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Abstract: We investigate the impact of time’s arrow on the hourly streamflow process. Although
time asymmetry, i.e., temporal irreversibility, has been previously implemented in stochastics, it has
only recently attracted attention in the hydrological literature. Relevant studies have shown that the
time asymmetry of the streamflow process is manifested at scales up to several days and vanishes
at larger scales. The latter highlights the need to reproduce it in flood simulations of fine-scale
resolution. To this aim, we develop an enhancement of a recently proposed simulation algorithm
for irreversible processes, based on an asymmetric moving average (AMA) scheme that allows for
the explicit preservation of time asymmetry at two or more time-scales. The method is successfully
applied to a large hourly streamflow time series from the United States Geological Survey (USGS)
database, with time asymmetry prominent at time scales up to four days.

Keywords: time’s arrow; irreversibility; time asymmetry; stochastic simulation; streamflow

1. Introduction

The term “time’s arrow” was coined by Eddington [1] to describe time directionality,
which can be determined by studying the organization of atoms, molecules and bodies.
He states “Let us draw an arrow arbitrarily. If as we follow the arrow we find more and more of
the random element in the state of the world, then the arrow is pointing towards the future; if the
random element decreases the arrow points towards the past. That is the only distinction known
to physics. This follows at once if our fundamental contention is admitted that the introduction
of randomness is the only thing which cannot be undone. I shall use the phrase ‘time’s arrow to
express this one-way property of time which has no analogue in space. It is a singularly interesting
property from a philosophical standpoint.”

The direction of time can be handled by the class of irreversible processes that destroy
macroscopic information and are manifestations of the second law of thermodynamics.
This law states that all natural processes generate entropy, a measure of uncertainty. The
irreversible destruction of the macroscopic order defines what can be called the “thermo-
dynamic” arrow of time.

However, there are irreversible processes that do not necessarily destroy macroscopic
information. Rather they modify information in a manner that, again, by viewing their
evolution, it becomes evident which way “time’s arrow” is pointing at.

Many processes of interest to engineering and natural sciences are modelled using
Gaussian linear stochastic processes. However such a modelling approach cannot repro-
duce irreversibility. Weiss [2] showed that if the process x(t) is Gaussian, then it is time
reversible. As a result, a directional process cannot be Gaussian. He also showed that a
discrete-time autoregressive moving-average (ARMA) process is reversible if and only if it
is Gaussian. This conclusion is very important because it shows that stationary series that
show evidence of directionality cannot be modelled by Gaussian ARMA models. Therefore,
other models should be used to accurately model this behaviour [3].
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In hydrology, it is known that the ascending part of a hydrograph is steeper than the
descending one [4]. This pattern clearly reflects time’s arrow and can be modelled as a
stochastic property. However, only few methods have been proposed in the hydrolog-
ical literature to detect and statistically measure irreversibility. A method proposed by
Psaradakis [5] is based on the evaluation of the probability of the differenced process. As
the probability is positive, for time-irreversible processes there is a deviation of the median
of the differenced process from zero. In another study, Müller et al. [6] propose a class of
new tests for time irreversibility and suggest different ways to implement them. As index
of asymmetry they use the third moment of differences of the empirical copulas rather
than of the original time series. By performing simulations of combined sewer systems
with original and time-reversed time series they found “significant deviations of more
than 10%” among them. Serinaldi and Kilsby [7] used directed horizontal visibility graphs
(DHVGs) to perform an analysis of the dynamics of streamflow fluctuations with focus
on time irreversibility and long-range dependence. The recent study of irreversibility by
Koutsoyiannis [3] states that time asymmetry requires the study of the third moment µ3
and the coefficient of skewness Cs of the process, original and differenced.

Attempts to simulate time irreversible streamflow processes have been even fewer.
In this respect, Koutsoyiannis [3] proposed a model called AMA (Asymmetric Moving
Average) in order to generate irreversible time series. Mathai and Mujumdar [8] have
also built a model to simulate time irreversible streamflow at multiple sites. Multisite-
correlated streamflow states were generated, and then flow sequences were constructed
by independently considering the ascension and recession limbs of the hydrograph at
individual sites.

The above literature review highlights the importance of time asymmetry in hydrology
and the need for a broader investigation for its stochastic modelling on a global scale. In this
study, we use streamflow time series data from the United States Geological Survey (USGS)
database [9] to investigate the irreversibility of the hourly streamflow process at scales of
up to one hundred (hours). The asymmetry parameter that is employed is the same as in
the study by Koutsoyiannis [3,10]: the ratio of the skewness coefficient of the differenced
process to that of the original process. The aim is twofold: (a) to quantify the irreversibility
of the hourly streamflow process and identify at which range of scales it should affect its
modelling, and (b) to modify the existing method by Koutsoyiannis [3,10], which preserves
irreversibility at the first scale only, and to make it capable of simultaneously preserving
the irreversibility also at a second scale. Finally, the original and the extended method
are verified by a case study, while the methodology is further discussed in the thesis by
Vavoulogiannis [11].

2. Dataset

Time series were downloaded from the Water Department of USGS, the largest
provider of in situ water data in the world. For the irreversibility investigation, we com-
piled a dataset consisting of 762 stations around the USA using the climata.usgs package.
The data were downloaded at a 15 min resolution and were subsequently aggregated to the
1 h scale. The time series were downloaded for a period of five years (from November 2014
until November 2019) and had less than 10% missing values. For more information on the
data, see Vavoulogiannis [11].

3. Methodology
3.1. Definition of Time Irreversibility

A stochastic process x(t) is a collection of (usually infinitely many) random variables
x indexed by t, typically representing time. In turn, a random variable x is an abstract
mathematical entity, associated with a probability distribution function F(x) := P{x ≤ x}
where x is any numerical value (i.e., a regular variable) [12]. (Notice that underlined
symbols denote random variables). The stochastic process x(t) represents the evolution
of the system over time, while a trajectory x(t) is a realization of x(t); if it is known at
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certain points ti, it is a time series. A stochastic process x(t), at a (continuous) time t, is
characterized by its nth-order distribution function:

F(x1, x1, . . . , xn; t1, t2, . . . , tn) := P{x(t1)≤ x1, x(t2) ≤ x2, . . . x(tn) ≤ xn} (1)

The process is time reversible or time symmetric if its joint distribution does not
change after a reflection of time about the origin [2], i.e., if for any n, t1; t2; . . . ; tn−1; tn,

F(x1, x1, . . . , xn; t1, t2, . . . , tn) = F(x1, x1, . . . , xn;−t1,−t2, . . . ,−tn) (2)

Here, we use Koutsoyiannis’s method [3] to study time asymmetry as follows. First,
the time-differenced stochastic process is defined in discrete- and continuous-time, respec-
tively, as:

x̃τ := xτ − xτ−1, x̃τ,η := xτ − xτ−η

x̃(t, D) := x(t)− x(t− D) (3)

We also define X̃κ as the cumulative process of x̃κ in discrete time:

X̃κ = x̃1 + x̃2 + . . . x̃k, X̃κ= x1 − x0 + x2 − x1 + . . . + xk − xk−1 = xk − x0 (4)

Based on the process (original or time-differenced) at scale 1, we may also define the
averaged process at any scale k ≥ 1, e.g., the averaged original process x(k) is defined in
discrete time as:

xi
(k) :=

1
k

ik

∑
l=(i−1)k+1

xl (5)

It is easy to see that the first moment (mean) of the differenced process is always
zero while the second one (variance) is always positive, and thus they do not provide
indications on time asymmetry. Hence, the least-order moment that can be used to detect
irreversibility is the third one. Using the second and the third moments, the skewness of
the differenced process is calculated as:

γ̃(κ) := var
[

x̃τ
(κ)
]
, var

[
X̃κ

]
= κ2γ̃(κ) (6)

µ̃3(κ) := E
[(

x̃τ
(κ)
)3
]

, C̃s(κ) =
µ̃3(κ)

(γ̃(κ))3/2 (7)

We further introduce the following index of time asymmetry, which is defined as the
ratio of the skewness of the differenced process C̃s to that of the original process Cs:

a =
C̃s

Cs
(8)

This is found to be particularly helpful in the simulation process. A high positive
value of this index denotes a large time asymmetry, whereas values close to 0 indicate
time reversibility.

3.2. Multiscale Preservation of Time Irreversibility

The “hydrograph pattern”, i.e., a steeper ascending limb and a mild descending limb,
can be stochastically understood and modelled through the property of temporal irre-
versibility, hence bypassing the subjectivities involved in hydrograph modelling through
conceptual models [3]. The conceptual basis behind streamflow time asymmetry is of less
interest here since we can model it as a stochastic property.

The AMA (Asymmetric Moving Average) model proposed by Koutsoyiannis (2019)
can deal with irreversibility [3,10]. It is based on filtering non-Gaussian white noise and
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can also preserve some other important stochastic characteristics such as the long-range
dependence. For a simulation length q, we can write:

xi =
q

∑
j=−q

ajvi−j (9)

The aj are internal coefficients of the generation scheme and not model parameters to
be estimated from data, while Vi−1 represents a white noise process. The above model can
preserve irreversibility provided that the sequence of coefficients aj is not symmetric about
0. Our investigation of irreversibility suggests that it is prominent at scales up to the mark
of 100 h (i.e., approximately four days) and approaches zero for larger scales. Therefore, it
is critical to preserve irreversibility in a wide range of smaller scales. In the current study,
the algorithm proposed by Koutsoyiannis [3,10], which preserves irreversibility at the basic
scale, is modified and extended to simulate time series that preserve the irreversibility
at both the first and the second scale. To this aim, it is first important to calculate the
theoretical moments of the AMA model at the first and second scale. For a simulation
length q, the AMA model of Equation (9) can also be expressed as:

xi =
2q

∑
l=0

blwi−l (10)

where bj = aj−q, wi = vi+q, with the latter being a lognormal white noise process. Other
distributions can be used for even better accuracy [13]. For the first scale, we must calculate
the second and third moments of the differenced and original sequences, respectively. The
second moment of the original sequence is:

µ2[xτ ] =
q

∑
j=−q

a2
j (11)

whereas that of the differenced sequence is:

µ2[x̃τ ] =
q

∑
j=−q

(
aj − aj−1

)2 (12)

where we set a−q−1 = 0, or, more generally, we set an = 0 for any n out of the interval
[−q, q]. The third moment of the original sequence is:

µ3[xτ ] =
q

∑
j=−q

a3
j (13)

whereas that of the differenced sequence is:

µ3[x̃τ ] =
q

∑
j=−q

(
aj − aj−1

)3 (14)

Likewise, for the scale 2 we must calculate the second and third moments of the
differenced and original sequences, respectively. We highlight that the process is first
averaged at the second scale, according to Equation (5), and afterwards differenced and
not the other way around. The second moment of the original sequence at scale 2 can be
expressed as:

µ2

[
x(2)τ

]
=

q

∑
j=−q

(
aj + aj−1

)
4

2

(15)



Hydrology 2021, 8, 63 5 of 11

whereas the second moment of the differenced sequence at scale 2 is:

µ2

[
x̃(2)τ

]
=

q

∑
j=−q

(
aj + aj−1 − aj−2 − aj−3

)2

4
(16)

The third moment of the original sequence at scale 2 is:

µ3

[
x(2)τ

]
=

q

∑
j=−q

(
aj + aj−1

)
8

3

(17)

whereas the third moment of the differenced sequence at scale 2 is:

µ3

[
x̃(2)τ

]
=

q

∑
j=−q

(
aj + aj−1 − aj−2 − aj−3

)3

8
(18)

After calculating the sample moments, optimization tools are used to estimate the pa-
rameters of the AMA model by minimizing the sum of squared errors between the sample
(empirical) and the theoretical moments. The parameterization follows the same methodol-
ogy as in Koutsoyiannis [10]. The function θ(ω) is defined as the smooth minimum of two
hyperbolic functions θi(ω) (i = 1, 2) of frequency ω, i.e.:

θ(ω) =
1
ζ

ln
(

eζθ1(ω) + eζθ2(
1
2−ω)

)
, θi(ω) :=

C1,iω

C2,i + ω
+ C0,i (19)

where the symbols Cji; i = 1, 2; j = 0, 1, 2 and ζ denote parameters to be determined
by optimization.

After the function of θ(ω) is parameterized, we use it to perform the Fourier transform
and express the real part of the result for j = 0, . . . , q. At last, we have the sequence
of aη , i.e.,:

aη =

1/2∫
−1/2

e2πi(θ(ω)−ηω)AR(ω)dω (20)

where i is the imaginary unit, θ(ω) is an odd real function (meaning θ(−ω) = −θ(ω)). In
turn, AR(ω) is defined as:

AR(ω) :=
√

2sd(ω) (21)

where sd(ω) represents the power spectrum.

3.3. Stochastic Tools for Multiscale Dependence Characterization

For the characterization of the multiscale dependence, we use the climacogram stochas-
tic metric, which expresses the quantification of change/variability in the scale domain,
instead of the common lag (i.e., through the autocovariance or autocorrelation function)
and frequency (i.e., through the power-spectrum) domains. The second-order climacogram
is defined as the variance of the averaged process x(t) (Equation (5)) (assumed stationary)
versus the averaging time scale k and is symbolized by γ(k) [14]. The climacogram is
useful for detecting the long-term change (or else dependence, persistence, clustering) of a
process’s multiscale stochastic representation.

The statistical bias in the climacogram estimator can be calculated as follows. As
shown in Koutsoyiannis’s study [15], assuming that we have n = T/∆ observations of the
averaged process xi

(∆), where the observation period T is an integer multiple of ∆, the
time-resolution, the expected value of the empirical (sample) climacogram γ̂(∆) is:

E
[
γ̂(∆)

]
=

γ(∆)− γ(T)
1− ∆/T

(22)
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The climacogram is also related to the power spectrum and the autocovariance. How-
ever, the study by Dimitriadis and Koutsoyiannis [16] showed that the climacogram had
the smallest estimation error among the three tools, while its bias could be computed
simply and analytically. Additionally, the fact that its values are always positive is an
advantage in stochastic modelling. Moreover, it is well-defined with an intuitive definition
and is for the most part monotonic.

Another useful metric in the scale domain is the climacospectrum, which is a newly
introduced stochastic tool. It is defined by Koutsoyiannis [17] as:

ζ(k) :=
k(γ(k)− γ(2k))

ln 2
(23)

where k represents the scale. The asymptotic behaviour of the second-order characteristics
of a process for k→ 0 and k→ ∞ is characterized by two parameters, M and H, which
are given by:

M :=
ζ#(0)− 1

2
, H := 1 +

γ#(∞)

2
=

ζ#(∞) + 1
2

(24)

where “#” represents the slope on a doubly logarithmic plot (a doubly logarithmic derivative).
The climacospectrum has the following advantages [17]: In comparison with the

power spectrum, it is superior with respect to its connection with the conditional entropy
production. Specifically, it is more precise without exceptions. Additionally, the vari-
ance, on which the definition of the climacospectrum is based, is more closely related to
uncertainty, and as a result to the entropy of the process, than the power spectrum and
the autocovariance.

To apply the method to the streamflow series, first the effect of the annual cycle is
approximately removed by multiplying the discharge values by 12 different coefficients,
one per month, summing up to 1. These coefficients are estimated by minimizing the total
variance of the transformed time series.

Then, the Filtered Hurst Kolmogorov model is fitted to the data in order to estimate
the parameters H, M and a. The climacogram of the Filtered Hurst Kolmogorov process is
given below [17]:

γ(k) = λ

(
1 +

(
k
α

)2M
) H−1

M

(25)

where a is a scale parameter, and M and H are the fractal and Hurst parameters.
The same calibration function is used for both the climacogram and the climacospec-

trum (empirical and theoretical), since the climacospectrum is more robust for the analysis
of the finer scales and the climacogram is more robust for the analysis of the larger scales.
The reason behind this is related to the theoretical context of these stochastic tools, as
discussed earlier and in [16]. We note that both the climacogram and the climacospectrum
were adapted for bias.

After that, the discrete power spectrum through the Fast Fourier Transform (FFT)
and the AMA coefficient were calculated. The next step was to detect the scale-wise
time irreversibility. We aggregate the data up to the 100 h scale and calculate the sample
skewness of the differenced and original processes. Their ratio is the irreversibility index, as
discussed above. Furthermore, the irreversibility of both scales 1 and 2 was also important
to calculate since it was to be preserved later by the algorithm.

In the first case, i.e., when irreversibility is only preserved at scale one, optimization
tools are used to find the parameters needed to estimate the constant θ. In the second
case for the sequence θ(ω), which is defined as the smooth minimum of two hyperbolic
functions of frequency, optimization was used again. The concept is that after building
functions to calculate the sample and theoretical moments, computational tools have to
minimize the difference between the sample (empirical) and the theoretical moments. In
the second case, the difference is that this happens for two scales and that the square error
is minimized. The output is the θ(ω) sequence. With knowledge of the power spectrum and



Hydrology 2021, 8, 63 7 of 11

θ(ω) we are able to calculate the AMA coefficients from Equation (20), i.e., the aη sequence.
After this procedure, the synthetic time series can be simulated by applying Equation (9).

Specifically, this methodology generates time series that preserve irreversibility at two
timescales along with the second-order dependence properties of the process. For example,
if we choose as the basic scale the one-hour scale, the second scale for the irreversibility to
be preserved is two hours. In Figure 1, the complete methodology is shown in steps.
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Average scheme).

4. Results and Discussion
4.1. Irreversibility Investigation from a Large Dataset

Streamflow time series at a 15 min resolution were downloaded from the water
department of the United States Geological Survey (USGS). In total, we studied 762 stations
across the USA [11]. This particular dataset was chosen for three reasons: (1) it contains
fine-scale streamflow data, which were necessary for the investigation of the temporal
irreversibility; (2) the large spatial coverage of the database including different catchments
allowed for a broad spectrum of investigation; and (3) the reliability of the USGS data.

The results from the estimation of time irreversibility up to a timescale of 100 h
are shown in Figure 2. The mean skewness ratios on scales 1 and 2 h are 2.51 and 1.9,
respectively. The variance of the skewness ratio is 43.58 for scale 1 h, and 7.65 for scale 2 h.
It is observed that the irreversibility is on average very pronounced at the first few scales
and then slowly converges to zero at the scale of four days, where the process becomes
approximately reversible. However, a large variability is noted among the stations.
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4.2. Case Study: Monocacy River

In Figure 3, the irreversibility of the Monocacy River at Bridgeport is shown scale-wise.
The ratio at scale 1 h is calculated as: r1 = 1.390 and at scale 2 h as: r2 = 1.197. As seen in
Figure 3, we may reasonably assume that the physical process becomes reversible at scale
100 (approximately four days).
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As described before, the Filtered Hurst Kolmogorov model is fitted to the approxi-
mately deseasonalised time series through both the climacogram (Figure 4a) and clima-
cospectrum (Figure 4b). The parameters were calculated as: a = 19.399 h, H = 0.628 and
M = 0.724.



Hydrology 2021, 8, 63 9 of 11

Hydrology 2021, 8, x FOR PEER REVIEW 9 of 11 
 

 

climacospectrum (Figure 4b). The parameters were calculated as: 𝑎 = 19.399 h, 𝐻 =0.628  and 𝑀 = 0.724. 

Figure 4. (a) Empirical and theoretical (Filtered Hurst Kolmogorov model) climacogram, and (b) 
Empirical and theoretical (Filtered Hurst Kolmogorov model) climacospectrum of the hourly 
streamflow of the Monocacy River. 

Next, for the preservation of time irreversibility at the second scale, the 𝜃(𝜔) 
function needs to be estimated as the smooth minimum of two hyperbolic functions of 
frequency. The sequence that is found after optimization is shown in Figure 5. It may seem 
a continuous smooth line, but in reality it comprises 1024 × 2 + 1 coefficients 𝜃 𝜔 . 

 
Figure 5. The sequence of 𝜃 values preserving irreversibility at both scales simultaneously for j > 0. 
(Note that for j = 0, θ(ω0) = 0 for j < 0, θ(ωj) = −θ(ω–j ). 

After estimating the process’s dependence characteristics and time asymmetry, we 
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Next, for the preservation of time irreversibility at the second scale, the θ(ω) function
needs to be estimated as the smooth minimum of two hyperbolic functions of frequency.
The sequence that is found after optimization is shown in Figure 5. It may seem a continu-
ous smooth line, but in reality it comprises 1024 × 2 + 1 coefficients θ

(
ωj
)
.
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Figure 5. The sequence of θ values preserving irreversibility at both scales simultaneously for j > 0.
(Note that for j = 0, θ(ω0) = 0 for j < 0, θ(ωj) = −θ(ω−j).

After estimating the process’s dependence characteristics and time asymmetry, we
produce synthetic series with a similar stochastic behaviour. In Figure 6a, we show the
results from 100 simulations of 10,000 length for the original method, while the results
of the modified one are shown in Figure 6b. At each scale we compare the average of
the simulations to the target irreversibility. It is shown that the irreversibility targets are
adequately achieved. It is also observed that the first method cannot efficiently achieve the
second scale target as was expected. However, it is close to it.

Additional research could be directed towards quantifying time asymmetry world-
wide and connecting it with conceptual characteristics of the basin, e.g., the surface area.
Downstream stations were observed to have a higher time irreversibility index than the
upstream ones. This could also be a topic of future research. Furthermore, other parametric
odd functions such as the θ(ω) function could be explored to preserve irreversibility at
larger scales in an implicit manner. Scaling and time asymmetry is also a subject that
requires further investigation. In any case, the proposed methodology is of such generality
that it can be used to explicitly preserve the irreversibility at even larger scales along with
the process’s second-order (or higher) scaling behaviour.
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5. Conclusions

Time’s arrow has an important role in science and is often related to randomness and
uncertainty. We have investigated the time asymmetry of streamflow data at fine timescales
in order to assess the importance of taking it into account in streamflow modelling. The
irreversibility of the streamflow process was quantified by the ratio of the values of the
skewness of the differenced process C̃s and that of the original process Cs. We have per-
formed a large sample analysis of the USGS hourly streamflow (762 stations) and found
the irreversibility index of the latter to be on the average equal to 2.5 at the 1 h scale and
1.9 at the 2 h scale. The process became approximately reversible around the timescale of
four days, yet a large variability was observed among the stations.

Further, this study proposes a modification to the existing method by Koutsoyian-
nis [3] that preserves irreversibility only at one scale, making it capable of preserving
the irreversibility explicitly at two scales. We have validated the proposed method by a
case study of measured streamflow timeseries and found it to be successful and able to
adequately preserve the irreversibility implicitly at even greater scales than the target ones.

Overall, our results suggest that temporal irreversibility is a marked property of
the streamflow process that manifests itself up to several days in empirical records. The
proposed modification of the AMA simulation method is an additional step towards
achieving its multiscale stochastic modelling in order to generate realistic and theoretically
consistent hydrographs.
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