
hydrology

Article

Statistical Analysis of Landslide Susceptibility, Macerata
Province (Central Italy)

Matteo Gentilucci * , Marco Materazzi and Gilberto Pambianchi

����������
�������

Citation: Gentilucci, M.; Materazzi,

M.; Pambianchi, G. Statistical

Analysis of Landslide Susceptibility,

Macerata Province (Central Italy).

Hydrology 2021, 8, 5. https://

doi.org/10.3390/hydrology8010005

Received: 1 December 2020

Accepted: 5 January 2021

Published: 7 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Geology Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
marco.materazzi@unicam.it (M.M.); gilberto.pambianchi@unicam.it (G.P.)
* Correspondence: matteo.gentilucci@unicam.it

Abstract: Every year, institutions spend a large amount of resources to solve emergencies generated
by hydrogeological instability. The identification of areas potentially subject to hydrogeological
risks could allow for more effective prevention. Therefore, the main aim of this research was to
assess the susceptibility of territories where no instability phenomena have ever been detected. In
order to obtain this type of result, statistical assessments of the problem cannot be ignored. In
this case, it was chosen to analyse the susceptibility to landslide using a flexible method that is
attracting great interest in the international scientific community, namely the Weight of Evidence
(WoE). This model-building procedure, for calculating landslide susceptibility, used Geographic
Information Systems (GIS) software by means of mathematical operations between rasters and took
into account parameters such as geology, acclivity, land use, average annual precipitation and extreme
precipitation events. Thus, this innovative research links landslide susceptibility with triggering
factors such as extreme precipitation. The resulting map showed a low weight of precipitation in
identifying the areas most susceptible to landslides, although all the parameters included contributed
to a more accurate estimate, which is necessary to preserve human life, buildings, heritage and any
productive activity.

Keywords: GIS; weight of evidence; susceptibility map; landslides; extreme precipitation

1. Introduction
1.1. State of the Art

The Italian territory is subject to a high level of hydrogeological instability and also
the province of Macerata is no exception with 7.3% [1] of the territory affected by landslide
hazard of grade 3 and 4, where 4 represents the maximum hazard. It follows that landslides
susceptibility, which is the statistical likelihood of a landslide occurring in an area, is a
very important issue that needs to be studied in depth, also because of the huge resources
that are absorbed to deal with emergencies. In this context, climate change is exacerbating
the hydrogeological risk and this influence has been demonstrated in numerous stud-
ies [2,3]. Hydrogeological risk determines the risk related to the instability of slopes, due
to particular geological and geomorphological aspects of these, or of watercourses due to
the particular environmental conditions, with possible consequences on the safety of the
population and the safety of services and activities on a given territory. Climate change
is a trigger for increased hydrogeological risk, it is largely generated by an increase in
greenhouse gases which absorbs heat and retain it by gradually releasing it [4], this energy
growth, affects both precipitation and temperature. Obviously, it would be useful to work
in upstream using countermeasures to contrast climate change by reducing CO2 emissions
or reusing them [5]. However, it is necessary to take note of the current situation, where
climate is increasingly the crucial issue. Recently, a lot of research has been carried out
to study the impact of climate change on hydrogeological risk, especially landslides [6],
although there are other factors that greatly influence terrain stability, such as land use [7].
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It is precisely land use that can cause an amplification of the possibility of landslides due
to the increase in erosion caused by anthropogenic changes, but also to natural phenomena
such as the growth of vegetation or the properties of the soil itself [8]. Other factors influ-
encing landslides include slope [9], lithology [10] and seismic risk [11]; these parameters
which contribute to hydrogeological instability lead us to introduce another concept, that
of “susceptibility”. Landslide susceptibility is the probability that a landslide will occur
in a territory, depending on local conditions. It is a measure of the degree to which a
territory may be affected by landslides, i.e., an estimate of “where” landslides may occur.
There have been many attempts to obtain a probabilistic statistical model, that can allow
a reliable assessment of susceptibility [12,13]. The comparison of statistical models for
susceptibility calculation (certainty factor, weight of evidence, analytic hierarchy process,
etc.) is aimed at defining the best model that allows a minimization of errors, based on
landslides detected but deliberately not included in the model-building procedure [14,15].
In this case, the excellent results achieved in scientific literature by the Weight of Evidence
(WoE), led to consider it as a reference model for this study. The WoE was originally
introduced to assist mining research in identifying new deposits or more accurate reserve
estimates [16,17]. The application of this method with the help of Geographic Information
Systems (GIS) in the same way, has always been due to applications related to mining
research [16]. The maps produced by GIS with the WoE methods, allow areas to be dis-
criminated on the basis of factors that produce certain eventualities. In recent years, this
method has been widely applied to landslides as a forecasting tool, with the help of GIS
software all over the world [18,19]. Similarly, in Italy, this method has been considered
and tests have been carried out in very localized areas [20] and in the mountainous areas
of the Apennines and the Alps [21,22]. However the major problem in creating landslide
susceptibility maps, is represented by a complete sampling of the factors that can cause
instability. Most of the studies are based on small portions of homogeneous territory that
obviously cannot be representative of the total and above all, that show many different
combinations for example of lithologies, soils, land uses, etc. Instead, this study aims to
sample a very large area, carrying out an analysis of the whole territory of the Macerata
province, in central Italy. In this area, no studies have been carried out, using WoE and
GIS software to obtain a susceptibility map. In any case, the most innovative part of this
research lies in the inclusion of the extreme precipitation events, among the parameters
that can cause instability. Therefore, this research could represent a link between a study
on landslide susceptibility and a study on trigger thresholds. In fact, one of the factors
triggering landslides is frequently rainfall, so it is essential to carry out in-depth climatic
analyses of the area under investigation [23–25]. An in-depth analysis was carried out,
in terms of variation and magnitude of average and extreme rainfall. [26]. Increasingly
frequent extreme events dictated by climate change [27] lead to continuous adjustments
of susceptibility maps. Forecasting areas of potential instability is of great interest firstly
for the protection of human life, and secondly for the cost associated with emergency
management. Furthermore, in this area of Italy there are valuable crops, such as vines [28],
which can be adversely affected by slope instability and which must be protected to avoid
economic consequences.

1.2. Study Area

The study area is the province of Macerata, it is located in central Italy and overlooking
the Adriatic Sea, which is part of the Mediterranean Sea. The area is about 2779 Km2, 67% of
the territory is hilly and the remaining 33% is mountainous. To the west, the territory of the
province of Macerata (Figure 1) is bordered by the Sibillini mountains (South-western side
of the province), part of the Apennine chain, which reach peaks higher than 2200 m a.s.l.
Going eastwards there is a wide range of hills that gradually slopes down to the Adriatic
coast. Almost all the rivers in the area have a west-east direction except for the Nera
river, which crosses the municipalities of Visso and Castelsantangelo sul Nera, and one
of its tributaries, the Ussita, both flowing into the Tyrrhenian Sea after joining the Tevere
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river (Figure 1). From a morphogenetic point of view, the structure of the Umbria-Marche
Appenines is dominated by thrust faults, due to the collisional movement of the African
tectonic plate with the European one, while in some internal areas (Tuscany) in the same
period (Middle Miocene) there was an extensional tectonic and both are still active. The
Umbria-Marche Appenines show an arc with East-facing convexity where it is possible to
observe internal wrinkle ridges, an intermediate complex of synclines and external wrinkle
ridges.The internal wrinkle ridges consist of various asymmetrical east-vergent thrusting
folds, the middle complex of synclines goes from Urbania to Visso and it’s composed
by east-vergent thrust sheets, while the external wrinkle ridges is an anticlinal structure
thrusting over the foothills, named overthrust of the Sibillini Mountains [29]. Finally,
going eastwards, the foothills can be divided into two geomorphologic structures: the
“pedeappennino marchigiano”, characterised by anticlines with transpressive and normal
faults, and the periadritic basin with small folds east-vergent.
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Figure 1. Geography of the province of Macerata [23].

From the point of view of landslides, the province of Macerata is a very heterogeneous
territory, with movements of very different types, often grouped by homogeneous zones of
acclivity or in relation to the geological substrate. In correspondence of mountain ridges
and steep slopes characterised by predominantly calcareous rocks, collapse phenomena
and deep-seated gravitational slope deformations (DGSD) are observed. Also in the high
energy areas of the relief, there are frequent phenomena of slide, debris flow and debris
avalanches, which involve eluvial colluvial deposits and clastic materials accumulated in
previous morphoclimatic phases. In the areas with outcrops of Plio-Pleistocene sediments,
mainly pelitic, and characterised by a lower gradient, the type of movement that prevails is
that of earthflow. Less deep phenomena such as soliflux landslides and plastic deformations
are also widespread in these areas. In the impluvial areas, where there are considerable
thicknesses of altered and and eluvial deposits, there are frequent mudflows originated
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during heavy rainfall. In the hilly areas where the Plio-Pleistocene pelitic and pelitic-
arenaceous sediments outcrop, the natural instability of these soils has been accelerated by
poor land management and, above all, by less maintenance management and, above all, less
maintenance of the surface water drainage network. Moreover, the profound changes in
the production methods of the agricultural system, which can be summarised as a reduced
anthropic presence in the area and a decrease in vegetation cover, have led to the breakdown
of delicate natural balances over the last thirty years. The development of settlements and
infrastructures, imposed by new socio-economic processes, has often taken place in an
uncontrolled manner, occupying areas whose stability was considered precarious.

Moreover, in the last period, this area of Italy has suffered periodically from strong
hydrogeological instability, due to two major seismic events in 1997 and 2016, which mainly
generated deep-seated gravitational slope deformations (DGSD) and collapses. In addition,
there have been extreme precipitation events such as the one in November 2013, which
activated existing landslides and uncovered new ones, especially in hilly areas.

2. Materials and Methods
2.1. Data Sampling and Preparation

For the analysis of susceptibility through GIS software, a detailed digital elevation
model (DEM) is primary, which was created with the help of the regional technical map
(CTR) [30]. This DEM was prepared with a resolution of 5m and on this basis the slope
map, which is very influential on landslide susceptibility, was obtained. The geological
map was digitized and the landslide map was obtained from the “River Basin Authorities
of the Marche Region”. The model validation was instead produced by introducing the
landslides from the IFFI project (inventory of landslide phenomena in Italy). Deep-seated
gravitational slope deformations (DGSD) and collapses were excluded from the landslide
map, due to activation phenomena not directly linked to extreme precipitation events, thus
the total number of landslides considered for this study was 4171 (Figure 2).
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The land use map, on the other hand, was obtained from ISPRA (Istituto Superiore per
la Protezione e la Ricerca Ambientale), the italian institute that distributes the Corine Land
Cover for Italy, developed by Copernicus Global Land Services (CGLS), Europe’s leading
Earth monitoring programme. In order to complete the parameters that are part of the
model, the precipitation of the last 30 years were taken into account, through data of 10 rain
gauges in the province of Macerata and another 10 outside. The rainfall data were collected
by the Regional Civil Protection of the Marche Region and the Experimental Geophysical
Observatory of Macerata (OGSM). Firstly, a complete validation and homogenisation of the
climate data was carried out, following the guidelinesof the WMO (World Meteorological
Organization). Interpolation was carried out throughout the province by means of ordinary
cokriging based on altitude as an independent variable [31]. Ordinary cokriging (OCK),
is a geostatistical method used in relation to one or more independent variables [32] that
allow a better interpolation if there is a strong correlation between independent variable
(known throughout the territory) and dependent one (only some sample values).

ZOCK(u) =
n1(u)

∑
α1=1

λOCK
α1

(u)Z1(uα1) +
n2(u)

∑
α2=1

λOCK
α2

(u)Z1(uα2)

λOCK
α1

(u) and λOCK
α2

(u) = weights of the data

Z1(uα1) and Z1(uα2) = primary and secondary data

(1)

The altitude was chosen as an independent variable on the basis of a previous study
showing that it is the most correlated topographical parameter for this area [33]. Further-
more, a complex study was performed to find out the amount of precipitation in case of
extreme events. The method used to carry out the analysis was the Generalized Extreme
Value (GEV), chosen after an assessment of the goodness of fit in relation to precipitation
data. The GEV is a flexible model composed of three parameters: k for shape, σ for scale
and µ for location.

f(x) =

{
1
σ exp(−(1 + kz)−1/k(1 + kz)−1−1/k k 6= 0
1
σ exp(−z− exp(−z)) k = 0

(2)

where z = (x−µ)
σ

The domain of the GEV depends on k:

1 + k (x−µ)
σ > 0 k 6= 0

−∞ < x < +∞ k = 0
(3)

In order to assess the goodness of fit for each rain gauge, it was used the R software
with the package “extremes 2.0” analyzing the quantile plot and the histogram of fre-
quency [34]. Even the same software was used to calculate the return period. In fact the
return period 1/p was obtained through the procedure of the maximum likelihood zp with
a chance between 0 and 1:

zp = µ+
σ

k

(
[− log(1− p)]−k − 1

)
(4)

Finally it was calculate the confidence interval of each return period in this way:

µ = zp +
σ

k

{
1− [− log(1− p)]−k

}
(5)

However, although the altitude is optimally correlated with the rainfall, it is not at
all correlated with the extreme rainfall events. Thus to have a good reliability, the rain
gauges of extreme events in 24 h near to the location of the analysis were interpolated
with an ordinary kriging (without altitude), instead of OCK. Ordinary kriging (OK) uses a
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semivariogram to express the strength of the spatial correlation as a function of distance
and similarity.

ZOK(u) = µ+ ε(u) (6)

µ = unknown constant, ε(u) = random error
The goodness of interpolations was evaluated with a cross-validation, performed with

GIS softwares, considering some statistical operators as: Mean Error, Root Mean Square
Error, Average Standard Error, Mean Standardized Error and Root Mean Square Error
Standardized [23]. With regard to extreme climatic events, the analysis was conducted on a
return time of 100 years for extreme climatic events considering time series of 50–60 years
of precipitation data for the hours 1-3-6-12-24 (Table 1). The confidence interval were
calculated through the “bootstrap” method, with 1000 attempt.

Table 1. Example of calculation of return period 100 years of precipitation for Tolentino rain gauge.

Rain Gauge Return Period 100 Years (mm)

Tolentino 1 h 58.0
Tolentino 3 h 72.3
Tolentino 6 h 84.8
Tolentino 12 h 108.8
Tolentino 24 h 137.9

The results of the analysis are showed with the Extreme Rainfall Intesity-Duration-
Frequency (IDF) curve (Figure 3), which relates the precipitation in millimeters to the return
period in years.
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2.2. Model Building

Following this in-depth climatic analysis, the most relevant environmental problems
were identified, for this territory, according to databases obtained from the Basin Authority
of the Marche Region and the Marche Region itself. Landslides detected in the investiga-
tion area have been mapped and subsequently combined with the following parameters:
extreme events of precipitation, average annual precipitation, geology, land use and slope
angle, in order to predict quiescent or potential landslides. The evidences were divided in
classes and this analysis was based on the weight of each single class of values. Weight is a
function of how many landslides are present in each class and the final aim is to produce a
landslide susceptibility map. To create the susceptibility map, the classes of the various
evidences climatic interpolations (average precipitation and extreme events), lithology,
slope and land use become the subject of the WoE calculation (Figure 4). This calculation
performed by means of math tool between raster with GIS software, produces positive and
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negative weights for each class (Figure 5). Weights are estimated to be proportional to the
influence of each class on landslide and were calculated by the following equations [35]:

W+ = ln

 Landslide area in calss
Total landslide area
Stable area in class

Total stable area

 (7)

W− = ln

 Total landslide area outside calss
Total landslide area

stable area outside class
Total stable area

 (8)

The Equations (7) and (8) represents the start of the WoE method, which combine
evidence in support of an hypothesis. In this way can be possible to calculate the degree of
influence of each factors in the susceptibility analysis, with the aim of produce a map useful
to protection. However in this calculation it is essential to know the prior probability (Of) to
find the amount of study area affected by landslide (Af) over the whole study area (At) [20]:

Of =

Af
At

1− Af
At

(9)

Furthermore there is another very important parameter which is the contrast (C) that
represents the differences between W+ and W− allowing the assessment if the investigated
factor is significant and influence the distribution of landslides in the area. A value of “C”
close to 0 determines that the parameter is of little significance, while a value of 2 attests
a good correlation. The final susceptibility map was obtained from the weights of each
parameter and the prior probability [20]:

Final P. = EXP
(
∑ W+ + ln Of

)
(10)
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tive weights, (W−) negative weights, (C) contrast; formations are described by the CARG PROJECT [36].

Geology and Land use are categorized variable, therefore they did not need to be
categorized. On the other hand, choices were made for both climatic parameters and slope
gradients. Extreme precipitation events were divided into intervals of 5 mm of precipitation,
while annual precipitation was divided into intervals of 150 mm of precipitation. The
slopes were divided into four different classes, the first for assessing flat surfaces, the
second for assessing medium-low slopes, the third for medium-high slopes and the fourth
for high slopes. Obviously, these subdivisions are arbitrary and could influence the results
of the model to a greater or lesser degree. The only way to assess the presence of more
appropriate categories, would be to iteratively evaluate them.

3. Results

The landslide map (Figure 2) was overlapped with each influencing parameter in
order to find a statistical correlation. The weight of each parameter is a function of the
correlated density of instability. The sum of the different parameters determines a landslide
susceptibility map. The various thematic maps were overlapped with the landslide map
and the intersections obtained with GIS software, were assessed to calculate the weights and
the odds for the whole Province of Macerata. The WoE were obtained from 5 parameters:
Geology (Figure 5), Slope (Figure 6), Land use (Figure 7), Annual average precipitation
(Figure 8), Extreme events (Figure 9).

It is important for the Figures 5–9 (right) to observe the contrast (“C”) value, because a
positive one determine that landslides occur more frequently in the given class. For geology
(Figure 5) we have an high value of C for “Depositi Quaternari” (Quaternary deposits),
and positive but lower for RSA, FCO, FSD, FAA and LAG [36]. All the other formations do
not have a positive correlation of parameter C, which suggests that landslides do not occur
very frequently in these geological formations.



Hydrology 2021, 8, 5 9 of 14Hydrology 2021, 8, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 6. (Left) Map of slope angle of Macerata province; (Right) The weights calculated for the slope parameter. 

The most frequent class of lanslides for the slope angle is between 5° and 30°, while 
C for all the other classes seems to be not very significant (Figure 6). 

 

Figure 6. (Left) Map of slope angle of Macerata province; (Right) The weights calculated for the slope parameter.

Hydrology 2021, 8, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 6. (Left) Map of slope angle of Macerata province; (Right) The weights calculated for the slope parameter. 

The most frequent class of lanslides for the slope angle is between 5° and 30°, while 
C for all the other classes seems to be not very significant (Figure 6). 

 
Figure 7. (Left) Land use of Macerata province, from Corinne Land Cover; (Right) The weights calculated for the land
use parameter.



Hydrology 2021, 8, 5 10 of 14

Hydrology 2021, 8, x FOR PEER REVIEW 11 of 16 
 

 

Figure 7. (Left) Land use of Macerata province, from Corinne Land Cover; (Right) The weights calculated for the land use 
parameter. 

The land use (Figure 7 shows a higher contrast value for territories used for agri-
cultural practice as expected. In fact, from the table (Figure 7) seems the agricultural 
working of the soil exposes it to problems of instability.  

 
Figure 8. (Left) Annual average precipitation in Macerata Province; (Right) The weights calculated for annual average 
precipitation parameter. 

Average annual precipitation (Figure 8) not seem to be an highly correlated param-
eter, and the most influent can be considered for the band 850–1000 m a.s.l.. It is inter-
esting to note a sort of inverse correlation between the amount of precipitation and the 
contrast, perhaps distorted by the presence of lithologies less susceptible to landslides. 

Figure 8. (Left) Annual average precipitation in Macerata Province; (Right) The weights calculated for annual average
precipitation parameter.

Hydrology 2021, 8, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 9. (Left) Annual extreme events of the Macerata Province; (Right) The weights calculated for extreme events pa-
rameter. 

Average annual precipitation and extreme events (Figure 9) do not show values that 
are decisive for the assessment of the landslide susceptibility, even if there are classes 
with higher values of contrast than others. In any case, a strong relationship between ex-
treme precipitation and landslide susceptibility has not been found, which even high-
lighted areas with low extreme precipitation as the most susceptible.  

At the end of this procedure, all the results have been overlapped in order to create a 
landslide susceptibility map; the value as specified in the methods was calculated on the 
basis of the Equation (10). The weight of evidence for the province of Macerata is repre-
sented by the map (Figure 10) in 5 levels of landslide susceptibility from S1 to S5 with 
each corresponding to a value between 0.0 and 1.0. Territories with a low probability of 
being affected by landslides were classified as S1 and S2, a result from S3 to S4 has a 
landslide susceptibility that starts to become important, while level S5 is an area subject 
to major hydrogeological instability. 

Figure 9. (Left) Annual extreme events of the Macerata Province; (Right) The weights calculated for extreme events parameter.



Hydrology 2021, 8, 5 11 of 14

The most frequent class of lanslides for the slope angle is between 5◦ and 30◦, while C
for all the other classes seems to be not very significant (Figure 6).

The land use (Figure 7 shows a higher contrast value for territories used for agricultural
practice as expected. In fact, from the table (Figure 7) seems the agricultural working of the
soil exposes it to problems of instability.

Average annual precipitation (Figure 8) not seem to be an highly correlated parameter,
and the most influent can be considered for the band 850–1000 m a.s.l.. It is interesting
to note a sort of inverse correlation between the amount of precipitation and the contrast,
perhaps distorted by the presence of lithologies less susceptible to landslides.

Average annual precipitation and extreme events (Figure 9) do not show values that
are decisive for the assessment of the landslide susceptibility, even if there are classes with
higher values of contrast than others. In any case, a strong relationship between extreme
precipitation and landslide susceptibility has not been found, which even highlighted areas
with low extreme precipitation as the most susceptible.

At the end of this procedure, all the results have been overlapped in order to create
a landslide susceptibility map; the value as specified in the methods was calculated on
the basis of the Equation (10). The weight of evidence for the province of Macerata is
represented by the map (Figure 10) in 5 levels of landslide susceptibility from S1 to S5
with each corresponding to a value between 0.0 and 1.0. Territories with a low probability
of being affected by landslides were classified as S1 and S2, a result from S3 to S4 has a
landslide susceptibility that starts to become important, while level S5 is an area subject to
major hydrogeological instability.
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It is important to note in the figure (Figure 10) that in the South-western area, the
most mountainous one, the level of landslide susceptibility is unusually low, due to the
weight geological formations which have a very low contrast (C), because of more coherent
rocks, less prone to the investigated movements. In fact, as specified in the description
of the most common movements for each zone of the study area, the mountainous zone
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shows deep-seated gravitational slope deformations (DGSD) and collapses, movements
not analysed in this study. Similarly, the piedmont area has a susceptibility mainly between
level 2 and level 3, which makes it an area of low criticality, although there are some areas
where susceptibility reaches level 4–5 and therefore need to be managed appropriately.
The riverbeds of the most important rivers obviously have a minimal susceptibility level
due to the almost non-existent slope as do the coastal stretches in the eastern part. On the
other hand, the territories where susceptibility is between S4 and S5 are located in the hilly
part, in the centre part of the study area. These areas show pelitic or pelitic-arenaceous
geological formations and a land use more oriented to agriculture which generate the most
important instability conditions.

Finally, in order to validate the work, many landslides from the IFFI database that
were not sampled to develop the model were included, amounting to a total landslide area
of 1644.359 Km2. This validation led to the assessment that about 70% of the landslides
introduced, are located in a territory with susceptibility level from 2 to 5, while only 30%
are located in a territory with low landslide susceptibility, so they can be considered not
predicted by the model.

4. Discussion

This study is an example of WoE for the creation of landslide susceptibility maps
through the use of GIS softwares, with the addition of an accurate analysis of extreme
precipitation. Extreme precipitation seems to have, in the literature, a great influence in
the territory subject to slow-motion landslides [37,38], because this type of landslides are
sensitive to soil saturation conditions. However, in this case, no statistically significant and
systematic values of influence of extreme events or average precipitation on landslides
were found. In particular, it is interesting to note that the C is greater in a low range of
extreme events, such as 140–145, however further clustering of the variable should be tested
in order to exclude this parameter from those influential for landslide susceptibility. There
is no growth in C to the increase of precipitation, which is also a result of the geographical
and geological characteristics of the area. This can lead to the assessment that the extreme
events in the area are not so different that they become significant and can discriminate one
area from another. The division into too many classes can be influential, but even reduced
classes do not have much higher C values. In any case, a significance of the extreme
event cannot be excluded, which is widely documented in the case of surface gravitational
phenomena [39,40]. Among the discriminating and statistically significant parameters for
the production of landslide movements, there are the slope gradient, which from 5 to 30◦

shows an excellent correlation, the agricultural terrain and the geological formation MUS,
according to the relevant scientific literature [9,41,42]. The validation procedure allowed,
the reliability of the model to be assessed at about 70%, in line with many other studies
that used the same or different calculation methods [15,43]. Despite the apparent lack
of significance of extreme events, the result was nevertheless achieved, in fact a reliable
susceptibility map was created according to all the factors considered, which provides a
priority for risk mitigation interventions.

5. Conclusions

This outcome, combined with the different parameters mentioned above (geology,
slope angle, land use, average precipitation, extreme events), composes a model that leads
to an automatic detection of possible landslide areas, in this case very focused on the
movements that can be originated by heavy rainfall. It would be interesting to study this
area further to evaluate other parameters to be included, in order to take into account
all possible landslide movements, without discriminating against some of them. This
consideration is very important because it allows to obtain a susceptibility map even where
the movements are not clear or studied, but only on the basis of possible combinations.
The susceptibility map of the province of Macerata, therefore, can lead to the use of this
tool for many protection purposes. This tool could support technical decisions, in order



Hydrology 2021, 8, 5 13 of 14

to prioritise interventions in a scientific way. The assessment is currently carried out
on the basis of previous evidence or emergencies. In this way it would be possible to
prevent the emergencies, improving this map also with other important features like soil
type, vegetation cover, etc. Obviously in the future it would be important to support this
susceptibility map, with a landslide hazard map, in order to create a real operating system.
Then the last step could be to create a risk map that takes into account people, heritage,
buildings, but also valuable crops, making a detailed assessment of the stability model.
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