 is not a
worth model to consider.

Consider the pair of models (M0, M2) from Table 5. The deviance statistic is 2(556.769
− 555.724) = 2.090, which is small compared to χ2

1(0.05) = 3.841. Thus, allowing for
a linear trend in the scale parameter does not improve on our stationary GEVD model,
therefore, we reject model M2 and conclude that is not worthwhile to allow for a linear
trend in the scale parameter.

From Table 5, the deviance statistics of model pairs (M0, M3) and (M0, M7) are 2.478
and 1.442, respectively. Since both values of the deviance statistics are smaller than
χ2

2(0.05) = 5.991, it implies that both models do not provide any improvement in fit
over the stationary GEVD model. The other model pairs from Table 5 (M0, M4) and
(M0, M5), have deviance statistics of 1.864 and 0.452, respectively. These results revealed
that model M4, which allows for nonlinear quadratic trend in the location parameter and
a linear trend in the scale parameter, does not provide an improvement in fit over the
stationary GEVD model since the value of the deviance statistic (1.864) is small as compared
to the value of χ2

3(0.05) = 7.815. Also, model M5, which allows for linear trend in location
parameter and a nonlinear quadratic trend in the scale parameter, does not provide an
improvement in fit over the stationary GEVD model since the value of the deviance statistic
is smaller than the value of χ2

3(0.05) = 7.815.
The nonlinear quadratic model pair (M0, M6), which allows for nonlinear quadratic

trend in both location and scale parameters, does not improve the stationary GEVD model
since the deviance statistic , D = 1.37, is very small compared to χ2

4(0.05) = 9.488. Again
in Table 5, the model pair (M0, M8), which allows for nonlinear quadratic trend in scale
parameter with no variation in location parameter, has a deviance statistic of 0.354, which is
too small compared to the critical value of 5.991 with 2 degrees of freedom. Thus, allowing
for a quadratic trend in the scale parameter with no variation in the location parameter
does not improve on the stationary GEVD.

Table 5. Non-stationary GEVD models for Eastern Cape for the period 1900–2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH

M0 100.782 0 0 23.244 0 0 −0.012 556.769
M1 95.768 0.086 0 23.057 0 0 −0.013 555.820
M2 100.7005 0 0 22.328 0.017 0 −0.019 556.724
M3 94.955 0.102 0 20.715 0.041 0 −0.022 555.530
M4 98.043 −0.039 0.001 20.928 0.036 0 −0.010 555.837
M5 99.323 0.002 0 18.126 0.310 −0.003 0.092 556.543
M6 96.672 −0.003 0.001 17.7333 0.246 −0.002 0.095 556.084
M7 98.475 −0.033 0.001 22.982 0 0 −0.002 556.048
M8 99.499 0 0 18.263 0.305 −0.003 0.091 556.592

Key: NLLH = negative log-likelihood.
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Overall, the final model for Eastern Cape is the stationary GEVD model, M0. The gen-
eral model for Eastern Cape is given by

GEVD(x, µ, σ, ξ) = exp−
[

1− 0.012
(

x− 100.782
23.244

)] 1
0.012

. (28)

The shape parameter (−0.012) for the model, M0, in (28) indicates that the rainfall
data for Eastern Cape can be modelled by the Weibull class of distributions since the shape
parameter ξ < 0. The diagnostic plots for the stationary GEVD model in (28) are presented
in Figure 3. The diagnostic plot results in Figure 3 show that the stationary GEVD model,
M0, is the best fit for the Eastern Cape monthly rainfall data.
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Figure 3. Diagnostic plots for the stationary GEVD best fitting model for Eastern Cape province.

Goodness-of-fit test for Eastern Cape GEVD model
The goodness-of-fit test based on Kolmogorov-Smirnov (K-S) and Anderson-Darling

(A-D) tests were performed in order to check if the maximum monthly rainfall data for
Eastern Cape follow a stationary GEVD model. Table 6 presents the results of the K-S and
A-D goodness-of-fit tests for the selected stationary GEVD model for Eastern Cape.

The hypotheses are formulated as follows

H0: The monthly rainfall data follow a specified distribution,

and

H1: The monthly rainfall data do not follow the specified distribution.

Since the p-values for both the K-S and A-D tests are greater than the 5% level of
significance, α = 0.05, we conclude that the maximum monthly rainfall for Eastern Cape
follow the specified stationary GEVD.
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Table 6. Goodness-of-fit for Eastern Cape (1900–2017).

Test Test Statistic p-Value

K-S 0.056844 0.8403205
A-D 0.1935343 0.8918115

4.2.2. Gauteng

The model pairs (M0, M1) and (M0, M2) from Table 7 have the same critical value
of χ2

1(0.05) = 3.841 with the deviance statistic values of 0.022 and 0.250 for M1 and M2,
respectively. Since the values of the deviance statistics for M1 (0.022) and M2 (0.250) are
smaller than the critical value of 3.841, we conclude that both models do not provide any
improvement in fit over the stationary GEVD model.

From Table 7, the deviance statistics of model pairs (M0, M3) and (M0, M7) are 0.272
and 0.130, respectively. Since the values of the deviance statistics for both model pairs are
smaller than χ2

2(0.05) = 5.991, it implies that both models do not provide any improve-
ment in fit over the stationary GEVD model. The model pair (M0, M6) from Table 7 has
χ2

4(0.05) = 9.488 and a deviance statistic value of 1.706. Since the deviance statistic value
(1.706) is smaller than the critical value of 9.488, we conclude that model M6 does not
provide any improvement in fit over the stationary GEVD model.

The other pairs from Table 7, i.e., (M0, M4) and (M0, M5), have deviance statistics
of 0.254 and 1.704, respectively. These results revealed that model M4, which allows for
nonlinear quadratic trend in the location parameter and a linear trend in the scale parameter,
does not improve on the stationary GEVD model since the value of the deviance statistic
(1.864) is small as compared to the value of χ2

3(0.05) = 7.815. Also, model M5, which allows
for linear trend in the location parameter and a nonlinear quadratic trend in the scale
parameter, does not provide any improvement on the stationary GEVD model because
the value of the deviance statistic is smaller than the critical value of χ2

3(0.05) = 7.815.
The model pair (M0, M8), which allows for nonlinear quadratic trend in scale parameter
with no variation in location parameter, has a deviance statistic of 1.710, which is small
compared to the critical value of 5.991 with 2 degrees of freedom. Thus, allowing for a
quadratic trend in the scale parameter with no variation in the location parameter does not
improve on the stationary GEVD model. Therefore, model M8 is also not worthwhile.

Table 7. Non-stationary GEVD models for Gauteng for the period 1900–2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH

M0 141.929 0 0 34.705 0 0 0.117 612.516
M1 142.629 −0.012 0 34.669 0 0 0.118 612.505
M2 141.690 0 0 32.345 0.032 0 0.128 612.391
M3 140.811 0.015 0 32.138 0.039 0 0.129 612.380
M4 141.474 0.016 0.000 32.514 0.0319 0 0.133 612.389
M5 142.238 −0.002 0 39.864 −0.303 −0.003 0.108 611.664
M6 141.590 0.007 0.000 39.640 −0.300 0.003 0.105 611.663
M7 142.800 0.007 0.000 34.573 0 0 0.125 612.451
M8 142.117 0 0 39.789 −0.302 0.003 0.108 611.661

Key: NLLH = negative log-likelihood.

The best fit model for Gauteng is the stationary GEVD model, M0, and is given by

GEVD(x, µ, σ, ξ) = exp−
[

1 + 0.117
(

x− 141.292
34.705

)] −1
0.117

. (29)

The shape parameter (0.117) for the stationary GEVD model, M0, in (29) indicates
that the rainfall data for Gauteng can be modelled using Fréchet distribution class since
the shape parameter ξ > 0. The diagnostic plots for the stationary GEVD model in (29)



Hydrology 2021, 8, 70 17 of 27

are presented in Figure 4. The diagnostic plot results in Figure 4 reveal that the stationary
GEVD model, M0, in the Fréchet domain of attraction is the best fit for Gauteng monthly
rainfall data.
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Figure 4. Diagnostic plots for the stationary GEVD best fitting model for Gauteng province.

Goodness-of-fit test for Gauteng GEVD model
Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests were used to deter-

mine whether maximum monthly rainfall data for Gauteng follow a stationary GEVD.
Table 8 presents the results of the K-S and A-D goodness-of-fit tests for Gauteng stationary
GEVD model.

The results from Table 8 show that the p-values for both the K-S and A-D tests are
not significant (p > 0.05). Therefore, we conclude that the maximum monthly rainfall for
Gauteng province follow the specified stationary GEVD.

Table 8. Goodness-of-fit for Gauteng (1900–2017).

Test Test Statistic p-Value

K-S 0.0673058 0.6590246
A-D 0.3562733 0.4519496

4.2.3. KwaZulu-Natal

Consider the model pairs (M0, M1) and (M0, M2) from Table 9. The critical value for
both pairs is χ2

1(0.05) = 3.841 with respective deviance statistic values of 0.210 and 0.026
for the two model pairs. The pairs (M0, M1) and (M0, M2) do not provide any improvement
in fit over the stationary GEVD model since the deviance statistic values, 0.210 and 0.026,
are smaller than the critical value of 3.841 with 1 degree of freedom.

Consider the model pair (M0, M3) from Table 9 with χ2
2(0.05) = 5.991 and deviance

statistic of 0.224 which is too small compared to the critical value of 5.991 with 2 degrees
of freedom. Thus, allowing for linear trend in the location and scale parameter is not
worthwhile over the stationary GEVD model. The other pairs from Table 9 (M0, M4) and
(M0, M5) have deviance statistics of 0.624 and 0.226, respectively. These results revealed
that model M4, which allows for nonlinear quadratic trend in the location parameter and
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a linear trend in the scale parameter, is not worthwhile over the stationary GEVD model
since the value of the deviance statistic (0.624) is very small compared to the critical value of
χ2

3(0.05) = 7.815. Also, model M5, which allows for linear trend in the location parameter
and a nonlinear quadratic trend in the scale parameter, does not provide any improvement
in fit over the stationary GEVD model since the value of the deviance statistic (0.226) is too
small compared to the value of 7.815 with 3 degrees of freedom.

The model pairs (M0, M7) and (M0, M8) in Table 9 share a critical value of χ2
2(0.05) = 5.991

with deviance statistic values of 2.248 and −0.176 for M7 and M8, respectively. Since the
values of the deviance statistics are smaller than the critical value of 5.991 with 2 degrees
of freedom, it implies that both models do not provide any improvement in fit over the
stationary GEVD model.

The model pair (M0, M6), which allows for nonlinear quadratic trend in both the
location and scale parameters in Table 9, has a deviance statistic of 0.598 which is too
small compared to the critical value of 9.488 with 4 degrees of freedom. Thus, allowing
for a quadratic trend in both the location and scale parameters does not improve on the
stationary GEVD model.

Table 9. Non-stationary GEVD models for KwaZulu-Natal for the period 1900–2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH

M0 153.756 0 0 39.560 0 0 0.070 624.418
M1 156.383 −0.044 0 39.518 0 0 0.070 624.313
M2 153.791 0 0 38.808 0.012 0 0.071 624.405
M3 156.817 −0.051 0 40.195 −0.011 0 0.070 624.306
M4 158.193 −0.002 −0.0007 41.398 −0.003 0 0.009 624.106
M5 157.029 −0.006 0 40.021 0.002 −0.0001 0.007 624.305
M6 157.126 −0.005 −0.0008 39.892 0.036 −0.0006 0.098 624.119
M7 146.685 0.464 −0.004 39.308 0 0 0.066 623.294
M8 153.260 0 0 38.741 0.005 0.0000 0.011 624.506

Key: NLLH = negative log-likelihood.

Overall, the final best model for KwaZulu-Natal is the stationary GEVD model, M0.
The general model for KwaZulu-Natal is given by

GEVD(x, µ, σ, ξ) =

{
exp−

[
1 + 0.070

(
x−153.756

39.560

)] −1
0.070 . (30)

The shape parameter (0.070) for the model M0, in (30) suggests that the rainfall data
for KwaZulu-Natal can be modelled using Fréchet class of distributions since the shape
parameter ξ > 0. The diagnostic plots for the stationary GEVD model in (30) are presented
in Figure 5. The results in Figure 5 show that the stationary GEVD model, M0, is the best
fit for KwaZulu-Natal maximum monthly rainfall data since all the four diagnostic plots
suggest a reasonable good fit.
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Figure 5. Diagnostic plots for the stationary GEVD best fitting model for KwaZulu-Natal province.

Goodness-of-fit test for KwaZulu-Natal GEVD model
Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests were used to determine

whether maximum monthly rainfall data for KwaZulu-Natal follow a stationary GEVD
model. Table 10 presents the K-S and A-D goodness-of-fit tests results for KwaZulu-
Natal GEVD.

From Table 10, the p-values for both K-S and A-D tests are insignificant (p > 0.05)
at 5% level of significance. Thus, we conclude that the maximum monthly rainfall for
KwaZulu-Natal follow the specified stationary GEVD model.

Table 10. Goodness-of-fit for KwaZulu-Natal (1900–2017).

Test Test Statistic p-Value

K-S 0.04470146 0.9724252
A-D 0.3284819 0.5135279

4.2.4. Limpopo

The stationary GEVD model for Limpopo data (i.e., model M0) has a maximum NLLH
of 669.707. A GEVD model with linear trend in the location parameter (i.e., M1) has a
maximum NLLH of 666.705 (see Table 11). The deviance statistic for comparing these two
models is therefore D = 2(669.707 − 666.705) = 6.004, which is greater than the critical value
of 3.841 with 1 degree of freedom. Therefore, model M1 provides an improvement in fit
over the stationary GEVD model. The likelihood ratio test for µ1 = 0 has p-value = 0.005,
which is significant at 5% level of significance (p < 0.05). This clearly shows that the
non-stationary GEVD model is worthwhile and provides an improvement in fit over the
stationary GEVD model.

Consider the pair of models (M0, M2) from Table 11. The deviance statistic is
2(669.707 − 665.327) = 8.760, which is large compared to χ2

1(0.05) = 3.841. Thus, al-
lowing for a linear trend in the scale parameter improves on the stationary GEVD model.
The likelihood ratio test for σ1 = 0 has p-value of 0.001, implying that the linear trend in the
scale parameter is significant at 5% level of significance (p < 0.05). This indicates that model
M2 is important and does provide an improvement in fit over the stationary GEVD model.
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From Table 11, the pair of models (M0, M3), has the deviance statistic of 11.014,
which is greater than the critical value of 5.991 with 2 degrees of freedom, implying that
model M3 provides an improvement in fit over the stationary GEVD model. The likelihood
ratio test for µ1 = 0 has p-value = 0.067, which indicates that the likelihood ratio test is not
significant at 5% level of significance (p > 0.05), while the likelihood ratio test for σ1 = 0 has
p-value = 0.013, which suggests that the likelihood ratio test is significant at 5% level of
significance (p < 0.05).

Table 11. Non-stationary GEVD models for Limpopo for the period 1904–2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH

M0 132.224 0 0 65.611 0 0 −0.097 669.707
M1 105.813 0.423 0 61.752 0 0 −0.067 666.705
M2 133.060 0 0 78.463 −0.289 0 −0.030 665.327
M3 115.204 0.258 0 73.135 −0.218 0 −0.036 664.200
M4 74.261 2.073 −0.015 65.293 −0.178 0 0.040 660.187
M5 122.793 0.132 0 105.672 −1.988 0.014 0.105 655.757
M6 107.754 0.732 −0.005 99.611 −1.756 0.013 0.094 655.184
M7 62.447 2.432 −0.017 54.826 0 0 0.047 661.797
M8 133.880 0 0 107.223 −2.009 0.015 0.008 665.038

Key: NLLH = negative log-likelihood.

The other pairs from Table 11, (M0, M4) and (M0, M5), have deviance statistic values
of 19.040 and 7.900, respectively. These results suggest that model M4, which allows
for nonlinear quadratic trend in the location parameter and linear trend in the scale
parameter, provides an improvement in fit over the stationary GEVD model since the
value of the deviance statistic (19.040) is larger as compared to the value of χ2

3(0.05) =
7.815. The likelihood ratio test for µ1 = 0 has p-value = 0.001, for µ2 = 0 it has p-value
of 0.002, and for σ1 = 0 it has p-value = 0.034, which are all significant at 5% level of
significance (p < 0.05). Also, model M5 which allows for linear trend in the location
parameter and a nonlinear quadratic trend in the scale parameter, provides an improvement
in the stationary GEVD model since the value of the deviance statistic is greater than the
value of χ2

3(0.05) = 7.815. The likelihood ratio test for µ1 = 0 has p-value = 0.236, which is
not significant at 5% level of significance (p > 0.05), while the likelihood ratio tests for σ1 = 0,
and σ2 = 0, all have p-values < 0.001, which are both significant at 5% level of significance
(p < 0.05).

The model pair (M0, M6), which allows for nonlinear quadratic trend in both the
location and scale parameters in Table 11, has a deviance statistic of 9.046 which is small
compared to the critical value of 9.488 with 4 degrees of freedom. Thus, allowing for a
quadratic trend in both the location and scale parameters is not worthwhile in fit over
the stationary GEVD model M0. The likelihood ratio test for µ1 = 0 has p-value = 0.145,
and for µ2 = 0 has p-value = 0.185, which is insignficant at 5% level of significance (p > 0.05),
while the likelihood ratio test for σ1 = 0, and σ2 = 0, all have p-values < 0.001, which are
both significant at 5% level of significance (p < 0.05).

Consider the model pair (M0, M7) in Table 11 with deviance statistic of 15.820, which is
greater than the critical value of χ2

2(0.05) = 5.991, indicating that the non-stationary GEVD
model provides an improvement in fit over the stationary GEVD model. The likelihood
ratio tests for µ1 = 0, and µ2 = 0 have p-values < 0.001, which indicate that the likelihood
ratio tests are significant at 5% level of significance (p < 0.05) for the quadratic trend in
the location parameter with no variation in the scale parameter. This implies that the
non-stationary GEVD model, M8, is worthwhile and does give an improvement in fit over
the stationary GEVD model.

Consider the model pair (M0, M8) from Table 11 with χ2
2(0.05) = 5.991 and deviance

statistic of 9.338. The likelihood ratio tests for σ1= 0 and σ2 = 0 have p-values <0.001.
These results show that the nonlinear quadratic trend in scale parameter with no variation
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in the location parameter is significant at 5% level of significance (p < 0.05). The deviance
statistic (9.338) is greater than the critical value of 5.991, which implies that the non-
stationary GEVD model, M8, is important and does provide an improvement in fit over
the stationary GEVD model.

Overall, Limpopo has five competing non-stationary GEVD models: M1, M2, M4,
M7 and M8, for which only two models were considered based on their deviance statistic
values as main and alternative best models. The best non-stationary GEVD model is M4,
which has a nonlinear quadratic trend in the location parameter and a linear trend in the
scale parameter, and is given by

GEVD(x, µ, σ, ξ) =

{
exp−

[
1 + 0.040

(
x−74.261

65.293

)] −1
0.040 . (31)

The alternative non-stationary GEVD model is M7, which has a nonlinear quadratic
trend in the location parameter and no variation in the scale parameter, and is given by:

GEVD(x, µ, σ, ξ) =

{
exp−

[
1 + 0.047

(
x−62.447

54.826

)] −1
0.047 . (32)

The shape parameters in (31) and (32), that is, 0.040 and 0.047 for the models M4
and M7, respectively, are positive, which suggests that the rainfall data for Limpopo
can be modelled using the Fréchet distribution class since the shape parameter ξ > 0.
The diagnostic plots for the non-stationary GEVD model in (31) are presented in Figure
6. The results in Figure 6 show that model M4 is the best fit for Limpopo maximum
monthly rainfall data since the two diagnostic plots indicate a reasonable good fit for the
non-stationary GEVD model with a nonlinear quadratic trend in the location parameter
and a linear trend in the scale parameter.
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Figure 6. Diagnostic plots for the non-stationary GEVD best fitting model for Limpopo province.

Goodness-of-fit test for Limpopo non-stationary GEVD model
Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests were used to determine

whether maximum monthly rainfall data for Limpopo follows the non-stationary GEVD
model, M4. Table 12 presents the K-S and A-D goodness-of-fit tests.

From Table 12, the p-value for the K-S test is insignificant (p > 0.05), implying that the
maximum monthly rainfall for Limpopo follows the non-stationary GEVD model, while the
results from the A-D test suggest that the maximum monthly rainfall for Limpopo do not
follow the specified non-stationary GEVD model (p < 0.05). This contradiction in the results
of the two goodness-of-fit tests may be a cause for concern, and may suggest that the
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selected non-stationary GEVD model, M4, may not model the extreme right tails of the
Limpopo maximum monthly rainfall data quite well.

Table 12. Goodness-of-fit for Limpopo (1904–2017).

Test Test Statistic p-Value

K-S 0.07362455 0.5445211
A-D 1.133259 0.005549523

4.2.5. Mpumalanga

The model pairs (M0, M1) and (M0, M2) in Table 13 share the critical value of
χ2

1(0.05) = 3.841 with respective deviance statistic values of 10.008 and 7.236. The two
pairs have p-values of 0.001 and 0.003 for µ1 = 0 and σ1 = 0, respectively for model M1 and
M2. These results suggest that the model pairs (M0, M1) and (M0, M2) are significant at
5% level of significance (p < 0.05). The deviance statistic values for the two models are large
in comparison to χ2

1(0.05) = 3.841. Thus, we conclude that models M1 and M2 provide a
significant improvement over the stationary GEVD model, M0.

From Table 13, the pair of models (M0, M3) has a deviance statistic of 19.530, which is
greater than the critical value of 5.991 with 2 degrees of freedom, implying that model
M3 provides an improvement in fit over the stationary GEVD model. The likelihood ratio
tests for µ1 = 0 and σ1 = 0 have p-values < 0.001, which indicate that the likelihood ratio
tests are significant at 5% level of significance (p < 0.05) for both the location and scale
parameters, implying that the non-stationary GEVD model, M3, is important and does
provide an improvement in fit over the stationary GEVD model.

The other model pairs from Table 13, (M0, M4) and (M0, M5), have deviance statistic
values of 23.330 and 23.898, respectively. These results suggest that model M4, which allows
for nonlinear quadratic trend in the location parameter and linear trend in the scale
parameter, is worthwhile over the stationary GEVD model since the value of the deviance
statistic (23.330) is greater than the critical value of χ2

3(0.05) = 7.815. The likelihood ratio
test for µ1 = 0 has p-value= 0.392, and for µ2 = 0 it has p-value of 0.096, which are both not
significant at 5% level of significance (p > 0.05), but the likelihood ratio test for σ1 = 0 has
p-value < 0.001, which is significant at 5% level of significance (p < 0.05). On the other hand,
model M5 which allows for linear trend in the location parameter and a nonlinear quadratic
trend in the scale parameter, provides an improvement in fit over the stationary GEVD
model since the value of the deviance statistic is greater than the value of χ2

3(0.05) = 7.815.
The likelihood ratio test for µ1 = 0, σ1 = 0 and σ2 = 0, all have p-values < 0.001, which are
significant at 5% level of significance (p < 0.05).

The model pair (M0, M6) in Table 13, which allows for nonlinear quadratic trend in
both the location and scale parameters, has a deviance statistic of 24.512 which is greater
than the critical value of 9.488 with 4 degrees of freedom. Thus, allowing for a quadratic
trend in both location and the scale parameters is worthwhile in fit over the stationary
GEVD model, M0. The likelihood ratio test for µ1= 0 has p-value = 0.499, and µ2 = 0
has p-value = 0.303, which is insignificant at 5% level of significance (p > 0.05), while the
likelihood ratio tests for σ1 = 0 and σ2 = 0 all have p-values < 0.001, which are significant at
5% level of significance (p < 0.05).

Consider the model pair (M0, M7) in Table 13, with a deviance statistic of 6.394 which
is greater than the critical value of χ2

2(0.05) = 5.991. These results show that the non-
stationary GEVD model provides an improvement in fit over the stationary GEVD model.
The likelihood ratio test for µ1 = 0 has p-value = 0.369 and for µ2 = 0 it has p-value = 0.449,
which are both not significant at 5% level of significance (p > 0.05). This implies that model
M7, with a quadratic trend in the scale parameter and no variation in the location parameter
is not worthwhile over the stationary GEVD model.

Consider the model pair (M0, M8) from Table 13 with χ2
2(0.05) = 5.991 and deviance

statistic value of 29.150. The likelihood ratio tests for σ1= 0 and σ2 = 0 have p-values <0.001.
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These results show that the nonlinear quadratic trend in scale parameter with no variation
in the location parameter is significant at 5% level of significance (p < 0.05). The deviance
statistic (29.150) is greater than the critical value of 5.991, which implies that the non-
stationary GEVD model, M8, is important and does provides an improvement in fit over
the stationary GEVD model.

Table 13. Non-stationary GEVD models for Mpumalanga for the period 1904–2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH

M0 155.612 0 0 59.246 0 0 −0.325 643.234
M1 124.429 0.512 0 54.437 0 0 −0.261 638.230
M2 159.885 0 0 71.217 −0.274 0 −0.228 639.616
M3 131.503 0.428 0 69.312 −0.268 0 −0.240 633.469
M4 114.907 1.296 −0.007 71.758 −0.310 0 −0.207 631.569
M5 161.943 −0.031 0 113.977 −2.386 0.017 −0.006 631.285
M6 145.643 −0.001 0.002 108.921 −2.381 0.017 0.076 630.978
M7 145.591 0.324 −0.0009 58.266 0 0 −0.328 640.037
M8 161.734 0 0 100.364 −1.981 0.014 −0.161 628.659

Key: NLLH = negative log-likelihood.

In general, Mpumalanga has five competing non-stationary GEVD models: M1, M2,
M3, M5 and M8, for which only two models were considered based on their deviance
statistic values as main and alternative best models. The best non-stationary GEVD model
is M8, which has a nonlinear quadratic trend in the scale parameter and no variation in the
location parameter, and is given by

GEVD(x, µ, σ, ξ) =

{
exp−

[
1− 0.161

(
x−161.734

100.364

)] 1
0.161 . (33)

The alternative non-stationary GEVD model, is M5, which has a linear trend in location
parameter and nonlinear quadratic trend in scale parameter and is given by:

GEVD(x, µ, σ, ξ) =

{
exp−

[
1− 0.006

(
x−161.943

113.977

)] 1
0.006 . (34)

The shape parameters in (33) and (34), that is, −0.161 and −0.006 for the respective
models M8 and M5 are negative, which indicate that the rainfall data for Mpumalanga can
be modelled using Weibull distribution class since the shape parameter ξ < 0. The diagnos-
tic plots for the non-stationary GEVD model in (33) are presented in Figure 7. The results
in Figure 7 show that the non-stationary GEVD model, M8, is the best fit for Mpumalanga
maximum monthly rainfall data since the two diagnostic plots suggest a reasonable good
fit for the non-stationary GEVD model with a quadratic trend in the scale parameter and
no variation in other parameters.
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Figure 7. Diagnostic plots for the non-stationary GEVD best fitting model for Mpumalanga province.

Goodness-of-fit test for Mpumalanga non-stationary GEVD model
Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests were used to determine

whether maximum monthly rainfall data for Mpumalanga follow the non-stationary GEVD
model, M8. Table 14 presents the K-S and A-D goodness-of-fit test results for Mpumalanga
non-stationary GEVD model, M8.

From Table 14, the p-value for the K-S test is insignificant (p > 0.05), implying that the
maximum monthly rainfall for Mpumalanga follows the specified non-stationary GEVD
model. On the other hand, the results from the A-D test contradict the results from the
K-S test. The explanation for this contradiction is similar to that given for the Limpopo
province best model.

Table 14. Goodness-of-fit for Mpumalanga (1904–2017).

Test Test Statistic p-Value

K-S 0.08991587 0.2957988
A-D 1.791518 0.0001310069

5. Conclusions

In this paper, stationarity test, which included the augmented Dickey-Fuller (ADF),
Phillips-Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, was done. The find-
ings from the KPSS test suggest that monthly rainfall data for all the five provinces are not
stationary, while the findings from the PP test contradict those from KPSS test. On the
other hand, the findings for the ADF stationarity test for Eastern Cape, Limpopo and
Mpumalanga suggest that the monthly rainfall data are stationary, which is a further
contradiction to the KPSS findings. However, ADF stationarity test findings for Gauteng
and KwaZulu-Natal provinces concur with those from KPSS test. The study also employed
Jarque-Bera (JB), Shapiro–Wilk (SW) and chi-square test methods to check whether the
monthly rainfall data were normally distributed. Findings from the JB, SW and chi-square
normality tests revealed that the monthly rainfall data for all the five provinces do not
come from a normal distribution.



Hydrology 2021, 8, 70 25 of 27

The study analysed the long-term trends of monthly rainfall data in the five selected
provinces of South Africa from 1900 to 2017. Two trend analysis techniques were applied
in this study, the Mann-Kendall test and Sen’s slope. Findings from the Mann-Kendall test
revealed statistically significant monotonic decreasing trends in Eastern Cape, Gauteng
and Kwazulu-Natal provinces, while in Limpopo and Mpumalanga provinces the trends
were also revealed to be monotonically decreasing, but insignificant. The Mann-Kendall
test statistic findings for Eastern Cape, Gauteng, KwaZulu-Natal and Limpopo were in
agreement with the findings from Sen’s slope estimator method. However, the Mann-
Kendall test findings for Mpumalanga slightly differed from Sen’s slope estimator findings.
This slight difference can be interpreted as a confirmation of the insignificance of long-term
trend and slope for Mpumalanga monthly rainfall.

The study further analysed and discussed in detail the modelling of monthly rainfall
extremes using the non-stationary GEVD approach which belongs to the block maxima
realisation [40]. The maximum likelihood estimation method was used to obtain the
estimates of the parameters. The stationary GEVD was found as the best distribution
model for Eastern Cape, Gauteng and KwaZulu-Natal provinces. Furthermore, model
fitting supported non-stationary GEVD models for Limpopo and Mpumalanga maximum
monthly rainfall, with nonlinear quadratic trend in the location parameter and a linear
trend in the scale parameter for Limpopo, while for Mpumalanga the non-stationary
GEVD model with a nonlinear quadratic trend in the scale parameter and no variation
in the location parameter fitted well to the maximum monthly rainfall data. The study
further revealed that the maximum monthly rainfall for Eastern Cape and Mpumalanga
can be modelled by distributions in the negative-Weibull domain, while maximum monthly
rainfall data for Gauteng, KwaZulu-Natal and Limpopo follow distributions in the Fréchet
distribution class.

Model diagnostics, which included the Kolmogorov-Smirnov (K-S) and Anderson-
Darling (A-D) tests among others, further confirmed that the maximum monthly rainfall
for Eastern Cape, Gauteng and KwaZulu-Natal follow the stationary GEVD, while for
Limpopo and Mpumalanga the K-S findings showed that the maximum monthly rainfall
for these two provinces follow the non-stationary GEVD model. The latter findings could
not be confirmed by the A-D goodness-of-fit test.

Findings from this study can help us with information necessary for decision makers
to establish strategies for proper planning of agriculture, infrastructure, drainage system
and other water resource applications in South Africa. These findings may also assist South
African government agencies to improve the socio-economic conditions of the country
under the changing rainfall patterns and impending global warming.

This study will form a benchmark for monthly rainfall studies of this kind in these
provinces of South Africa. Further studies may look to extend this study into spatial
extremes, copula and conditional extremes modelling, as well as Bayesian extreme value
modelling approaches.
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