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Abstract: Climate and land use and land cover (LULC) changes will impact watershed-scale water
resources. These systemic alterations will have interacting influences on water availability. A
probabilistic risk assessment (PRA) framework for water resource impact analysis from future
systemic change is described and implemented to examine combined climate and LULC change
impacts from 2011–2100 for a study site in west-central Texas. Internally, the PRA framework
provides probabilistic simulation of reference and future conditions using weather generator and
water balance models in series—one weather generator and water balance model for reference and
one of each for future conditions. To quantify future conditions uncertainty, framework results are
the magnitude of change in water availability, from the comparison of simulated reference and future
conditions, and likelihoods for each change. Inherent advantages of the framework formulation
for analyzing future risk are the explicit incorporation of reference conditions to avoid additional
scenario-based analysis of reference conditions and climate change emissions scenarios. In the case
study application, an increase in impervious area from economic development is the LULC change;
it generates a 1.1 times increase in average water availability, relative to future climate trends, from
increased runoff and decreased transpiration.

Keywords: future risk; uncertainty; probabilistic risk assessment; climate change; land use and land
cover change; watershed water resources; HSPF; water resources sustainability

1. Introduction

Water is a fundamental component of sustainable development strategies; its avail-
ability is important to and influenced by climate change, agriculture, food security, and
health. Freshwater resources are under increasing pressure from growth in population,
increased economic activity, and improved standards of living that lead to changes in the
terrestrial water cycle because of land use and land cover (LULC) modification, among
other factors [1].

Naturally occurring stores of freshwater for management and consumption include
streams, lakes, and aquifers. Precipitation is the ultimate source for this freshwater. When
rain falls on the ground surface, it may pool on the surface and evaporate, infiltrate into
the soil, or runoff to the nearest surface water body. Water that infiltrates may reside
within soil pore space, be extracted and transpired back to the atmosphere by plants, and
percolate downwards across a water table to become aquifer recharge. Water availability is
precipitation, the water input, less evaporation and transpiration, which return water to
the atmosphere; it is the water available for runoff and recharge.

LULC influences transpiration, infiltration, and surface runoff. Climate describes
average weather patterns and influences land cover, which controls transpiration. Changes
to precipitation control the source amount of water for freshwater stores. Temperature and
other weather parameters determine evaporation. Climate and LULC directly impact the
amount of freshwater in streams, lakes, and aquifers, and changes to climate or LULC will
change water availability.

Climate and LULC changes are expected to have interactive impacts on water avail-
ability [2,3]. Many studies have examined the impacts of climate and LULC changes on
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ecosystem health, streamflow, or water availability [3–17]. In these studies, future climate
trends are incorporated using simulated weather from downscaled global climate models
(GCMs) or regional climate models (RCMs) driven by one or more emissions scenarios.
Each emissions scenario is treated as an independent future for the projection of joint
climate and LULC changes.

Zeng et al. [18] provide a review of methods and applications for examining impacts
of climate and LULC change on runoff, and identify four common scenarios employed in
existing studies. These four scenarios are composed of a combination of a climate change
scenario with an LULC change scenario and two period–types: (1) a reference or data
period and (2) an interference or future projection period. Each of the four scenarios is a
combination of a climate change scenario with an LULC change scenario.

Martin [19] presents a framework for the assessment of relative risk to watershed-
scale water resources from future systemic changes such as climate and LULC change.
The framework provides a probabilistic risk assessment (PRA) that is composed of two
simulation experiments, where one experiment, or pathway, represents reference conditions
and is labeled the H0 pathway. The other pathway, labeled the H1 pathway, portrays the
alternative hypothesis, which is a future projection of interference conditions. Actionable
framework results are probabilistic differences, or ∆s where ∆ = H1 − H0, between pathway
simulated values.

Each pathway contains two types of models: 1) a weather generator and 2) a water
balance model. To isolate impacts on water availability from a particular systemic change,
one model type should be identical in both pathways. The other model type should portray
reference conditions in the H0 pathway and interference conditions in the H1 pathway.

Future interference conditions are uncertain and cannot be validated until they become
historical observations. To address this inherent uncertainty, the framework employs Monte
Carlo methods to simulate both pathways thousands of times to produce thousands of ∆
time histories. The collection of individual realizations is then converted to probabilistic
∆ time histories through the calculation of a cumulative histogram for each output time
interval and the collation of individual percentile and mean results from each time interval
cumulative mass function into probabilistic time histories.

The calculation of ∆ values isolates impacts on water resources to a specific systemic
change. The emphasis on departures from reference conditions reduces the importance
of traditional water balance model validation techniques that compare simulated results
to observations for a different period than used for model calibration. Future interference
conditions may represent change from reference conditions to the extent that historical
model calibration is no longer fully relevant to the perturbed system. Because observations
do not exist for future conditions, a water balance calculation should be conceptually
validated to ensure that it produces the desired response across the range of weather
forcing and watershed parameterization variations employed in future scenarios. The
purpose of framing results in terms of departure, or ∆, values is to capture the change
in response, not the absolute response, and to identify response changes with a specific
forcing mechanism, either future climate trends or watershed parameterization.

A key feature of this PRA framework is the use of weather generators to convert from
a scenario-based representation of future climate from GCM results for a single emissions
scenario to an integrated future climate cone of uncertainty that includes multiple emissions
scenarios. Two weather generators, one in each simulation pathway, provide a comparative
analysis that ensures projected future climate trends are captured probabilistically. Several
previous combined climate and LULC change analyses have employed a single weather
generator to represent an individual emissions scenario [5,6,9].

Downscaled ensemble GCM results provide a limited (generally less than 100) set
of realizations of future weather driven by hypothetical, future emissions scenarios. The
goal of the ensemble representation is to bracket possible future conditions using multiple
future emissions scenarios; it is not likely that a particular emissions scenario will provide
an accurate prediction of actual emissions several decades in the future. Consequently,
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it is not plausible that ensemble members will provide an accurate prediction of daily or
monthly weather for a particular day or month one or more years in the future.

The purpose of the ensemble is to provide insight into future climate through sim-
ulated and hypothetical future weather. Climate is the weather at a particular location
averaged over an interval [20]. The concept of Climate Normals, three-decade averages
of weather measures [21], can be used to convert GCM simulated future weather at a
location to estimates of future climate, which are just expected or average future weather.
A weather generator, simulating weather that reproduces expected climatic conditions,
provides for thousands of realizations of future weather. This large collection of future
weather realizations produces a continuous representation of the future climate cone of
uncertainty in terms of likelihoods for future weather values.

This PRA framework provides a planning and management tool for water resource
managers. It produces a description of future risk in terms of the magnitude of change in
water availability and the quantification of likelihood for each change. This risk description
provides the information required for the assessment of and planning for water resource
sustainability and resiliency.

The PRA framework is implemented in this paper to analyze impacts on water avail-
ability from a combined climate and LULC change scenario for a small (less than 519 km2

or 200 mi2) watershed to provide a case study of framework formulation and to illustrate
the advantages of the PRA approach. The advantages of PRA framework implementation
relative to previous work examining future combined climate and LULC change are: (1)
baseline, or reference, weather and future climate trends are converted to a continuous,
probabilistic representation of weather, and there are no individual or separate reference
climate and climate change scenarios; (2) the reference period concept is an integral frame-
work component and not a separate scenario, which allows for presenting water availability
results in terms of departures from reference conditions; and (3) framework outputs are
cast in terms of relative risk to future water availability.

In the example implementation, future climate trends generate consistently unchanged
median monthly water availability relative to historical weather conditions. However,
average monthly water availability is expected to increase because of the inclusion of
increased extreme event intensity in future climate trends, and these infrequent large
magnitude events are sufficient to shift projected mean values. Impacts on water availability
from LULC change are isolated and combined with impacts from future climate trends.
Average and median monthly water availability are projected to increase under combined
LULC and climate change. Average monthly water availability is estimated to increase by
1.1 times the increase projected from future climate trends.

2. Methods and Data

Martin [19] presented the PRA framework, shown in Figure 1, for analysis of the
relative impact of future systemic changes on watershed-scale water resources and the
identification of the uncertainty associated with projected impacts. This framework is
employed to examine impacts on water availability from combined climate and LULC
change. The same study site in west-central Texas, shown in Figure 2, that was used in
Martin [19] is used to analyze impacts on water resources from a combined climate and
LULC change scenario.

Table 1 presents the two future change scenarios assessed with the PRA framework.
The results from these scenarios are compared to examine future impacts from climate
change (CC) and combined LULC and climate change (LULCCC). As the 1981–2010 Climate
Normals are different from those projected for 2011–2040 for the study site [19], it does
not make sense to examine LULC change relative to reference conditions based on the
1981–2010 Climate Normals. Instead, LULC change conditions are examined in relation to
existing watershed conditions, and future climate trends are used for weather forcing in
both pathways in the LULCCC scenario.
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Figure 1. Systemic change, relative impact analysis framework for watershed-scale water resources. Framework results
are presented in terms of probabilistic differences, or ∆s (∆ = H1 − H0). Use of ∆ values allows for isolation of impacts on
water resources from interference conditions. Potential evapotranspiration (PET) ∆ values are shown as an example. Actual
evapotranspiration (AET) ∆ values are provided as results. Adapted from Martin [19] CC BY 4.0.

Figure 2. Study watershed location and hydrologic characteristics from Soil Survey Geographic Database (SSURGO) [22].
(a) shows the site location and watershed extent, (b) provides a close-up of the watershed outlet including locations of
mapped springs and United States Geological Survey (USGS) 08449100 Dolan Creek Gauge. The North American Datum of
1983 (NAD83) coordinates of USGS 08449100 are 29.888 degrees latitude and 100.990 degrees longitude. Adapted from
Martin [19] CC BY 4.0.
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Table 1. Comparative risk assessment scenarios.

Scenario
Label

Description
H0 2 Pathway H1 2 Pathway

Weather
Generator

Water Balance
Model

Weather
Generator

Water Balance
Model

CC 1

Climate change
(CC)

impacts
assessment

Historical 1:
1981–2010

Existing
conditions 1

Three future
Climate Normals 1

2011–2040
2041–2070
2071–2100

Existing
conditions 1

LULCCC

Combined land
use

and land cover and
climate change

(LULCCC) impact
assessment

Three future
Climate Normals 1

2011–2040
2041–2070
2071–2100

Existing
conditions 1

Three future
Climate Normals 1

2011–2040
2041–2070
2071–2100

Future
development

scenario

1 The CC scenario, weather generator models, and existing conditions water balance model are also part of Martin [19]. 2 The H0 pathway
is the null hypothesis experiment, shown in Figure 1, and the H1 pathway is the alternative hypothesis experiment.

2.1. Probabilistic Relative Impact Analysis Framework

The PRA framework, see Figure 1, is composed of two separate simulation pathways,
or experiments, that are executed jointly within a probabilistic simulation structure. One
pathway is the null hypothesis experiment (H0), representing reference conditions. The
other pathway is the alternative hypothesis experiment (H1) that portrays interference, or
future, conditions. Each pathway contains two models linked in series; a weather generator
model produces synthetic weather forcing to drive a water balance model.

For framework implementation, weather-related or watershed parameterization-
related interference conditions are isolated through the configuration of weather generator
and water balance models between the experiments. One model-type should be the same
in both pathways, and the other type should be different between pathways.

Probabilistic relative difference time histories are the framework outputs. Relative
differences are labeled as ∆ values, and ∆ denotes the difference, ∆ = H1 − H0, between
pathway simulated values. A probabilistic time history is a time series of probability
distributions. ∆ time histories are flattened using a Butterworth filter [23] to reduce
oscillations and facilitate multi-decade interpretation. This filtering approach generally
flattens time histories but produces an oscillation at major slope changes such as the step
transitions between Climate Normals. The presentation of framework results as relative
differences isolates the impacts from the model type that is different between pathways,
and reduces the possible influence of over-fitting or other systemic bias in the model type
that is the same in both pathways.

2.2. Study Site

For the comparison of LULC change and climate change impacts, the 471 km2 Dolan
Creek Watershed in Val Verde County, Texas (TX), USA (see Figure 2) is used as a study
site. The coordinates of USGS 08449100, shown in Figure 2, in NAD83 are 29.888 degrees
latitude and 100.990 degrees longitude. The watershed is in a remote part of Texas with
little economic development. This region is currently, and is expected to remain through
2100, a hot semi-arid environment and BSh Köppen-Geiger climate classification [24].

The study site is at the intersection of the Edwards Plateau and Chihuahuan Desert
biological regions; there are no paved roads within the watershed [25]. Because of the
limited development, land cover across the watershed is relatively uniform shrub/scrub.
Vegetation is predominately dry land scrub or shrublands. Common shrub types include
creosote, juniper, and mesquite. Stands of trees, mainly oaks and sycamore, may be found
adjacent to perennial rivers and streams [26,27].
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The site is in karst terrain [28]. Most of the watershed is naturally impervious (hydro-
logic soil type D in Figure 2) with shallow to no soil. Valley bottom-areas exhibit enhanced
secondary porosity from limestone dissolution and provide water storage capacity and
elevated permeability, which produces the rapid infiltration rates for the valley bottom and
dry stream bed locations. Additional details of the study site are available in Martin [19].

2.3. Water Balance Model

Any water budget calculation that uses precipitation and potential evapotranspiration
(PET) as inputs, or internally calculates PET from temperature and site location, and
produces actual evapotranspiration (AET), runoff, and recharge as outputs can be employed
as a framework water balance model. In Martin [19], two types of water balance models
are used. Here, the Hydrological Simulation Program—FORTRAN (HSPF) [29] continuous
simulation, water balance model is used for the CC and LULCCC scenarios in Table 1.

HSPF provides for heterogeneous representation of the site watershed. It uses the
concepts of hydrologic response units (HRUs) and hydrologic routing reservoirs for surface
water bodies. Each HRU can be divided into a pervious component, or PERLND segment,
and an impervious component, or IMPLND segment. Surface water bodies, including
stream and river reaches are simulated with a well-mixed reservoir representation, or
RCHRES components.

The RCHRES routing algorithm provides for up to five downstream exits; each exit
can be used to direct water to a different destination. The default behavior is to utilize one
exit that sends water downstream to the next reach. Seepage losses to groundwater can be
represented using an additional designated exit.

IMPLND segments only represent the processes of AET and surface runoff. Because
the land is impervious, there is no infiltration, percolation, or recharge.

In contrast, PERLND segments simulate a soil column with upper and lower zones.
Surface runoff is the rainfall that is left over after infiltration, interception, AET during the
storm, and depression storage. Infiltration occurs from the land surface into the upper zone
and percolation is simulated from the upper to the lower zone. AET is calculated from
both soil zones. Interflow is simulated as a loss from the lower soil zone which provides
for delayed runoff to streams. Deep percolation, leaving the bottom of the soil column,
exits the HSPF model as inactive groundwater inflow (IGWI).

Figure 3 presents the HSPF model configuration for the study watershed. The water-
shed is divided into 12 HRUs and five stream segments. Runoff is routed to the nearest
stream reach. For example, HRU 1, 2, and 3 runoff goes first to Reach 1, and runoff from
HRU 10, 11, and 12 travels to Reach 4 and then downstream. Streamflow is routed along
the stream from upstream (Reach 1) to downstream (Reach 5).

As shown in Figure 3, four of the stream segments are losing and one is gaining.
Losing reaches are ephemeral and typically only contain water associated with recent
rainfall. The perennial and gaining reach usually contains water. Typically, the water
surface in the gaining reach is 10 to 13 m wide.

Because of the heterogeneous watershed depiction including gaining and losing
stream reaches, the attribution of runoff and recharge from the HSPF model solution is
complex. Recharge is calculated as the sum of IGWI from the pervious portion of HRUs and
seepage losses from the four losing stream reaches in Figure 3. Runoff for the watershed is
calculated as the discharge from Reach 5 to the model and basin outlet. As an example of
complex flow patterns in the study watershed, runoff from HRU 1 and 2 goes to Reach 1; a
portion of this runoff may become recharge in Reach 1 because of seepage losses.

Water availability is employed in preference to recharge and runoff components
because of the complex flow patterns within the watershed. Although water availability is
defined as precipitation less AET, it is calculated as the sum of runoff and recharge under
the assumption that total precipitation will be approximately equal to the sum of total AET,
recharge, and runoff across a thirty-year Climate Normals interval.



Hydrology 2021, 8, 38 7 of 21

Figure 3. Site watershed Hydrological Simulation Program—FORTRAN (HSPF) model configuration.
Each hydrologic response unit (HRU) is composed of pervious (PERLND) and impervious (IM-
PLND) portions. Stream reaches are represented with well-mixed reservoir structures, or RCHRES
components. Adapted from Martin [19] CC BY 4.0.

mHSP2 is the HSPF variant used for water balance modeling. It is one component of
the pyHS2MF6 integrated hydrologic model [30]. mHSP2 was used for this study because
the author had full access to and is intimately familiar with the source code. Access and
knowledge of the source code facilitated the modifications required to implement the LULCCC
scenario. mHSP2 had to be modified to represent changing pervious and impervious areas
within an HRU during simulation time. The source code for mHSP2, as modified to implement
the scenarios in Table 1, is available on the project GitHub (https://github.com/nmartin198
/wres_risk_analysis, accessed on 24 February 2021).

2.4. Climate Change (CC) Scenario

The CC scenario in Table 1 seeks to isolate the impacts of future climate trends on study
site water resources. Analysis of future climate trends from downscaled GCM simulation
results and the description, creation, and adjustment of the weather generator models are
presented in Martin [19]. Figures 4 and 5 display temperature and precipitation ensemble
GCM simulation results for the study site from Representative Concentration Pathway
(RCP) 4.5 and 8.5 emissions scenarios downscaled using the Localized Constructed Analogs
(LOCA) [31] method. These downscaled ensembles were obtained from the “Downscaled
CMIP3 and CMIP5 Climate and Hydrology Projections” archive [32,33].

https://github.com/nmartin198/wres_risk_analysis
https://github.com/nmartin198/wres_risk_analysis
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Figure 4. Localized Constructed Analogs (LOCA) downscaled ensemble global climate model (GCM) annual mean
temperature results. An integrated cone of uncertainty for future temperature is overlain on weather results from two
emissions scenarios, Representative Concentration Pathway (RCP) 4.5 and 8.5. Annual average temperature increases by
approximately 3 ◦C from 2011–2100.

Figure 5. LOCA downscaled ensemble GCM annual precipitation depth results. An integrated cone of uncertainty for
future precipitation is superimposed on weather results from two emissions scenarios. Average annual precipitation depth
is flat from 2011–2100, denoting no significant change across the simulation period.

Climate Normals, or three-decade averages of weather parameters, are used to convert
GCM simulated weather to a climate description and to parameterize framework weather
generators. Table 2 presents the three future Climate Normals simulated as part of the
framework application.

As described in Table 1, identical water balance models are used in both pathways in
this scenario. Different weather generators are used in each pathway for three projection
intervals (2011–2040, 2041–2070, and 2071–2100). The H0 pathway weather generator is
the same for all four intervals in Table 2, and it reproduces historical weather statistics. In
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the H1 pathway, the H0 weather generator is used for the “Data Interval”, and different
weather generators are used for each projection interval in the H1 pathway, which seek
to reproduce climate trends identified for that interval. The “Data Interval”, 1981–2010, is
simulated to provide initial watershed conditions for the first projection interval, 2011–2040.

Table 2. Climate Normals intervals in framework simulations.

Period Label

1981–2010 Data Interval
2011–2040 Projection Interval 1
2041–2070 Projection Interval 2
2071–2100 Projection Interval 3

Projected climate trends for the site from 2011–2100, extracted from the analysis of
downscaled GCM simulation results for multiple emissions scenarios, are a 3 ◦C increase
in average temperature and a corresponding increase in potential evapotranspiration, no
significant change in average annual precipitation, and a semi-arid classification from
2011–2100. Increases in extreme event intensity are represented for future conditions,
producing low likelihood increases in precipitation amount and intensity during infrequent
events [19].

Figures 6 and 7 display probabilistic ∆ results for precipitation and PET from the
framework for the CC scenario with 10,000 realizations. The probabilistic time histories
presented in Figures 6 and 7 provide the magnitude of projected change, ∆ values, and
likelihoods per magnitude change over time. These results portray the future climate trends
obtained via analysis of downscaled GCM simulation results for the study watershed.

Figure 6. Probabilistic description of projected future changes in precipitation amount. These results are from the CC
scenario in Table 1 where the framework is used to compare future climate trends to historical conditions. Results from a
single realization are plotted to elucidate the differences between realization values and probabilistic time histories. Adapted
from Martin [19] CC BY 4.0.

The custom formulation of comparative weather generators within the framework
was important for the simulation of future climate trends. Structural uncertainty issues of
synthetic drizzle and the underprediction of extreme event magnitude in downscaled GCM
simulation results for the watershed were identified from the comparison of simulation
results and historical observations. The custom formulation allowed for trial-and-error
adjustment of the H1 pathway weather generator to ameliorate these structural uncertainty
issues. Without these custom adjustments, the propagation of too many wet days from
synthetic drizzle through the weather generator formulation produced a future climate
trend of a 30% increase in annual average precipitation from 2011–2100 [19].
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Figure 7. Probabilistic description of projected future changes in PET. These results are from the CC scenario in Table 1
where the framework is used to compare future climate trends to historical conditions. Adapted from Martin [19] CC BY 4.0.

The inclusion of the expectation for an increase in extreme event intensity during
future Climate Normals into the H1 pathway weather generator is responsible for the
positive skew in the 5th–95th percentile and interquartile ∆ ranges and for the positive
bias in mean monthly ∆ in Figure 6. The median ∆ increases slightly but stays near
zero in Figure 6; increased extreme event intensity has a relatively small impact on the
median, in comparison to the mean, as would be expected from an infrequent increase in
precipitation [19].

Water budget results for the CC scenario are presented in detail in Martin [19]. Here,
the results are summarized to the extent needed for comparison with the LULCCC scenario.
Figure 8 presents simulated probabilistic time histories of changes in water availability
between future climate trends and historical conditions. Median expected change in future
water availability is near zero because future annual average precipitation for the study site
is expected to be unchanged. Mean water availability ∆ and the 5th–95th percentile range
are positively biased because an increase in extreme event intensity is expected for future
conditions. The 5th–95th percentile range provides a description of variability in simulated
water availability ∆s. During 2071–2100, simulated average mean water availability ∆ is
1.6 mm, and average median water availability ∆ is 0.0 mm. The mean is positive and the
median is zero because of the contribution to monthly precipitation depth from infrequent
extreme events.

Figure 9 displays a probabilistic description of cumulative water availability across
the simulation time defined in Table 2. The slope of average and median cumulative
water availability is consistent across the future intervals, denoting no change to expected
precipitation depth on an annual basis.

Water budget component results for HRU 1 and 2 and Reach 1 and 5 are provided in
Tables 3 and 4. These results are presented for comparison with LULCCC scenario results.
In these tables, average monthly median and 5th, 25th, 75th, and 95th percentile ∆ values
are presented as a dimensionless, normalized score using Equation (1). For a symmetrical
distribution of ∆ values, the median normalized score (Sn) is expected to be close to zero,
denoting that the median and mean are close in value. The 25th percentile Sn should be
approximately −0.5, and the 75th percentile should be about 0.5.

Sn =
x∆ − m∆

IQR∆
(1)

Sn = normalized score, dimensionless x∆ = monthly average difference statistic
m∆ = mean monthly average difference IQR∆ = monthly average interquartile range
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Figure 8. Magnitude of change in water availability and associated likelihood from the CC scenario. Median expected
change is essentially zero. The interquartile range spans from negative to positive values and is narrow compared to the
5th–95th percentile range. Average annual precipitation is forecast to be unchanged for future conditions; consequently,
median water availability ∆ is near zero. An increase in future extreme event intensity is incorporated into the future climate
change representation and is responsible for the positive bias in the 5th–95th percentile water availability ∆ range and the
slight increase in average water availability ∆. Average mean water availability ∆ during 2071–2100 is 1.6 mm and average
median water availability ∆ is 0.0 mm.

Figure 9. Comparison of cumulative water availability between scenarios. Cumulative water availability is presented in
cubic meters (m3). Millimeters (mm) of depth across the 471 km2 watershed area can be converted to m3 by multiplying
depth in millimeters by area in km2 by 1000 m3/km2 · mm. One mm of water depth across the watershed corresponds to
4.71 × 105 m3.
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Table 3. CC Scenario Water Budget Component Results for HRU 1 and 2.

Water Budget
Parameter

Statistic
HRU 1 Average Monthly ∆ HRU 2 Average Monthly ∆

2011–2040 2041–2070 2071–2100 2011–2040 2041–2070 2071–2100

AET
(Figure S2)

Mean 1 80,181 137,256 166,865 26,521 51,409 64,336
IQR 1,3 334,059 385,357 450,434 148,802 171,310 199,405

Median 2 0.01 0.02 0.02 0.02 0.03 0.03
5th percentile 2 −1.24 −1.18 −1.12 −1.24 −1.17 −1.12
25th percentile 2 −0.54 −0.53 −0.52 −0.53 −0.52 −0.52
75th percentile 2 0.46 0.47 0.48 0.47 0.48 0.48
95th percentile 2 1.28 1.18 1.12 1.23 1.14 1.10

Runoff
(Figure S1)

Mean 1 11,645 13,192 14,167 4520 5389 5925
IQR 1,3 12,243 13,108 14,474 6295 6742 7409

Median 2 −0.99 −1.01 −0.96 −0.79 −0.83 −0.82
5th percentile 2 −1.76 −1.66 −1.57 −1.66 −1.56 −1.48
25th percentile 2 −1.22 −1.23 −1.19 −1.05 −1.07 −1.05
75th percentile 2 −0.22 −0.23 −0.19 −0.05 −0.07 −0.05
95th percentile 2 5.99 5.99 5.70 4.95 5.03 4.86

Recharge
(Figure S3)

Mean 1 195,429 244,582 267,633 59,604 83,595 95,199
IQR 1,3 380,221 417,993 461,711 161,050 172,038 186,634

Median 2 −0.56 −0.61 −0.58 −0.45 −0.53 −0.54
5th percentile 2 −1.94 −1.78 −1.73 −2.07 −1.94 −1.90
25th percentile 2 −0.94 −0.93 −0.90 −0.91 −0.93 −0.91
75th percentile 2 0.06 0.07 0.10 0.09 0.07 0.09
95th percentile 2 4.30 4.25 4.06 4.13 4.27 4.17

1 Units of m3. 2 Normalized score using Equation (1) dimensionless. 3 IQR is interquartile range.

Table 4. CC Scenario Water Budget Component Results for Reach 1 and 5.

Water Budget
Parameter

Statistic
Reach 1 Average Monthly ∆ Reach 5 Average Monthly ∆

2011–2040 2041–2070 2071–2100 2011–2040 2041–2070 2071–2100

Evaporation
(Figure S6)

Mean 1 5057 6260 7168 897 1365 1819
IQR 1,3 6250 7181 8094 178 232 298

Median 2 −0.43 −0.42 −0.41 0.03 0.04 0.05
5th percentile 2 −0.97 −0.94 −0.93 −1.26 −1.28 −1.28
25th percentile 2 −0.74 −0.73 −0.72 −0.48 −0.48 −0.48
75th percentile 2 0.26 0.27 0.28 0.52 0.52 0.52
95th percentile 2 2.50 2.40 2.35 1.15 1.13 1.12

Discharge
(Figure S4;
Figure S7)

Mean 1 8375 9578 10,277 91,502 121,054 154,733
IQR 1,3 11,819 12,819 13,824 26,559 28,973 33,118

Median 2 −0.45 −0.44 −0.43 −3.60 −4.28 −4.74
5th percentile 2 −1.03 −0.98 −0.96 −7.61 −7.03 −6.60
25th percentile 2 −0.75 −0.74 −0.73 −4.06 −4.65 −5.05
75th percentile 2 0.25 0.26 0.27 −3.06 −3.65 −4.05
95th percentile 2 2.44 2.34 2.27 11.76 14.87 18.58

Seepage 4

(Figure S5)

Mean 1 7915 9066 9692
IQR 1,3 11,743 12,733 13,721

Median 2 −0.41 −0.40 −0.39
5th percentile 2 −1.00 −0.95 −0.92
25th percentile 2 −0.71 −0.70 −0.69
75th percentile 2 0.29 0.30 0.31
95th percentile 2 2.44 2.34 2.27

1 Units of m3. 2 Normalized score using equation (1), dimensionless. 3 IQR is interquartile range. 4 Reach 1 is a losing reach and seepage is
simulated; Reach 5 is a gaining reach without simulated seepage.
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2.5. Land Use and Land Cover (LULC) Change Scenario

A future economic development hypothesis was used to create the LULC change
portion of the LULCCC scenario in Table 1. This hypothesis postulates a 10% increase in
developed area for HRUs 1 and 2 across each future analysis interval in Table 2. HRUs 1 and
2 were selected for development because these two regions were the primary locations
of energy-related development between 2001 and 2016 [25], and these two regions are in
proximity to the nearest major road.

Developed areas are assumed to be impervious. Increased impervious surface area
changes the landscape from an infiltrative sink to a source of runoff because infiltration is
eliminated for impervious surfaces [34,35]. Table 5 provides the corresponding change in
impervious area for HRUs 1 and 2 across 2011–2100. Impervious areas are represented as
IMPLND segments, which only provide for simulation of surface runoff and evaporation
from surface depressions, in the HSPF model.

Table 5. Evolution in impervious area in the LULCCC scenario.

HRU (Area) 1981–2010 2011–2040 2041–2070 2071–2100

1 (103 km2) 0.9% 10.9% 20.9% 30.9%
2 (43 km2) 1.1% 11.1% 21.1% 31.1%

As described in Table 1, identical weather generator models are used in both pathways
in this scenario; this weather generator represents projected climate trends from 2011–2100.
Different water balance model parameterization is used in each pathway. The H0 pathway
water balance model represents existing conditions, and parameterization is constant for
all four intervals in Table 2. In the H1 pathway, the existing conditions parameterization
is used for the water balance model during the “Data Interval”. The parameterization
of the water balance model in the H1 pathway is varied according to Table 5 for three
projection intervals (2011–2040, 2041–2070, and 2071–2100). The “Data Interval”, 1981–2010,
is simulated to provide identical initial watershed conditions for the first projection interval,
2011–2040, when model parameterization and model results in the two pathways begin
to diverge.

3. Results

The PRA framework in Figure 1 was applied to the LULCCC scenario in Table 1 to
compare risks to watershed-scale water resources from climate change and from hypothetical
future land use modifications combined with climate change.

3.1. Combined Land Use, Land Cover and Climate Change (LULCCC) Scenario

The LULC change portion of this scenario utilizes an increase in impervious area in
HRU 1 and 2 (see Figure 3), as described in Table 5, to represent future economic devel-
opment. Identical weather generators, which reproduce future climate trends, are used
in both pathways and provide for the climate change portion of the scenario. The HSPF
models are different between pathways. The H0 pathway HSPF model is parameterized to
represent existing conditions, and the parameterization of the H1 pathway HSPF model
varies across simulation time to portray LULC change.

Figure 10 shows the simulated change in water availability, and corresponding likeli-
hoods, across the three future Climate Normals. An increase in impervious area in HRU 1
and 2 is represented in this scenario as a stepwise percentage increase in area, which pro-
duces the stepped increases in mean water availability ∆ and the 5th–95th percentile range.
During 2070–2100, monthly average mean water availability ∆ is 1.7 mm, and monthly
average median water availability ∆ is 1.0 mm, corresponding to expected monthly in-
creases in water availability of 8.01E+05 m3 and 4.71E+05 m3, respectively. These monthly
increases in water availability are for the LULCCC scenario relative to the CC scenario, and
represent increased water availability from LULC change independent of climate change.
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Figure 10. Magnitude of change in water availability and associated likelihood from the LULCCC scenario. Impervious
area in HRU 1 and 2 in Table 5 increases by ten percent for each future Climate Normals; this produces the increasing spread
in uncertainty with simulation time and the trend in increasing mean and median water availability. Simulated average
mean water availability ∆ during 2071–2100 is 1.7 mm and average median water availability ∆ is 1.0 mm.

Figure 9 displays the cumulative water availability cone of uncertainty for the LUL-
CCC scenario. The slope of cumulative mean water availability increases at each Climate
Normals boundary due to the stepwise increase in impervious area. The LULCCC cu-
mulative mean water availability is larger than the CC cumulative mean from 2040–2100,
and it stays within the CC cumulative water availability interquartile range, “CC: 25–75th
percentile range”, from 2011–2100.

The cumulative water availability, shown in Figure 9, and the water availability ∆
time histories, shown in Figure 10, apply to the entire study watershed (see Figure 2). In
the LULCCC scenario, impervious area is increased in HRU 1 and 2 (see Figure 3), which
comprise approximately 31% of the total watershed area.

Because LULC changes affect HRU 1 and 2, these are the only HRUs that have
simulated changes to the distribution of the water balance components of AET, recharge,
and runoff. Table 6 provides the relative change in AET, runoff, and recharge for HRU 1 and
2 under the LULC changes. The results are similar for the HRUs and are proportional to
the relative area; HRU 2 has about 42% of the HRU 1 watershed area. Increased impervious
area produces increased runoff, denoted by positive mean values in Table 6. Mean AET
and recharge both decrease given LULC changes. Increases in runoff are generated at the
expense of AET and recharge, which both decrease with increases in impervious area.

Runoff from HRU 1 and 2 is routed to Reach 1 (see Figure 3). Discharge from Reach 1
continues downstream to Reach 2, Reach 3, Reach 4, and Reach 5 in series. Table 7 displays
relative change in evaporation, discharge, and seepage from Reach 1 and 5 from LULC
changes. In Reach 1, seepage and evaporation both increase because this ephemeral reach
is typically dry; additional runoff means that more water is available for evaporation
and seepage. The increase in Reach 1 discharge downstream is larger than the combined
increase in seepage and evaporation. Reach 5 is a gaining reach and has no seepage losses.
Upstream seepage losses from Reaches 1, 2, 3, and 4 mute the increase in discharge from
the watershed relative to the increase in runoff from HRU 1 and 2. As Reach 5 is gaining
and perennial, the reach is always wet; water is available for evaporation, and evaporation
is not water supply limited. Consequently, there is negligible relative change to Reach
5 evaporation.



Hydrology 2021, 8, 38 15 of 21

Table 6. LULCCC Scenario Water Budget Component Results for HRU 1 and 2.

Water Budget
Parameter

Statistic
HRU 1 Average Monthly ∆ HRU 2 Average Monthly ∆

2011–2040 2041–2070 2071–2100 2011–2040 2041–2070 2071–2100

AET
(Figure S2)

Mean 1 −212,373 −434,200 −658,835 −89,936 −184,030 −279,361
IQR 1 137,516 283,417 441,066 58,296 120,170 187,124

Median 2 −0.05 −0.05 −0.04 −0.05 −0.05 −0.05
5th percentile 2 −1.08 −1.07 −1.07 −1.07 −1.07 −1.07
25th percentile 2 −0.50 −0.50 −0.50 −0.50 −0.50 −0.50
75th percentile 2 0.50 0.50 0.50 0.50 0.50 0.50
95th percentile 2 1.20 1.19 1.17 1.19 1.19 1.17

Runoff
(Figure S1)

Mean 1 381,907 783,204 1,189,441 161,611 332,267 505,282
IQR 1 448,362 924,346 1,413,205 196,955 407,518 624,125

Median 2 −0.30 −0.30 −0.30 −0.30 −0.30 −0.30
5th percentile 2 −0.82 −0.82 −0.81 −0.81 −0.80 −0.80
25th percentile 2 −0.66 −0.66 −0.65 −0.66 −0.65 −0.65
75th percentile 2 0.34 0.34 0.35 0.34 0.35 0.35
95th percentile 2 1.91 1.89 1.88 1.89 1.87 1.86

Recharge
(Figure S3)

Mean1 −169,449 −348,983 −530,712 −71,651 −148,224 −225,965
IQR1 205,614 424,351 646,332 86,857 180,202 275,139

Median 2 0.61 0.61 0.61 0.62 0.61 0.61
5th percentile 2 −2.86 −2.85 −2.85 −2.86 −2.86 −2.85
25th percentile 2 −0.19 −0.19 −0.20 −0.19 −0.19 −0.20
75th percentile 2 0.81 0.81 0.80 0.81 0.81 0.80
95th percentile 2 0.82 0.82 0.82 0.82 0.82 0.82

1 Units of m3. 2 Normalized score using Equation (1), dimensionless.

Table 7. LULCCC Scenario Water Budget Component Results for Reach 1 and 5.

Water Budget
Parameter

Statistic
Reach 1 Average Monthly ∆ Reach 5 Average Monthly ∆

2011–2040 2041–2070 2071–2100 2011–2040 2041–2070 2071–2100

Evaporation
(Figure S6)

Mean 1 99,868 145,364 164,664 12 34 60
IQR 1 57,975 56,322 51,363 6 29 61

Median 2 −0.03 0.09 0.12 −0.74 −0.52 −0.35
5th percentile 2 −1.03 −1.30 −1.44 −1.65 −1.08 −0.91
25th percentile 2 −0.51 −0.47 −0.45 −1.14 −0.82 −0.68
75th percentile 2 0.49 0.53 0.55 −0.14 0.18 0.32
95th percentile 2 1.11 1.01 1.05 4.37 3.12 2.17

Discharge
(Figure S4;
Figure S7)

Mean 1 318,752 824,262 1,382,157 152,821 487,831 935,123
IQR 1 125,689 717,851 1,522,335 20,907 201,070 738,001

Median 2 −1.01 −0.67 −0.49 −6.41 −2.13 −1.08
5th percentile 2 −1.90 −0.95 −0.80 −6.99 −2.37 −1.25
25th percentile 2 −1.41 −0.84 −0.74 −6.67 −2.28 −1.19
75th percentile 2 −0.41 0.16 0.26 −5.67 −1.28 −0.19
95th percentile 2 6.11 3.28 2.48 33.89 11.61 5.45

Seepage 3

(Figure S5)

Mean 1 168,902 211,984 222,404
IQR 1 79,770 56,394 48,101

Median 2 0.11 0.27 0.31
5th percentile 2 −1.20 −1.74 −1.98
25th percentile 2 −0.45 −0.38 −0.35
75th percentile 2 0.55 0.62 0.65
95th percentile 2 0.83 0.82 0.87

1 Units of m3. 2 Normalized score using equation (1), dimensionless. 3 Reach 1 is a losing reach and seepage is simulated; Reach 5 is a
gaining reach without simulated seepage.
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3.2. Scenario Comparison

The PRA framework, see Figure 1, contains two simulation experiments. Each experi-
ment includes a weather generator and water balance model. To isolate risks associated
with a particular driving mechanism, only one type of model should be different between
the pathways. For the CC scenario, the weather generator models are different between
pathways. In the LULCCC scenario, the water balance models are different between path-
ways. The LULCCC H0 water balance model is the same as the water balance models
used in the CC scenario. A water balance model that has a time varying representation of
impervious area extent is used in the LULCCC H1 pathway.

In the CC scenario, monthly average mean water availability ∆ is 1.6 mm during
2070–2100, corresponding to a monthly increase of 7.54 × 105 m3 in water availability given
future climate trends. Average monthly water availability is expected to increase because
of the inclusion of increased extreme event intensity in the future climate representation.
The mean monthly runoff ∆ in Table 3 is larger than the 75th percentile runoff ∆ for HRU 1
and 2. Monthly average median water availability ∆ is 0.0 mm in 2070–2100 for the CC
scenario. The monthly change in median water availability is zero because average annual
precipitation is not expected to change from 2011–2100.

The LULCCC scenario employs the climate change weather generator in both path-
ways, and different water balance model parameterization in each pathway. The H1 water
balance model uses an impervious area parameterization that changes among Climate
Normals, as described in Table 5. An increase in impervious area results in an increase
in runoff, a decrease in recharge, and a decrease in AET. The overall impact on the site
watershed is to increase average water availability under future interference conditions,
resulting in a positive bias in mean and median water availability ∆s in Figure 10.

Monthly average mean water availability is expected to increase by 8.01 × 105 m3 during
2071–2100. Similarly, monthly average median water availability increases 4.71 × 105 m3.
Median monthly water availability is expected to increase by 4.71 × 105 m3 in the LULCCC
from the 0 m3 increase hypothesized for future climatic conditions relative to observed
weather in the CC scenario.

A shift in expected values for runoff, AET, and recharge water budget components
occurs for the HRUs, whose impervious area increases are shown in Table 5. Runoff
increases with increases in impervious area, while AET and recharge decrease. For the
study site, the LULCCC scenario provides a change in the median water budget. The CC
scenario generates increased variability in lower likelihood conditions such as the 5th and
95th percentile ∆s, and suggests an infrequent increase in water availability from increased
extreme event intensity that creates a positive bias in mean water availability ∆s.

4. Discussion

A PRA framework is described for the analysis of water resource impacts from sys-
temic change. It is applied to an examination of combined LULC and climate change
impacts on water resources for a small watershed in west-central Texas.

The study site is in karst terrain and has complex, interrelated surface and sub-surface
flow paths. A heterogenous water balance model representation including 12 HRUs
and five stream reaches is used to partition precipitation into AET, recharge, and runoff
components. Water availability is calculated as the sum of recharge and runoff. Runoff
for the entire watershed is calculated as the discharge from Reach 5 to the watershed
outlet. Recharge is attributed to the sum of deep percolation to inactive groundwater from
the pervious portion of each HRU and seepage from losing stream reaches. Recharge is
defined as water that percolates across the water table of an aquifer [36]; water tables are
not explicitly simulated in the water balance model.

Within complex watershed flow paths, runoff from headwaters HRUs such as HRU 1
and 2 is routed to a stream reach where a portion of the runoff could be lost to seepage. In
this accounting, seepage is attributed to recharge. Deep percolation in pervious areas is also
attributed to recharge. There are numerous springs in and adjacent to the study watershed
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(see Figure 2). Some of this deep percolation may never reach a water table and instead
travel through preferential flow pathways to discharge as spring flow or discharge into
a gaining stream reach. Because of complex flow paths and a lack of explicit water table
simulation, the concept of water availability is preferred for study site water resources. An
attempt to delineate recharge and runoff components would be arbitrary for this study
area because a drop of water falling on the headwaters pervious lands may be categorized
as both recharge and runoff at different points in the journey to the outlet and may switch
categories multiple times.

4.1. Novelty of the PRA Framework Approach

The PRA framework is general in the sense that it can be customized and applied to any
site for water resource risk analysis. Generic weather generators can be parameterized to
represent site specific climate and utilized within the framework. Any water balance model
that accepts precipitation and PET, or calculates PET from site location and temperature, as
inputs can be used within the framework.

The novel contributions of and benefits from the PRA approach are associated with
the use of two simulation pathways within a probabilistic simulation framework. The H0
pathway portrays reference conditions, and the H1 pathway represents future conditions.
Reference conditions are an integral component of the framework and not a separate
scenario. Relative results from the pathways, or ∆ time histories, are presented using the
magnitude of departure from reference conditions and likelihood of departure magnitude.

Comparative analysis of reference, or historical, weather generator results with sim-
ulated future climate weather generator results provides a mechanism to ensure that
identified future climate trends are reproduced. The probabilistic representation of future
climate allows for the incorporation of results from multiple emissions scenarios because
overlapping precipitation and temperature values among scenarios are considered more
probable because of the higher frequency of occurrence. If needed, the H1 weather genera-
tor can be adjusted to produce the desired, relative future trends, and it can be augmented
to represent hypotheses that are missing from downscaled ensemble GCM simulation
results. In the CC scenario, the H1 weather generator representation was adjusted to ame-
liorate synthetic drizzle issues evident in downscaled ensemble GCM simulation results
for the study site. The H1 weather generator was also augmented to portray increased
extreme event intensity in future Climate Normals that was not present in downscaled
GCM simulation results for the site watershed.

Probabilistic comparative water balance model results are beneficial for the analysis of
future conditions. The casting of results in terms of departures from reference conditions
removes the focus from absolute simulated quantities and reduces the importance of tradi-
tional calibration and validation considerations. Interference conditions likely represent
significant systemic change relative to reference conditions, and observations do not exist
for future conditions. These special considerations for the simulation of future conditions
reduce the applicability of approaches designed for the reproduction of historical and sta-
tionary conditions. A water balance calculation should be conceptually validated to ensure
that it produces the desired response across the range of weather forcing and watershed
parameterization variations employed in interference scenarios, prior to incorporation in
the framework.

The purpose of this framework is to provide a planning and analysis tool for water re-
source managers. It describes water resource risk in terms of magnitude of change in water
availability and provides quantification of the likelihood for each change. This risk descrip-
tion provides useful information for water resource sustainability and resiliency analyses.

4.2. Limitations of the Study and Future Research Tasks

Projections of combined future LULCCC impacts, climate change impacts, and the
comparison of impacts between future LULCCC and CC scenarios are site-specific and
only include water availability considerations. Temperatures are expected to increase by



Hydrology 2021, 8, 38 18 of 21

1.5 ◦C across the world between 2030 and 2052 relative to pre-industrial levels, and changes
to precipitation are projected to be region dependent, with increased precipitation intensity
in some areas and increased probability of drought in several regions [37]. Temperatures at
the study site are expected to increase; however, the expectation is for minimal change to
average annual precipitation [19]. The study site is currently, and is projected to remain
through 2100, a hot semi-arid environment [24]. Projected impacts on water availability
from future climate trends are controlled by the specific future climate projections for
this location.

The PRA framework is designed for the analysis of impacts from future systemic
changes and is built to deal with the inherent uncertainty in future interference conditions.
When data and observations are available to guide and constrain impact analyses from
systemic change (i.e., for historical changes), more direct and robust analysis approaches
should be used.

LULC change can affect weather and climate because it may modify surface fluxes of
heat and water vapor and impact the energy available for storms [2]. The PRA framework
is configured to propagate future climate trends through a water balance model, in one
direction, to produce relative change in water availability. Feedback from the water balance
model representation back to the weather generator, to represent LULC change feedback to
climate, is not available in the framework formulation.

The LULCCC scenario assumes a consistent increase in economic development within
the site watershed. Rather than assuming an LULC change scenario, LULC could have been
modeled using cellular automata-based [4,6,16,38] or similar methods. Minimal alteration
and land use change have occurred in the watershed historically; consequently, advanced
LULC modeling is not likely to provide significant improvements for the representation
of this site. In future applications, the PRA framework could incorporate a water balance
model that is parameterized in future intervals in accordance with projections obtained
from LULC change models.

Only impacts on water availability are examined in the case study. It is possible
that water availability could increase but that water quality could be negatively impacted
by increased economic development. In future framework applications, water quality
considerations can be incorporated into the formulation. One way to include water quality
considerations would be to use HSPF water balance models that include transport and
water quality representations [5,12,16]. The PRA framework is amenable to the inclusion
of many different types of water balance models, and ecohydrology analysis models could
be used within the framework instead of HSPF. In either approach, ∆ time histories could
be produced for water quality and ecohydrology parameters and metrics in addition to
water budget components.

4.3. Implications for Sustainable Water Management

Watershed sustainability can be defined and described using social, environmental,
and biodiversity indicators [39]. The PRA framework only provides analysis of impacts
on the watershed water balance; consequently, it does not, by itself, provide for analysis
of water management sustainability or resiliency. The PRA framework does produce
a description of future risk in terms of magnitude of change in water availability and
the quantification of likelihood for each change. The combination of change in water
availability and the probability of change provides important contributing information
for the analysis of water resource sustainability and resiliency. The PRA framework can
provide a tool to describe expected water resource availability that can be incorporated
into a larger decision support system that considers investment and engagement strategies
and long-term integrated resource management approaches.

5. Conclusions

A PRA framework is described for the analysis of future systemic impacts on watershed-
scale water resources and implemented to analyze combined LULC and climate change
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impacts for a study site in west-central TX. The PRA framework provides the advantages
of the intrinsic incorporation of climate change projections and reference conditions into
framework analysis. This produces a combined LULC and climate change assessment
where only LULC scenarios are examined as opposed to a combination of future climate
change and LULC scenarios.

The example implementation provides a site-specific analysis of impacts from LULC
and climate change. It projects that future climate trends do not significantly change
expected water availability; however, low probability, extreme events are predicted to
produce low frequency increases in water availability. An LULC change scenario involving
a constant increase in economic development, with a corresponding increase in impervious
area, of 10% every 30 years for two watershed subareas is examined in conjunction with
climate change. Water availability is forecast to increase on average by 1.1 times under
LULC conditions relative to climate change conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/2306-5
338/8/1/38/s1. Figure S1. HRU 1 magnitude of change in runoff and associated likelihoods for
both scenarios. Figure S2. HRU 1 magnitude of change in AET and associated likelihoods for both
scenarios. Figure S3. HRU 1 magnitude of change in recharge and associated likelihoods for both
scenarios. Figure S4. Reach 1 magnitude of change in discharge to Reach 2 and associated likelihoods
for both scenarios. Figure S5. Reach 1 change in seepage and associated likelihoods for both scenarios.
Figure S6. Reach 1 change in evaporation for both scenarios. Figure S7. Reach 5 magnitude of change
in discharge downstream and out of the model and associated likelihoods for both scenarios. Table S1.
Listing of the 32 GCMs and Emission Scenarios available in the CMIP5, LOCA Archive.
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