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Abstract: The purpose of this paper is to develop design guidelines for flood control channel height 
in the vicinity of the confluence of a submerged drainage pipe and a flood control channel. The 
water exchange in the confluence of an open channel with a lateral drainage pipe produces unique 
hydraulic characteristics, ultimately affecting the water surface elevation in the channel. An accurate 
prediction of the water surface elevation is essential in the successful design of a high-velocity 
channel. By performing several experiments, and utilizing a numerical model (FLOW-3D), this 
study investigated the impact of submerged lateral drainage pipe discharges into rectangular open 
channels on flow topology in the confluence hydrodynamics zone (CHZ). The experiments were 
conducted in different flume and junction configurations and flow conditions. Moreover, the 
simulations were performed on actual size channels with different channel, pipe, and junction 
configurations and flow conditions. The flow topology in the CHZ was found to be highly 
influenced by the junction angle, as well as the momentum ratios of the channel flow and the pipe 
flow. The findings of this study were used to develop conservative design curves for channel 
confluences with lateral drainage pipe inlets. The curves can be used to estimate water surface 
elevation rise in different channel and pipe configurations with different flow conditions to 
determine the channel wall heights required to contain flows in the vicinity of laterals. 

Keywords: flood control channel; open channel; channel and pipe confluence; flow topology; 
FLOW-3D 

 

1. Introduction 

Confluences of open channels and lateral drainage pipes are important elements in the hydraulic 
networks of man-made canals [1]. They are necessarily encountered at the end of urban sewage or 
agricultural subsurface drainage networks, where they release water [2]. Flow through lateral 
drainage pipes to open channels impacts channel capacity and disrupts the natural flow of water by 
creating turbulence in the vicinity of the inlet pipe, as well as influencing flow characteristics in the 
confluence hydrodynamics zone (CHZ) (Figure 1). Even though these confluences represent a critical 
component of drainage system geometry, they have received surprisingly little attention from 
researchers and engineers. This is mainly due to the relatively large number of parameters involved, 
along with the complex flow features occurring in the CHZ [3]. As a result, no comprehensive data 
set has been compiled that describes the 3D flow field within the CHZ [4]. 
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Figure 1. The confluence of an open channel with a lateral drainage pipe. 

The complexity of an open channel confluence stems from flow mixing, secondary circulation, 
post-confluence flow separation, contraction, and backwater effects. These effects, in turn, result in a 
large number of parameters required to adequately describe flow patterns and turbulent flow 
structures, due to flow merging [5]. In a CHZ, the flow topology is governed by parameters such as 
confluence geometry (angle, channel widths, bed discordance presence, and cross-sectional shape) 
and momentum ratio, as well as the ratio between the incoming flows, etc. [6]. 

Studying the combination of flows in open channel confluences with lateral drainage pipes has 
a direct application in drainage system open channel network design. One important parameter in 
such design is estimating the rise in flow depth, due to the lateral flow effect, and in a CHZ this effect 
can be significant [7]. An understanding of these flow conditions is necessary for the hydraulic design 
of the channel walls (height and length) that are required to contain these flows in the vicinity of 
laterals [8]. In this regard, the present study seeks to answer the following questions: 

• What would be the impact of submerged lateral drainage pipe discharges into rectangular open 
channels on the flow topology (including maximum water height) in a CHZ for different channel 
widths, flow rates, Froude numbers, confluence angles, inlet pipe diameters, and lateral flows 
to the main channel flow ratios? 

• Under what circumstances would the maximum increase in water surface elevation be confined 
to the desired values (e.g., 10%, or 20%)? 

The first and only study to date on the hydraulic behavior of a pipe outlet into an open channel, 
allowing the combination of free-surface and pressurized flows, was conducted by Nedelec and Gay 
in 2008 [9]. This limited experimental study explored the hydraulic properties of subsurface drainage 
outlets into an open-air stream. This experimental study had several limitations, one of which was 
that the flow in channels during floods is super-critical, while the study was confined to sub-critical 
flow. Another limitation was that the angle of the inlet pipe was 90° with respect to the flume, while 
some flood control agencies recommend smaller pipe entry angles. Additionally, the results of the 
small-sized flume experiments could not be extrapolated to actual flood control channel dimensions. 

Recognizing the knowledge gap, this study addresses the limitations identified in the literature 
review, utilizing experimental and numerical studies, and contributes to a better knowledge of flow 
topology in the CHZ of an open channel and a pipe. Additionally, this study can provide a 
benchmark experimental dataset for the validation of future numerical models. The experimental 
studies were performed for sub-critical and super-critical flow conditions with different junction 
angles. Results from these experiments were used to validate the numerical model (FLOW-3D) 
simulations. Finally, the validated numerical model was implemented to simulate actual flood 
control channel dimensions, in order to propose recommendations for the design of channels with 
lateral pipe inlets. These recommendations are based on conservative design curves, developed on 
the basis of the momentum principle, according to the relationship between the relative rise in 



Hydrology 2020, 7, 57 3 of 51 

channel water height, lateral discharge to channel flow ratio, and confluence angle. Figure 2 shows 
the flow chart of this study. 

Task Inputs (Variables) Outputs

Experiments Two flume widths (0.41 m (16"), 0.61 m (24")), Froude numbers (0.72-3.27), lateral pipe flow proportions with respect to the flow in the flume (2.5%, 5%, 7.5%), and junction angles (30˚, 45˚, 90˚) Water heights along the flume

FLOW-3D validation

Extended simulations
Actual size channels (3.05 m (10'), 7.62 m (25'), 15.24 m (50')), initial water heights (1.22 m (4'), 2.13 m (7'), 3.05 m (10')), Froude numbers (0.8, 1.2, 2), lateral pipe sizes (0.46 m (1.5'), 0.91 m (3'), 1.52 m (5')), lateral flow proportions (2.5%, 5%, 10%), and junction angles (30˚, 45˚, 90˚)

Developing conservative design curves 

Flow topology in the CHZ

Comparison between the experimental and numerical test resultsWater heights along the flume and based on the numerical model which mimics the same conditions in the experimental model

Maximum water heights based on FLOW-3D simulation scenarios Conservative design curves based on each Froude number
 

Figure 2. The flow chart of this study. 

2. Materials and Methods 

2.1. Experiments 

The flume in the Fluid Dynamics Laboratory of the University of Nevada, Las Vegas (UNLV) is 
14.63 m (48’) long and 0.81 m (32”) wide, with a height of 0.61 m (24”). In order to obtain super-critical 
flows in the flume, considering the availability of pumps at UNLV, the flume had to be narrowed to 
get reasonable flow velocities, water depths, and desired Froude numbers. Therefore, to provide the 
desired flow conditions, as well as to evaluate the effect of channel width on the main channel flow 
disturbances, at first, the flume was narrowed to 0.61 m (24”) (wide channel) and then to 0.41 m (16”) 
(narrow channel). A 5.1-cm (2”) diameter inlet pipe was installed through the flume wall 7.62 m (25’) 
downstream of the flume entrance to provide lateral flow to the channel. Flow through the inlet was 
provided through a separate variable-speed pump fed by water from the flume sump (Figure 3). 
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Figure 3. The 2” diameter inlet pipe installed on the flume wall. 

Moreover, three inlet connections at 30, 45, and 90° were constructed to feed lateral flow to the 
channel at desired angles. Figures 4 and 5 show the wide channel and narrow channel configurations, 
respectively. 

 
Figure 4. Wide channel configuration (top view). 

 
Figure 5. Narrow channel configuration (top view). 

After setting up the flume, the experiments were conducted in both wide and narrow channel 
configurations; 30, 45, and 90° junction angles; with lateral flow to main channel flow ratios of 2.5% 
and 5% for the wide channel, and 2.5%, 5%, and 7.5% for the narrow channel; and different Froude 
numbers, from 0.72 (sub-critical) to 3.27 (super-critical). Figure 6 shows how lateral flows were fed to 
the main channel through the pipe. Table 1 summarizes the experimental scenarios. 
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Figure 6. Lateral flow to the main channel (back view). 

Table 1. Experimental scenarios. 

Flume 
Width 

(m) 
Flume Slope (%) Flow Rate 

(m3/s) Fr (-) Junction Angle 
(degree) 

Lateral Flow Proportion 
(%) 

0.41 (16”) 

0.00 0.13 0.72 30, 45, 90 2.5, 5.0, 7.5 
0.42 0.12 0.95 30, 45, 90 2.5, 5.0, 7.5 
0.68 0.14 1.45 30, 45, 90 2.5, 5.0, 7.5 
0.97 0.14 1.74 30, 45, 90 2.5, 5.0, 7.5 
1.68 0.14 2.01 30, 45, 90 2.5, 5.0, 7.5 
2.15 0.13 2.32 30, 45, 90 2.5, 5.0, 7.5 
2.60 0.13 2.80 30, 45, 90 2.5, 5.0, 7.5 
3.51 0.13 3.27 30, 45, 90 2.5, 5.0, 7.5 

0.61 (24”) 

0.00 0.18 0.80 30, 45, 90 2.5, 5.0 
0.44 0.18 1.0 30, 45, 90 2.5, 5.0 
0.56 0.18 1.2 30, 45, 90 2.5, 5.0 
0.89 0.18 1.6 30, 45, 90 2.5, 5.0 
1.67 0.18 2.0 30, 45, 90 2.5, 5.0 
2.22 0.18 2.4 30, 45, 90 2.5, 5.0 
3.33 0.18 3.1 30, 45, 90 2.5, 5.0 

Total number of tests: 120 

Measurement Equipment 

In this study, the ultrasonic GREYLINE AVFM 5.0 sensor was mounted on the invert of the 
flume to measure the flow rate, flow velocity, and water surface elevation in the flume. The sensor 
mounts on the bottom of a channel with a stainless-steel mounting bracket and a single screw into 
the bottom of the channel. This device uses a submerged ultrasonic sensor to measure the velocity, 
flow rate, and water surface elevation. The sensor is completely sealed with no orifices or ports, and 
resists fouling, corrosion, and abrasion. The AVFM 5.0 can measure forward flow velocity up to 6 
m/s (20 ft/s) and reverse flow up to 1.5 m/s (5 ft/s). The submerged velocity/level sensor measures 
flow in partially full and surcharged pipes and channels with pressure up to 68.95 kPa (10 psi) [10].  
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2.2. Numerical Modeling 

Conventional 1D numerical modeling treats the junctions by means of internal boundary 
conditions for the shallow water equations by applying mass continuity combined with a simplified 
momentum or energy conservation at the junctions [1,4,8,11–14]. It is readily apparent that such 
boundary conditions and simplified mathematical models are incapable of fully describing the highly 
turbulent 3D flow features present at a CHZ. The difficulty of adequately describing this flow with 
simplified mathematical models leads to the necessity of using a 3D computational fluid dynamics 
(CFD) code to visualize and understand the flow conditions in a CHZ. Numerical modeling is a less 
time-consuming and expensive way to obtain the various flow parameters needed for engineering 
design. Once a 3D model is validated, numerical experiments can be designed and conducted for the 
systematic examination of the standalone effects of different primary controls upon the flow structure 
development. A 3D CFD model solves the full 3D form of the Navier–Stokes equations, with 
(Reynolds-averaging (RANS)) or without temporal averaging (direct numerical simulation (DNS)); 
hence, it is capable of adequately reproducing the evolving primary and secondary flow patterns and 
turbulent flow structures. 

Computer-based simulations are now the dominant tool for understanding and visualizing 
turbulent flow structures [15]. However, controlled flow visualization experiments are still necessary 
to direct, develop, and validate the numerical simulations now dominant in the field [16]. 
Considering the large number of scenarios and limitations in setting up different laboratory 
experiments, a numerical model (FLOW-3D) was used in this study to simulate the flow topology for 
different channel configurations, lateral inlet pipe sizes and angles, main channel flow, and lateral 
flow conditions. FLOW-3D is a general-purpose computational fluid dynamics (CFD) software. It 
employs specially developed numerical techniques to solve motion equations for fluids to obtain 
transient, three-dimensional solutions to multi-scale, multi-physics flow problems. An array of 
physical and numerical options allows users to apply FLOW-3D to a wide variety of fluid flow 
phenomena [17]. 

In this study, the simulations were performed on: Three different channel widths of 3.05 (10’), 
7.62 (25’), 15.24 m (50’); with three initial water heights in the channel of 1.22 (4’), 2.13 (7’), 3.05 m 
(10’); three junction angles of 30, 45, 90°; and three inlet pipe diameters of 0.46 (1.5’), 0.91 (3’), 1.52 m 
(5’); with lateral flow to main channel flow ratios of 2.5%, 5.0%, 10% (based on the flow rates in the 
3.05 m (10’) channel); and, three Froude numbers of 0.8, 1.2, 2.0. In all scenarios, the channel bed slope 
was 0.05%. Table 2 summarizes the simulation scenarios. It should be noted that the lateral flow 
proportions in the 7.62 (25’) and 15.24 m (50’) channels were based on the 3.05 m (10’) channel, since 
2.5%, 5.0%, and 10% of the flow rate in the 7.62 (25’) and 15.24 m (50’) channels would result in very 
high and uncommon velocities in the lateral inlet pipe. According to the Hydrologic Criteria and 
Drainage Design Manual (HCDDM) of the Clark County Regional Flood Control District (CCRFCD), 
the maximum flow velocity in a lateral drainage pipe into a flood control channel should not exceed 
10.67 m/s (35 ft/s) [18]. For this reason, the lateral pipe flow proportions in all scenarios in this study 
were based on the 3.05 m (10’) channel. However, pipe flow velocities up to 15.24 m/s (50 ft/s) were 
considered, regarding the fact that higher flow velocities may occur under critical conditions. 

Table 2. Simulation scenarios. 

Width 
(m) 

Initial Water 
Height (m) Fr (-)  

Inlet Pipe 
Diameter (m) 

Junction Angle 
(Degree) 

Lateral Flow 
Proportion (%) 

3.05 (10’) 

1.22 (4’) 
0.8, 1.2, 

2.0 
0.46 (1.5’), 0.91 (3’) 30, 45, 90 2.5, 5, 10 

2.13 (7’) 
0.8, 1.2, 

2.0 
0.46 (1.5’), 0.91 (3’), 

1.52 (5’) 
30, 45, 90 2.5, 5, 10 

3.05 (10’) 
0.8, 1.2, 

2.0 
0.46 (1.5’), 0.91 (3’), 

1.52 (5’) 
30, 45, 90 2.5, 5, 10 

7.62 (25’) 1.22 (4’) 
0.8, 1.2, 

2.0 
0.46 (1.5’), 0.91 (3’) 30, 45, 90 2.5, 5, 10 
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2.13 (7’) 
0.8, 1.2, 

2.0 
0.46 (1.5’), 0.91 (3’), 

1.52 (5’) 
30, 45, 90 2.5, 5, 10 

3.05 (10’) 
0.8, 1.2, 

2.0 
0.46 (1.5’), 0.91 (3’), 

1.52 (5’) 
30, 45, 90 2.5, 5, 10 

15.24 
(50’) 

1.22 (4’) 
0.8, 1.2, 

2.0 
0.46 (1.5’), 0.91 (3’) 30, 45, 90 2.5, 5, 10 

2.13 (7’) 
0.8, 1.2, 

2.0 
0.46 (1.5’), 0.91 (3’), 

1.52 (5’) 
30, 45, 90 2.5, 5, 10 

3.05 (10’) 
0.8, 1.2, 

2.0 
0.46 (1.5’), 0.91 (3’), 

1.52 (5’) 
30, 45, 90 2.5, 5, 10 

Total number of simulations: 648 

Governing Equations 

The governing equations on fluid flow are mass continuity and momentum equations. The 
general mass continuity equation is: 𝑉 𝜕𝜌𝜕𝑡 + 𝜕𝜕𝑥 (𝜌𝑢𝐴 ) + 𝑅 𝜕𝜕𝑦 𝜌𝑣𝐴 + 𝜕𝜕𝑧 (𝜌𝑤𝐴 ) + 𝜉 𝜌𝑢𝐴𝑥 = 𝑅 + 𝑅  (1) 

where 𝑉  is the fractional volume open to flow, 𝜌 is the fluid density, 𝑅  is a turbulent diffusion 
term, and 𝑅  is a mass source. The velocity components (𝑢, 𝑣, 𝑤) are in the coordinate directions 
(𝑥, 𝑦, 𝑧) or (𝑟, 𝑅 , 𝑧). 𝐴  is the fractional area open to flow in the x-direction, while 𝐴  and 𝐴  are 
similar area fractions for flow in the 𝑦 and 𝑧 directions, respectively. The coefficient 𝑅 depends on 
the choice of the coordinate system. When Cartesian coordinates are used, 𝑅 is set to unity and 𝜉 is 
set to zero. The first term on the right side of Equation (1), is a turbulent diffusion term: 𝑅 = 𝜕𝜕𝑥 𝑣 𝐴 𝜕𝜌𝜕𝑥 + 𝑅 𝜕𝜕𝑦 𝑣 𝐴 𝑅 𝜕𝜌𝜕𝑦 + 𝜕𝜕𝑧 𝑣 𝐴 𝜕𝜌𝜕𝑧 + 𝜉 𝑣 𝐴𝑥 𝜕𝜌𝜕𝑥 (2) 

where the coefficient 𝑣  is equal to 𝑆 , in which 𝜇 is the coefficient of momentum diffusion (i.e., 

the viscosity); and 𝑆  is a constant, whose reciprocal is usually referred to as the turbulent Schmidt 
number. This type of mass diffusion only makes sense for turbulent mixing processes in fluids having 
a non-uniform density. The last term, 𝑅 , on the right side of Equation (1) is a density source term 
that can be used, for example, to model mass injection through porous obstacle surfaces. 
Compressible flow problems require the solution of the full density transport equation, as stated in 
Equation (1). For incompressible fluids, 𝜌  is a constant, and Equation (1) reduces to the 
incompressibility condition: 𝜕𝜕𝑥 (𝑢𝐴 ) + 𝑅 𝜕𝜕𝑦 𝑣𝐴 + 𝜕𝜕𝑧 (𝑤𝐴 ) + 𝜉 𝑢𝐴𝑥 = 𝑅𝜌  (3) 

For problems in which the propagation of acoustic pressure waves is important, but the fluid 
may otherwise be treated as incompressible, the density time derivative is approximated by: 𝜕𝜌𝜕𝑡 ≈ 1𝑐 𝜕𝑝𝜕𝑡   

where 𝑐  is the square of the sound speed, and 𝑝 is the pressure. This approximation is valid in the 
range < 0.1. With this approximation, the modified continuity equation then becomes: 𝑉𝜌𝑐 𝜕𝑝𝜕𝑡 + 𝜕𝑢𝐴𝜕𝑥 + 𝑅 𝜕𝑣𝐴𝜕𝑦 + 𝜕𝑤𝐴𝜕𝑧 + 𝜉 𝑢𝐴𝑥 = 𝑅𝜌  (4) 
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Momentum Equations 

The equations of motion for the fluid velocity components (𝑢, 𝑣, 𝑤) in the three coordinate 
directions are Navier–Stokes equations with some additional terms: 𝜕𝑢𝜕𝑡 + 1𝑉 𝑢𝐴 𝜕𝑢𝜕𝑥 + 𝑣𝐴 𝑅 𝜕𝑢𝜕𝑦 + 𝑤𝐴 𝜕𝑢𝜕𝑧 − 𝜉 𝐴 𝑣𝑥𝑉= − 1𝜌 𝜕𝑝𝜕𝑥 + 𝐺 + 𝑓 − 𝑏 − 𝑅𝜌𝑉 (𝑢 − 𝑢 − 𝛿𝑢 ) 𝜕𝑣𝜕𝑡 + 1𝑉 𝑢𝐴 𝜕𝑣𝜕𝑥 + 𝑣𝐴 𝑅 𝜕𝑣𝜕𝑦 + 𝑤𝐴 𝜕𝑣𝜕𝑧 + 𝜉 𝐴 𝑢𝑣𝑥𝑉= − 1𝜌 (𝑅 𝜕𝑝𝜕𝑦) + 𝐺 + 𝑓 − 𝑏 − 𝑅𝜌𝑉 (𝑣 − 𝑣 − 𝛿𝑣 ) 𝜕𝑤𝜕𝑡 + 1𝑉 𝑢𝐴 𝜕𝑤𝜕𝑥 + 𝑣𝐴 𝑅 𝜕𝑤𝜕𝑦 + 𝑤𝐴 𝜕𝑤𝜕𝑧= − 1𝜌 𝜕𝑝𝜕𝑧 + 𝐺 + 𝑓 − 𝑏 − 𝑅𝜌𝑉 (𝑤 − 𝑤 − 𝛿𝑤 ) 

(5) 

In these equations, (𝐺 , 𝐺 , 𝐺 )  are body accelerations, (𝑓 , 𝑓 , 𝑓 )  are viscous accelerations, (𝑏 , 𝑏 , 𝑏 ) are flow losses in porous media or across porous baffle plates, and the final terms account 
for the injection of mass at a source represented by a geometry component. The term U =(𝑢 , 𝑣 , 𝑤 ) in Equation (5) is the velocity of the source component, which will generally be non-zero 
for a mass source in a general moving objects model. The term U = (𝑢 , 𝑣 , 𝑤 ) is the velocity of the 
fluid at the surface of the source, relative to the source itself. It is computed in each control volume 
as: U = 𝑑𝑄𝜌𝑄𝑑𝐴 𝑛 (6) 

where 𝑑𝑄 is the mass flow rate, 𝜌𝑄 is the fluid source density, 𝑑𝐴 is the area of the source surface 
in the cell, and 𝑛 is the outward normal to the surface. When 𝛿 = 0.0, in Equation (5), the source is 
of the stagnation pressure type, whereas if 𝛿 = 1.0, the source is of the static pressure type. For a 
variable dynamic viscosity 𝜇, the viscous accelerations are: 𝜌𝑉 𝑓 = 𝑤𝑠𝑥 − 𝜕𝜕𝑥 (𝐴 𝜏 ) + 𝑅 𝜕𝜕𝑦 𝐴 𝜏 + 𝜕𝜕𝑧 (𝐴 𝜏 ) + 𝜉𝑥 (𝐴 𝜏 − 𝐴 𝜏 )  𝜌𝑉 𝑓 = 𝑤𝑠𝑦 − 𝜕𝜕𝑥 (𝐴 𝜏 ) + 𝑅 𝜕𝜕𝑦 𝐴 𝜏 + 𝜕𝜕𝑧 𝐴 𝜏 + 𝜉𝑥 (𝐴 + 𝐴 )𝜏  

𝜌𝑉 𝑓 = 𝑤𝑠𝑧 − 𝜕𝜕𝑥 (𝐴 𝜏 ) + 𝑅 𝜕𝜕𝑦 𝐴 𝜏 + 𝜕𝜕𝑧 (𝐴 𝜏 ) + 𝜉𝑥 (𝐴 𝜏 )  

(7) 

where 𝜏 = −2𝜇 𝜕𝑢𝜕𝑥 − 13 (𝜕𝑢𝜕𝑥 + 𝑅 𝜕𝑣𝜕𝑦 + 𝜕𝑤𝜕𝑧 + 𝜉𝑢𝑥 )  (8) 

𝜏 = −2𝜇 𝑅 𝜕𝑣𝜕𝑦 + 𝜉 𝑢𝑥 − 13 (𝜕𝑢𝜕𝑥 + 𝑅 𝜕𝑣𝜕𝑦 + 𝜕𝑤𝜕𝑧 + 𝜉𝑢𝑥 )  (9) 

𝜏 = −2𝜇 𝜕𝑤𝜕𝑧 − 13 (𝜕𝑢𝜕𝑥 + 𝑅 𝜕𝑣𝜕𝑦 + 𝜕𝑤𝜕𝑧 + 𝜉𝑢𝑥 )  (10) 

𝜏 = −𝜇 𝜕𝑣𝜕𝑥 + 𝑅 𝜕𝑢𝜕𝑦 − 𝜉𝑣𝑥  (11) 

𝜏 = −𝜇 𝜕𝑢𝜕𝑧 + 𝜕𝑤𝜕𝑥  (12) 

𝜏 = −𝜇 𝜕𝑣𝜕𝑧 + 𝑅 𝜕𝑤𝜕𝑦  (13) 

In the above expressions, the terms 𝑤𝑠𝑥, 𝑤𝑠𝑦, and 𝑤𝑠𝑧 are wall shear stresses. If these terms 
are omitted, there is no wall shear stress because the remaining terms contain the fractional flow areas 
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(𝐴 , 𝐴 , 𝐴 ), which vanish at the walls. The wall stresses are modeled by assuming a zero tangential 
velocity on the portion of any area closed to flow. Mesh and moving obstacle boundaries are an 
exception because they can be assigned non-zero tangential velocities. In this case, the allowed 
boundary motion corresponds to a rigid body translation of the boundary parallel to its surface. For 
turbulent flows, a law-of-the-wall velocity profile is assumed near the wall, which modifies the wall 
shear stress magnitude. 

Fluid Interfaces and Free-Surfaces 

Fluid configurations are defined in terms of a volume of fluid (VOF) function, 𝐹 (𝑥, 𝑦, 𝑧, 𝑡). This 
function represents the volume of fluid #1 per unit volume and satisfies the equation: 𝜕𝐹𝜕𝑡 + 1𝑉 𝜕𝜕𝑥 (𝐹𝐴 𝑢) + 𝑅 𝜕𝜕𝑦 𝐹𝐴 𝑣 + 𝜕𝜕𝑧 (𝐹𝐴 𝑤) + 𝜉 𝐹𝐴 𝑢𝑥 = 𝐹 + 𝐹  (14) 

where 𝐹 = 1𝑉 𝜕𝜕𝑥 𝑣 𝐴 𝜕𝐹𝜕𝑥 + 𝑅 𝜕𝜕𝑥 𝑣 𝐴 𝑅 𝜕𝐹𝜕𝑦 + 𝜕𝜕𝑧 𝑣 𝐴 𝜕𝐹𝜕𝑧 + 𝜉 𝑣 𝐴 𝐹𝑥  (15) 

The diffusion coefficient is defined as 𝑣 = 𝑐  , where 𝑐  is a constant whose reciprocal is 

sometimes referred to as a turbulent Schmidt number. This diffusion term only makes sense for the 
turbulent mixing of two fluids whose distributions are defined by the F function. The term 𝐹  
corresponds to the density source 𝑅  in Equation (1); 𝐹  is the time change rate of the fluid #1 
volume fraction, associated with the mass source for fluid #1. The interpretation of 𝐹 depends on the 
type of problem being solved. Incompressible problems must involve either a single fluid with a free-
surface or two fluids and no free-surfaces. For a single fluid, F represents the volume fraction 
occupied by the fluid. Thus, fluid exists where F = 1, and void regions correspond to locations where 
F = 0. “Voids” are regions without fluid mass that have a uniform pressure assigned to them. 
Physically, they represent regions filled with a vapor or gas, whose density is insignificant with 
respect to the fluid density. Two-fluid problems may be composed of either two incompressible 
fluids, or one incompressible and one compressible fluid. 𝐹 represents the volume fraction of the 
incompressible fluid component in either case, which is referred to as fluid #1. The complementary 
region, with the volume fraction 1 − 𝐹, represents fluid #2, and may have either a constant density, 
or its density may be computed from the compressible fluid equation-of-state. More details regarding 
FLOW-3D governing equations can be found in the FLOW-3D user’s manual [17]. 

3. Results and Discussion 

3.1. Flume Test Results 

3.1.1. Water Height Measurements 

Changes in flow proportions and junction angles resulted in measurable changes in the flow 
pattern. Figures 7–9 provide examples of water height measurements in the wide channel 
configuration, with and without lateral flow in a 90° junction, which were used to calculate the 
maximum water height ratios in the flume. Other flume test results are available in Appendix A. 

According to Figure 7, since the flow rates used for all scenarios were almost similar, in cases 
where the flow velocity was higher, the water height was lower. For instance, the water height for 
the Fr = 0.8 scenario was the highest, while for the Fr = 3.1, it was the lowest. Higher fluctuations were 
observed at the upstream of the flume in higher Froude numbers. This was due to the angled plate 
that was installed at the entrance of the flume (see Figure 4) to narrow the channel, which caused the 
formation of waves. However, the impacts diminished further downstream of the flume. 
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Figure 7. Water heights in the wide channel, without lateral flow. 

Figure 8 shows that as the lateral flow entered the channel, water heights in all scenarios were 
impacted either upstream or downstream of the pipe. The results showed that for Fr = 0.8, 1.0, and 
1.2, the maximum water height occurred upstream of the pipe, while for Fr = 1.6, 2.0, 2.4, and 3.1, the 
maximum water height occurred downstream of the pipe. This was because the flow momentum was 
higher in the higher Froude numbers, which pushed the jet of water through the pipe further 
downstream. High peaks in the flume’s entrance should be neglected as the highest water heights, 
since their formation was due to the angled wall installed upstream of the flume, which created local 
waves. 

 
Figure 8. Water heights in the wide channel, with 2.5% lateral flow. 

Furthermore, comparing Figures 8 and 9, as the lateral flow proportion increased, water height 
peaks increased as well. According to Figure 9, the water height peak for Fr = 0.8, 1.0, 1.2, and 1.6 
occurred upstream of the pipe, while for Fr = 2.0, 2.4, and 3.1, it occurred downstream of the pipe. 
Compared with the 2.5% lateral flow, more water height peaks were observed upstream of the pipe.  
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Figure 9. Water heights in the wide channel, with 5.0% lateral flow. 

3.1.2. Water Height Ratios 

Experimental test results were used to calculate the maximum water height ratios in the channel, 
by dividing the maximum water height in the channel with lateral flow, by the water height in the 
channel without lateral flow. In Figures 10–15, the maximum water height ratios for both wide and 
narrow channels are presented. Moreover, Tables 3–8 present maximum water height ratios, along 
with the flow rate and velocity in the flume and the pipe for each scenario. In the wide channel, the 
flow rate in the flume was maintained at the maximum value that could be achieved in the lab, but 
different flow rates were used in the narrow channel. For both channel configurations, to achieve 
certain flow velocities, and consequently, certain Froude numbers in the flume, the flume angle was 
adjusted. 

90° Junction 

Table 3. Experimental results for the 90° junction in the wide channel. 

Fr 
(-) 

Q Flume 
(m3/s) 

V Flume 
(m/s) 

θ 
Junc. 
(Deg.) 

2.5% Lateral Flow 5% Lateral Flow 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H0 q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H0 

0.8 0.18 1.37 90 0.0045 2.23 1.05 0.0091 4.45 1.1 
1 0.18 1.55 90 0.0045 2.23 1.16 0.0091 4.45 1.26 

1.2 0.18 1.65 90 0.0045 2.23 1.46 0.0091 4.45 1.63 
1.6 0.18 1.86 90 0.0045 2.23 1.29 0.0091 4.45 1.57 
2 0.18 2.10 90 0.0045 2.23 1.22 0.0091 4.45 1.74 

Table 4. Experimental results for the 90° junction in the narrow channel. 

Fr 
(-) 

Q 
Flume
(m3/s) 

V 
Flume
(m/s) 

θ 
Junc. 
(deg.) 

2.5% Lateral Flow 5% Lateral Flow 7.5% Lateral Flow 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H0 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H0 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H
0 

0.72 0.1322 1.16 90 0.0034 1.65 1.14 0.0065 3.26 1.17 0.0099 4.91 1.20 
0.95 0.1158 1.34 90 0.0028 1.43 1.30 0.0057 2.87 1.40 0.0088 4.30 1.48 
1.45 0.1368 1.89 90 0.0034 1.68 1.12 0.0068 3.38 1.58 0.0102 5.06 1.73 
1.74 0.1385 2.13 90 0.0034 1.71 1.13 0.0068 3.41 1.29 0.0105 5.12 1.71 
2.01 0.1399 2.35 90 0.0034 1.74 1.16 0.0071 3.44 1.32 0.0105 5.18 1.26 
2.32 0.1294 2.53 90 0.0031 1.58 1.24 0.0065 3.20 1.29 0.0096 4.79 1.53 
2.8 0.1322 2.87 90 0.0034 1.65 1.20 0.0065 3.26 1.60 0.0099 4.91 1.87 
3.27 0.1280 3.17 90 0.0031 1.58 1.29 0.0065 3.17 1.86 0.0096 4.75 2.50 
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According to Figure 10, the maximum water height ratios in the 5% lateral flow were higher 
than in the 2.5%. Moreover, in the 2.5% case, the maximum ratio occurred for Fr = 1.2, and for higher 
Froude numbers, the water height peak decreased. This was because the water jet through the pipe 
could reach the outer wall of the flume, and the water height peak was created by the combined 
effects of splashing, along with the incoming flow from the flume upstream. As the Froude number 
increased, the jet was deflected and could not reach the outer wall of the flume to create flow 
splashing. For Froude numbers smaller than 1.2, the water height in the channel was higher, 
compared with other Froude numbers, and the water height around the pipe was less impacted by 
the lateral flow through the submerged pipe. This resulted in lower maximum water height ratios in 
the channel. 

 
Figure 10. Maximum water height ratios in a 90° junction (wide channel). 

Similarly, for the 5% lateral flow, in Fr = 1.2, the maximum water height ratio increased 
compared with the smaller Froude numbers. However, the maximum ratio occurred for Fr = 2. This 
can be justified by the fact that as the water height for similar flow rates is lower for higher Froude 
numbers, and as the 5% lateral flow jet is strong enough to create a blockage in the water path, this 
blockage could cause a hydraulic jump that increases the water height in the confluence. 

In the narrow channel (Figure 11), similar to the wide channel (Figure 10), as the lateral flow 
proportion increased, maximum water height ratios increased in the flume as well. In the 2.5% lateral 
flow case, the maximum water height ratio occurred for Fr = 0.95, but for 5% and 7.5% lateral flow 
proportions, the maximum occurred for Fr = 1.45. 

 
Figure 11. Maximum water height ratios in a 90° junction (narrow channel). 
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45° Junction 

Table 5. Experimental results for the 45° junction in the wide channel. 

Fr 
(-) 

Q Flume 
(m3/s) 

V Flume 
(m/s) 

θ 
Junc. 
(Deg.) 

2.5% Lateral Flow 5% Lateral Flow 
q Pipe 
(m3/s) 

v Pipe 
(m/s) H/H0 q Pipe 

(m3/s) 
v Pipe 
(m/s) H/H0 

0.8 0.18 1.37 45 0.0045 2.23 1.03 0.0975 4.45 1.06 
1 0.18 1.55 45 0.0045 2.23 1.14 0.0975 4.45 1.14 

1.2 0.18 1.65 45 0.0045 2.23 1.16 0.0975 4.45 1.2 
1.6 0.18 1.86 45 0.0045 2.23 1.19 0.0975 4.45 1.3 
2 0.18 2.10 45 0.0045 2.23 1.22 0.0975 4.45 1.28 

Table 6. Experimental results for the 45° junction in the narrow channel. 

Fr 
(-) 

Q 
Flume 
(m3/s) 

V 
Flume 
(m/s) 

θ 
Junc. 

(Deg.) 

2.5% Lateral Flow 5% Lateral Flow 7.5% Lateral Flow 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H
0 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H0 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H
0 

0.72 0.1322 1.16 45 0.0034 1.65 1.12 0.0065 3.26 1.13 0.0099 4.91 1.13 
0.95 0.1158 1.34 45 0.0028 1.43 1.16 0.0057 2.87 1.16 0.0088 4.30 1.15 
1.45 0.1368 1.89 45 0.0034 1.68 1.04 0.0068 3.38 1.16 0.0102 5.06 1.08 
1.74 0.1385 2.13 45 0.0034 1.71 1.19 0.0068 3.41 1.13 0.0105 5.12 1.17 
2.01 0.1399 2.35 45 0.0034 1.74 1.11 0.0071 3.44 1.16 0.0105 5.18 1.21 
2.32 0.1294 2.53 45 0.0031 1.58 1.12 0.0065 3.20 1.12 0.0096 4.79 1.24 
2.8 0.1322 2.87 45 0.0034 1.65 1.40 0.0065 3.26 1.33 0.0099 4.91 1.53 
3.27 0.1280 3.17 45 0.0031 1.58 1.36 0.0065 3.17 1.29 0.0096 4.75 1.36 

In the 45° junction, the results show that similar to the 90° junction, higher lateral flows 
correspond to higher maximum water height ratios in the flume. According to Figure 12, in the wide 
channel, for the 2.5% lateral flow, the maximum water height ratio occurred for Fr = 2, while for the 
5% lateral flow, the maximum occurred for Fr = 1.6. 

 
Figure 12. Maximum water height ratios in a 45° junction (wide channel). 

In the narrow channel, and for the 45° junction (Figure 13), when the water was sub-critical in 
the channel, the maximum water height ratios were almost the same for all scenarios. For super-
critical flow conditions, the maximum values did not show a distinct pattern. However, the 
maximum water height ratios for 2.5%, 5%, and 7.5% lateral flow proportions occurred at Fr = 1.74, 
2.01, and 2.01, respectively. 
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Figure 13. Maximum water height ratios in a 45° junction (narrow channel). 

30° Junction 

Table 7. Experimental results for the 30° junction in the wide channel. 

Fr 
(-) 

Q Flume 
(m3/s) 

V Flume 
(m/s) 

θ Junc. 
(Deg.) 

2.5% Lateral Flow 5% Lateral Flow 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H0 q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H
0 

0.8 0.18 1.37 30 0.0045 2.23 1.03 0.009 4.45 1.03 
1 0.18 1.55 30 0.0045 2.23 1.10 0.009 4.45 1.10 

1.2 0.18 1.65 30 0.0045 2.23 1.12 0.009 4.45 1.12 
1.6 0.18 1.86 30 0.0045 2.23 1.10 0.009 4.45 1.10 
2 0.18 2.10 30 0.0045 2.23 1.11 0.009 4.45 1.11 

Table 8. Experimental results for the 30° junction in the narrow channel. 

Fr 
(-) 

Q 
Flume 
(m3/s) 

V 
Flume 
(m/s) 

θ 
Junc. 

(Deg.) 

2.5% Lateral Flow 5% Lateral Flow 7.5% Lateral Flow 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H
0 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H0 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

H/H
0 

0.72 0.1322 1.16 30 0.0034 1.65 1.13 0.0065 3.26 1.13 0.0099 4.91 1.13 
0.95 0.1158 1.34 30 0.0028 1.43 1.13 0.0057 2.87 1.18 0.0088 4.30 1.18 
1.45 0.1368 1.89 30 0.0034 1.68 1.12 0.0068 3.38 1.17 0.0102 5.06 1.08 
1.74 0.1385 2.13 30 0.0034 1.71 1.19 0.0068 3.41 1.19 0.0105 5.12 1.24 
2.01 0.1399 2.35 30 0.0034 1.74 1.16 0.0071 3.44 1.21 0.0105 5.18 1.21 
2.32 0.1294 2.53 30 0.0031 1.58 1.29 0.0065 3.20 1.29 0.0096 4.79 1.29 
2.8 0.1322 2.87 30 0.0034 1.65 1.40 0.0065 3.26 1.33 0.0099 4.91 1.40 
3.27 0.1280 3.17 30 0.0031 1.58 1.20 0.0065 3.17 1.29 0.0096 4.75 1.27 

In the 30° junction, and the wide channel (Figure 14), for both 2.5% and 5% lateral flow 
proportions, the maximum water height ratio occurred for Fr = 1.2. In the narrow channel (Figure 15), 
the maximum water height ratios for 2.5%, 5%, and 7.5% lateral flow proportions occurred at Fr = 
1.74, 2.01, and 1.74, respectively. 
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Figure 14. Maximum water height ratios in a 30° junction (wide channel). 

 
Figure 15. Maximum water height ratios in a 30° junction (narrow channel). 

Based on the results for the 90°, 45°, and 30° junctions, both in the wide and narrow channel 
configurations, it can be concluded that, as the lateral pipe angle and lateral flow proportion increase, 
the maximum water height ratios in the channel also increase. 

3.2. Numerical Model Setup 

3.2.1. Geometry 

Geometry is constructed in FLOW-3D by assembling solid geometric objects to define the flow 
region for a simulation. The flow geometry is then embedded in the computational grid by the 
preprocessor using a technique called FAVORTM, an acronym for fractional area/volume obstacle 
representation. This method computes open area fractions on the cell faces, along with the open 
volume fraction, and reconstructs the geometry based on these parameters. This approach offers a 
simple and accurate way to represent complex surfaces in the domain without requiring a body-fitted 
grid. 

Figure 16 shows a 3D view of the channel and its components, modeled in FLOW-3D. A 
roughness height (absolute roughness) of 0.001 m was assigned to all components, as the absolute 
roughness of ordinary concrete. 
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Figure 16. 3D view of the channel components and mesh planes. 

3.2.2. Meshing 

FLOW-3D uses a structured mesh that may be defined in either a cartesian or cylindrical 
coordinate system. It is possible to define multiple mesh blocks (multi-block gridding) to create more 
efficient meshes when modeling complex flow domains. In this study, finer grids were used near the 
confluence, and coarser grids were used further away from the junction, where the influence of the 
confluence diminishes (Figure 17). This kind of grid design has the potential to capture the near 
confluence flow behavior efficiently, while reducing computation cost. Table 9 presents the grid size 
for each mesh block. 

 
Figure 17. Meshing the channel, using four different grid sizes. 

Table 9. Grid sizes in each mesh block in the channel. 

Mesh Block Grid Size (cm) 
1 2 
2 1.5 
3 1 

4 (Pipe) 0.7 

3.2.3. Favor 

FAVORTM is a very powerful method for incorporating geometry effects into the governing 
equations, but like all discrete methods, it is affected by the resolution of the computational grid. This 
is because the preprocessor generates area fractions for each cell face in the grid by determining which 
corners of the face are inside of a defined geometry. If all four corners of a cell face are inside the 
geometry, then the entire face is defined to be within the geometry. Similarly, if all corners lie outside, 
then the entire face is assumed to be outside the geometry. When some face corners are inside a 
geometry and some are outside, the intersection of the geometry with face edges is computed. Area 
fractions are then computed from these intersection points, assuming straight-line connections 
between the intersection points within the face. The straight-line assumption introduces a small error 
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in the fractional area when the geometry boundary is curved inside the cell. The approximation is 
consistent with the other assumptions in the equation development, and improves as the grid 
resolution is refined [17]. 

Figure 18 shows a 3D view of the favored channel. According to the figure, all components are 
properly captured in the mesh space. Moreover, Figure 19 shows how the pipe was modeled as a 
hole in a pipe complement attached to the inner wall of the flume, along with its favored view for 45° 
and 30° junctions. 

 
Figure 18. 3D favored view of the channel. 

  

(a) (b) 

  
(c) (d) 

Figure 19. (a) and (c): Pipe defined as a hole that passes through the channel wall and the pipe 
complement; (b) and (d): Favored view of the lateral inlet pipe. 

3.2.4. Boundary Conditions 

The equations governing the motion of fluid flow can be categorized as initial-boundary value 
problems, meaning that the solution must be known at the initial time and boundaries to be found. 
This paradox is managed by assuming the solution at the boundaries (setting the boundary 
conditions) and initial time (initial conditions), and using these assumed values to solve the 
governing PDE inside of the domain. This implies that the solution to the problem is fundamentally 
defined by what is assumed at the boundaries. Therefore, it is quite important that the solution 
assumed at the boundary is a good approximation at this location. 

Figure 20 shows the boundary conditions on each mesh block face for the entire channel volume. 
The boundary conditions on the inner and outer walls, as well as and the channel bottom, were 
“wall.” The boundary condition at the top of each mesh block was “symmetry.” At the channel 
entrance, between the mesh blocks, and at the end of the channel, the boundary conditions were 
“volume flow rate,” “grid overlay,” and “outflow,” respectively. 
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The wall boundary condition applies the no-slip condition at the boundary, as well as a zero-
velocity condition normal to the boundary. The symmetry boundary condition applies a zero-
gradient condition at the boundary, as well as a zero-velocity condition normal to the boundary. The 
volume flow rate boundary condition applies the specified flow rate at the boundary. The grid 
overlay boundary condition applies the solution from the restart source simulation, as a boundary 
condition in a restart simulation. Finally, the outflow boundary condition uses a Sommerfeld 
radiation condition to dynamically estimate the conditions at the boundary. 

 
Figure 20. Boundary conditions in the simulated channel. 

3.2.5. Initial Conditions 

Initial conditions define the starting conditions in a simulation. As mentioned in the mesh 
boundary conditions, the initial state of the solution for transient fluid flow problems must be known 
in order to find a solution. Further, in a manner similar to what is done with boundary conditions, 
the initial conditions are assumed, approximating the true state at time t = 0. The accuracy of the 
initial conditions is somewhat less important than that of the boundary conditions because their effect 
is reduced as time progresses. Because of this effect, it is common to define the initial fluid geometry 
with reasonable accuracy, but to assume that the pressure and velocity fields are uniform. This 
typically produces good results within a relatively short time, where the solution is affected by 
physical initial conditions.  

In this study, the initial conditions were: An empty channel at time zero; a certain water height 
and velocity upstream of the channel, depending on the desired Froude number; and a certain flow 
rate through the pipe, depending on the desired flow proportion relative to the flow rate in the 
channel. 

3.2.6. Other Considerations in Setting up the Model 

In setting up the model in FLOW-3D, the reference pressure was set to 1 atm; the reference 
temperature was 20 °C; the fluid used was water at 20 °C; and the finish time for most of the 
simulations was 20 s unless longer simulation times were required for the flow in the channel to reach 
steady-state conditions. Moreover, the renormalized group (RNG) model was used as the turbulence 
model. 

3.2.7. Convergence and Validation 

Fluid flow problems are highly nonlinear. Only through imposing restrictive conditions can the 
governing Navier–Stokes equations be solved analytically. As a result, CFD solutions must be 
calculated iteratively. By their nature, iterative solution methods require a convergence criterion that 
is used to decide when the iterations can be terminated. In FLOW-3D, all relaxation and convergence 
criteria are selected by the program itself. Further, all selections are adjusted dynamically by the 
program to follow the development of the solution. One such case would be the use of a very large 
convergence criteria and no over-relaxation, as a way to reach steady-state conditions with less CPU 
time. Figures 21 and 22 show that by the end of the simulation time (for one of the simulated 
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scenarios, as an example), the solution converged and the time-step size was within the stability 
limits, respectively. 

 
Figure 21. The convergence of the numerical modeling solution. 

 
Figure 22. Time-step information of the simulation. 

Using CFD allows researchers to understand flow behavior and quantify important flow 
parameters, given that the CFD solver has been properly validated using observations. Once 
validated, the 3D numerical model can be used to investigate the flow characteristics at the junction. 

The results of three experiments with different Froude numbers (0.8, 2.0, 3.1) were used to 
validate the FLOW-3D model. These three cases were selected to cover both the sub-critical and 
super-critical conditions in the flume. The flume wall was made of plexiglass sheets attached at 
certain lengths (1.03 m), making a total of 13 columns. The simulation and experimental results of 
water heights at each column are presented in Figures 23–25.  

Using the Nash–Sutcliffe efficiency function (NS) (Equation (16)), the goodness of fit between 
the observed and simulated values were evaluated and are presented in Table 10. In Equation (16), 
“H” is a variable, such as the flow surface elevation; “m” and “s” stand for measured and simulated; 
the bar indicates the average; and “i” is the ith measured or simulated value. The NS function has a 
range of −∞ to 1. NS = 1 corresponds to a perfect match of simulated values to the observed data. The 
values between 0 and 1 indicate that the simulated and observed values are in close agreement, 
whereas values less than 0 show that the model has no predictive power [19,20]. 

Good agreement was found between predicted water surface levels and the experimental 
measurements across the stream, throughout the flume, as shown in Figures 23–25. The high NS 
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values obtained indicated that the model was able to simulate flow profiles in an open channel with 
lateral flow, with high accuracy. The small differences between simulation and experimental results 
can be attributed to errors in reading water heights in the lab, due to flow turbulence and flume 
waves. NS = 1 −  ∑ |H − H |∑ H , − H  (16) 

 
Figure 23. Water heights in the flume and based on FLOW-3D results, for Fr = 0.8. 

 
Figure 24. Water heights in the flume and based on FLOW-3D results, for Fr = 2.0. 
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Figure 25. Water heights in the flume and based on FLOW-3D results, for Fr = 3.1. 

Table 10. FLOW-3D validation results. 

Froude Number Nash–Sutcliffe Efficiency 
0.8 0.87 
2.0 0.83 
3.1 0.85 

3.3. Simulation Results 

Surface Water Elevations and Conservative Design Curves 

The incoming tributary flow caused a rise of water surface elevation, and for sub-critical flow 
conditions, resulted in a back-water effect towards the upstream (Figure 26). Additionally, larger 
junction angles allowed the tributary flow to penetrate further into the confluence, which in some 
cases resulted in flow splashing on the outer wall of the channel (Figure 27). After the mixing between 
the tributary and mainstream, the confluence cross-sectional flow field gradually recovered to that of 
a normal open channel, at the downstream of the confluence. 

 
Figure 26. Back-water effect in a channel with sub-critical flow. 
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Figure 27. Splashing on the outer wall of a channel with super-critical flow and 90° junction angle. 

Among the 648 scenarios simulated, in 42 cases, as a result of the interaction between channel 
flow and lateral flow through the pipe, waves were formed in the channel, and in other cases the 
impact was local. Waves were not observed in 15.24 m (50’)-wide channels, since the channel flow 
momentum could overcome the pipe flow momentum, and the jet could not reach the outer wall. 
Among 42 cases that showed the formation of waves in 3.05 (10’) and 7.62 m (25’) channels, 30 cases 
occurred in 3.05 m (10’)-channels and 12 cases in 7.62 m (25’)-channels. Moreover, in 27 of the 42 
cases, the flow was sub-critical, and in the other 15, it was super-critical. These findings indicate that 
narrower channel and pipe confluences, with lower Froude numbers, are more prone to the formation 
of waves in the channels. 

The simulation results and conservative design curves for the three channel widths, and based 
on the Froude numbers of the flow in the channels, are presented in Figures 28–33. Detailed FLOW-
3D results are available in Appendix B. In the following figures, W is the channel width; H0 is the 
initial water height in the channel without lateral flow; H is the maximum water height in the channel 
with lateral flow; Q is the flow rate in the channel; V is the flow velocity in the channel; q is the flow 
rate in the pipe; v is the flow velocity in the pipe; and θ is the junction angle. As the two flows merged 
in the confluence, the flow rate and velocity in the channel and pipe were the two factors impacting 
the maximum water height in the channel. Accordingly, the momentum ratios of the channel and the 
pipe (   ( )( ) ), could be related to the H/H0, as shown in Figures 28, 30, and 32. 

 
Figure 28. Simulation results for Fr = 2 in the channel. 
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Figure 29. Conservative design curves for Fr = 2 in the channel. 

 
Figure 30. Simulation results for Fr = 1.2 in the channel. 
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Figure 31. Conservative design curves for Fr = 1.2 in the channel. 

 
Figure 32. Simulation results for Fr = 0.8 in the channel. 
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Figure 33. Conservative design curves for Fr = 0.8 in the channel. 

In all three charts, in Figures 28, 30, and 32, the results show that the highest H/H0 values were 
observed for W = 3.05 m (10’), and as the channel width increased to 7.62 (25’), and then to 15.24 m 
(50’), the points, representing the maximum water height ratios in the channel (H/H0), accumulated 
at the lower parts of the charts. The results indicate that   ( )( )  values of 500 and 1000 could be 

considered as critical numbers. Among almost all scenarios, in cases where the value of   ( )( )  

was greater than 500, the maximum increase in water height was 20%. Similarly, in cases where   ( )( )  was greater than 1000, the maximum increase in water height was 10%. Additionally, in 

cases where the   ( )( )  values were greater than 500, impacts on the channel flow were local, 

while wave impacts were observed in channels in smaller   ( )( )  ranges. 

The following design guidelines are conservative. The guidelines provide conservative designs 
for extreme flow conditions in the channel and the pipe. Accordingly, the designer needs to first 
establish the expected extreme flow conditions in the channel and the pipe. Then, using the guidelines 
with the expected extreme flow conditions in the channel and the pipe as functional design criteria, 
the design will accommodate these extreme flow conditions. The uncertainty resides in the estimation 
of the expected extreme flow conditions in the channel and the pipe and not in the design guidelines. 

Moreover, it should be mentioned that the presence of impurities such as sediments in water 
will impact the unit weight (density) of the water and the roughness of the materials impacts the 
momentum of the water. The design guidelines are based on the relative momentums of the flows in 
the channel and the pipe. Since the momentum is a function of the unit weight (density), the 
guidelines include the effect of the presence of impurities in water and the roughness of the materials. 

4. Conclusions and Recommendations 

This study utilized a hybrid experimental–numerical approach to investigate the flow topology 
in the confluence of rectangular open channels with submerged lateral drainage pipe discharges to 
develop design guidelines for flood control channel height. The scenarios covered a range of channel 
widths, flow rates, Froude numbers, junction angles, inlet pipe diameters, and lateral flows to main 
channel flow ratios. Clear water at 20 °C with no impurities was used both in the experiments and 
numerical modeling. 

The experimental results showed that as the junction angle and the lateral flow proportions 
increased, the maximum water height ratios in the channel also increased. Moreover, the numerical 
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modeling results showed that as the ratio of channel flow momentum to pipe flow momentum 
(   ( )( ) ) increased, H/H0 in the channel decreased. Additionally, narrower channel and pipe 

confluences, with lower Froude numbers, were found to be more prone to the formation of waves in 
the channel. 

The results indicated that the momentum ratios of 500 and 1000 could be considered as critical 
numbers. Among almost all scenarios, in the cases where the value of   ( )( )  was greater than 

500, the maximum increase in channel water height was 20%. Similarly, in cases where   ( )( )  

was greater than 1000, the maximum water height increase in the channel was 10%. Additionally, in 
cases where the   ( )( )  values were greater than 500, the impacts on water height changes in the 

channel were local (at the pipe), while channel wave impacts were observed in low momentum ratios. 
Furthermore, for the channel’s sub-critical and super-critical conditions, the waves propagated 
upstream and downstream of the channel, respectively.  

Based on the findings of this study, if junctions are to be constructed at angles larger than 30°, it 
is recommended that the momentum ratio between the channel and the pipe flow (   ( )( ) ) be 

greater than 500, to limit the impacts of the lateral drainage pipe flow to the main channel flow around 
the pipe (local); it is also recommended to limit the maximum increase in the water height to 20%. 

The design guidelines presented in this study are conservative, and they provide conservative 
designs for extreme flow conditions in the channel and the pipe. The designer has to first establish 
the expected extreme flow conditions in the channel and the pipe. Then, using the guidelines with 
the expected extreme flow conditions in the channel and the pipe, the design will accommodate these 
extreme flow conditions. The uncertainty resides in the estimation of the expected extreme flow 
conditions in the channel and the pipe and not in the design guidelines. 

For future extension of this research, it is recommended to study: (1) The impact of flow through 
submerged lateral pipes into other channel and pipe confluence configurations (e.g., trapezoidal and 
triangular channels), different pipe sizes, and junction angles; (2) Froude numbers and lateral flow 
proportions outside the range covered in this study; (3) water with debris and impurities, under 
different environmental conditions (e.g., in the presence of wind); (4) the penetration length of the jet 
through the pipe into the channel, and its impact on the flow characteristics and flow topology in the 
channel. 
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Appendix A 

In this section, the results of all experimental tests conducted in the flume are presented in 
Figures A1–A45. 
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Figure A1. Water height ratios in a 30° junction for Fr = 0.8 in the wide channel. 

 
Figure A2. Water height ratios in a 45° junction for Fr = 0.8 in the wide channel. 
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Figure A3. Water height ratios in a 90° junction for Fr = 0.8 in the wide channel. 

 
Figure A4. Water height ratios in a 30° junction for Fr = 1.0 in the wide channel. 

 
Figure A5. Water height ratios in a 45° junction for Fr = 1.0 in the wide channel. 
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Figure A6. Water height ratios in a 90° junction for Fr = 1.0 in the wide channel. 

 
Figure A7. Water height ratios in a 30° junction for Fr = 1.2 in the wide channel. 

 
Figure A8. Water height ratios in a 45° junction for Fr = 1.2 in the wide channel. 
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Figure A9. Water height ratios in a 90° junction for Fr = 1.2 in the wide channel. 

 
Figure A10. Water height ratios in a 30° junction for Fr = 1.6 in the wide channel. 

 
Figure A11. Water height ratios in a 45° junction for Fr = 1.6 in the wide channel. 
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Figure A12. Water height ratios in a 90° junction for Fr = 1.6 in the wide channel. 

 
Figure A13. Water height ratios in a 30° junction for Fr = 2.0 in the wide channel. 

 
Figure A14. Water height ratios in a 45° junction for Fr = 2.0 in the wide channel. 
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Figure A15. Water height ratios in a 90° junction for Fr = 2.0 in the wide channel. 

 
Figure A16. Water height ratios in a 30° junction for Fr = 2.4 in the wide channel. 

 
Figure A17. Water height ratios in a 45° junction for Fr = 2.4 in the wide channel. 
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Figure A18. Water height ratios in a 90° junction for Fr = 2.4 in the wide channel. 

 
Figure A19. Water height ratios in a 30° junction for Fr = 3.1 in the wide channel. 

 
Figure A20. Water height ratios in a 45° junction for Fr = 3.1 in the wide channel. 
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Figure A21. Water height ratios in a 90° junction for Fr = 3.1 in the wide channel. 

 
Figure A22. Water height ratios in a 30° junction for Fr = 0.72 in the narrow channel. 

 
Figure A23. Water height ratios in a 45° junction for Fr = 0.72 in the narrow channel. 
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Figure A24. Water height ratios in a 90° junction for Fr = 0.72 in the narrow channel. 

 
Figure A25. Water height ratios in a 30° junction for Fr = 0.95 in the narrow channel. 

 
Figure A26. Water height ratios in a 45° junction for Fr = 0.95 in the narrow channel. 
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Figure A27. Water height ratios in a 90° junction for Fr = 0.95 in the narrow channel. 

 
Figure A28. Water height ratios in a 30° junction for Fr = 1.45 in the narrow channel. 

 
Figure A29. Water height ratios in a 45° junction for Fr = 1.45 in the narrow channel. 
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Figure A30. Water height ratios in a 90° junction for Fr = 1.45 in the narrow channel. 

 
Figure A31. Water height ratios in a 30° junction for Fr = 1.74 in the narrow channel. 

 
Figure A32. Water height ratios in a 45° junction for Fr = 1.74 in the narrow channel. 
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Figure A33. Water height ratios in a 90° junction for Fr = 1.74 in the narrow channel. 

 
Figure A34. Water height ratios in a 30° junction for Fr = 2.01 in the narrow channel. 

 
Figure A35. Water height ratios in a 45° junction for Fr = 2.01 in the narrow channel. 
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Figure A36. Water height ratios in a 90° junction for Fr = 2.01 in the narrow channel. 

 
Figure A37. Water height ratios in a 30° junction for Fr = 2.32 in the narrow channel. 

 
Figure A38. Water height ratios in a 45° junction for Fr = 2.32 in the narrow channel. 
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Figure A39. Water height ratios in a 90° junction for Fr = 2.32 in the narrow channel. 

 
Figure A40. Water height ratios in a 30° junction for Fr = 2.80 in the narrow channel. 

 
Figure A41. Water height ratios in a 45° junction for Fr = 2.80 in the narrow channel. 
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Figure A42. Water height ratios in a 90° junction for Fr = 2.80 in the narrow channel. 
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Figure A45. Water height ratios in a 90° junction for Fr = 3.27 in the narrow channel. 

Appendix B 

In Tables A1–A9, detailed FLOW-3D simulation results are presented. The last column in each 
table shows whether the impact of the lateral flow on the main channel flow was local (L), or it created 
waves (W) that propagated upstream (for sub-critical flow condition in the channel (Fr = 0.8)) or 
downstream (for super-critical flow conditions in the channel (Fr = 1.2, 2)). 

Table A1. FLOW-3D simulation results for W = 3.05 m (10’) and Fr = 2. 

W 
(m) 

H0 
(m) Fr (-) 

Q 
Chan. 
(m3/s) 

V 
Chan. 
(m/s) 

D 
Pipe 
(m) 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

θ Junc. 
(deg.) 

𝐐𝐕 + 𝐪𝐯(𝐜𝐨𝐬 𝛉)𝐪𝐯(𝐬𝐢𝐧 𝛉)  
𝐇𝐇𝟎 Impact 

3.05 3.05 2 101.63 10.94 0.46 2.540 15.48 90 28.28 1.16 L 
3.05 3.05 2 101.63 10.94 0.46 2.540 15.48 45 40.99 1.12 L 
3.05 3.05 2 101.63 10.94 0.46 2.540 15.48 30 58.28 1.1 L 
3.05 3.05 2 101.63 10.94 0.91 10.163 15.48 90 7.07 1.76 L 
3.05 3.05 2 101.63 10.94 0.91 5.083 7.74 90 28.24 1.27 L 
3.05 3.05 2 101.63 10.94 0.91 2.540 3.87 90 113.10 1.17 L 
3.05 3.05 2 101.63 10.94 0.91 10.163 15.48 45 10.99 1.25 L 
3.05 3.05 2 101.63 10.94 0.91 5.083 7.74 45 40.94 1.2 L 
3.05 3.05 2 101.63 10.94 0.91 2.540 3.87 45 160.95 1.16 L 
3.05 3.05 2 101.63 10.94 0.91 10.163 15.48 30 15.86 1.17 L 
3.05 3.05 2 101.63 10.94 0.91 5.083 7.74 30 58.22 1.16 L 
3.05 3.05 2 101.63 10.94 0.91 2.540 3.87 30 227.94 1.15 L 
3.05 3.05 2 101.63 10.94 1.52 10.163 5.57 90 19.63 1.68 L 
3.05 3.05 2 101.63 10.94 1.52 5.083 2.79 90 78.46 1.29 L 
3.05 3.05 2 101.63 10.94 1.52 2.540 1.39 90 314.18 1.15 L 
3.05 3.05 2 101.63 10.94 1.52 10.163 5.57 45 28.75 1.35 L 
3.05 3.05 2 101.63 10.94 1.52 5.083 2.79 45 111.95 1.24 L 
3.05 3.05 2 101.63 10.94 1.52 2.540 1.39 45 445.31 1.15 L 
3.05 3.05 2 101.63 10.94 1.52 10.163 5.57 30 40.98 1.32 L 
3.05 3.05 2 101.63 10.94 1.52 5.083 2.79 30 158.64 1.23 L 
3.05 3.05 2 101.63 10.94 1.52 2.540 1.39 30 630.08 1.15 L 
3.05 2.13 2 59.52 9.15 0.46 1.488 9.07 90 40.37 1.17 L 
3.05 2.13 2 59.52 9.15 0.46 1.488 9.07 45 58.10 1.17 L 
3.05 2.13 2 59.52 9.15 0.46 1.488 9.07 30 82.48 1.17 L 
3.05 2.13 2 59.52 9.15 0.91 5.952 9.07 90 10.09 1.89 W 
3.05 2.13 2 59.52 9.15 0.91 2.976 4.54 90 40.37 1.32 L 
3.05 2.13 2 59.52 9.15 0.91 1.488 2.27 90 161.49 1.19 L 
3.05 2.13 2 59.52 9.15 0.91 5.952 9.07 45 15.27 1.26 L 
3.05 2.13 2 59.52 9.15 0.91 2.976 4.54 45 58.10 1.18 L 
3.05 2.13 2 59.52 9.15 0.91 1.488 2.27 45 229.39 1.18 L 
3.05 2.13 2 59.52 9.15 0.91 5.952 9.07 30 21.92 1.18 L 
3.05 2.13 2 59.52 9.15 0.91 2.976 4.54 30 82.48 1.18 L 
3.05 2.13 2 59.52 9.15 0.91 1.488 2.27 30 324.72 1.18 L 
3.05 2.13 2 59.52 9.15 1.52 5.952 3.26 90 28.04 1.84 W 
3.05 2.13 2 59.52 9.15 1.52 2.976 1.63 90 112.15 1.33 L 
3.05 2.13 2 59.52 9.15 1.52 1.488 0.82 90 448.59 1.2 L 

0.61.11.62.12.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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3.05 2.13 2 59.52 9.15 1.52 5.952 3.26 45 40.65 1.49 L 
3.05 2.13 2 59.52 9.15 1.52 2.976 1.63 45 159.60 1.28 L 
3.05 2.13 2 59.52 9.15 1.52 1.488 0.82 45 635.41 1.19 L 
3.05 2.13 2 59.52 9.15 1.52 5.952 3.26 30 57.81 1.43 L 
3.05 2.13 2 59.52 9.15 1.52 2.976 1.63 30 226.03 1.3 L 
3.05 2.13 2 59.52 9.15 1.52 1.488 0.82 30 898.92 1.17 L 
3.05 1.22 2 25.71 6.92 0.46 1.286 7.83 90 17.66 1.38 W 
3.05 1.22 2 25.71 6.92 0.46 0.643 3.92 90 70.65 1.23 L 
3.05 1.22 2 25.71 6.92 0.46 1.286 7.83 45 25.98 1.26 L 
3.05 1.22 2 25.71 6.92 0.46 0.643 3.92 45 100.91 1.2 L 
3.05 1.22 2 25.71 6.92 0.46 1.286 7.83 30 37.06 1.2 L 
3.05 1.22 2 25.71 6.92 0.46 0.643 3.92 30 143.03 1.2 L 
3.05 1.22 2 25.71 6.92 0.91 2.571 3.92 90 17.66 1.93 W 
3.05 1.22 2 25.71 6.92 0.91 1.286 1.96 90 70.65 1.39 W 
3.05 1.22 2 25.71 6.92 0.91 0.643 0.98 90 282.60 1.17 L 
3.05 1.22 2 25.71 6.92 0.91 2.571 3.92 45 25.98 1.53 W 
3.05 1.22 2 25.71 6.92 0.91 1.286 1.96 45 100.91 1.36 L 
3.05 1.22 2 25.71 6.92 0.91 0.643 0.98 45 400.66 1.25 L 
3.05 1.22 2 25.71 6.92 0.91 2.571 3.92 30 37.06 1.5 L 
3.05 1.22 2 25.71 6.92 0.91 1.286 1.96 30 143.03 1.36 L 
3.05 1.22 2 25.71 6.92 0.91 0.643 0.98 30 566.93 1.25 L 

Table A2. FLOW-3D simulation results for W = 7.62 m (25’) and Fr = 2. 

W 
(m) 

H0 
(m) Fr (-) 

Q Chan. 
(m3/s) 

V 
Chan. 
(m/s) 

D Pipe 
(m) 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

θ Junc. 
(deg.) 

𝐐𝐕 + 𝐪𝐯(𝐜𝐨𝐬 𝛉𝐪𝐯(𝐬𝐢𝐧 𝛉) 𝐇𝐇𝟎 Impact 

7.62 3.05 2 254.09 10.94 0.46 2.540 15.48 90 70.69 1.1 L 
7.62 3.05 2 254.09 10.94 0.46 2.540 15.48 45 100.98 1.06 L 
7.62 3.05 2 254.09 10.94 0.46 2.540 15.48 30 143.12 1.03 L 
7.62 3.05 2 254.09 10.94 0.91 10.163 15.48 90 17.66 1.38 W 
7.62 3.05 2 254.09 10.94 0.91 5.083 7.74 90 70.61 1.19 L 
7.62 3.05 2 254.09 10.94 0.91 2.540 3.87 90 282.77 1.1 L 
7.62 3.05 2 254.09 10.94 0.91 10.163 15.48 45 25.98 1.15 L 
7.62 3.05 2 254.09 10.94 0.91 5.083 7.74 45 100.86 1.11 L 
7.62 3.05 2 254.09 10.94 0.91 2.540 3.87 45 400.90 1.1 L 
7.62 3.05 2 254.09 10.94 0.91 10.163 15.48 30 37.06 1.08 L 
7.62 3.05 2 254.09 10.94 0.91 5.083 7.74 30 142.96 1.07 L 
7.62 3.05 2 254.09 10.94 0.91 2.540 3.87 30 567.28 1.06 L 
7.62 3.05 2 254.09 10.94 1.52 10.163 5.57 90 49.07 1.32 W 
7.62 3.05 2 254.09 10.94 1.52 5.083 2.79 90 196.15 1.18 L 
7.62 3.05 2 254.09 10.94 1.52 2.540 1.39 90 785.48 1.1 L 
7.62 3.05 2 254.09 10.94 1.52 10.163 5.57 45 70.39 1.2 L 
7.62 3.05 2 254.09 10.94 1.52 5.083 2.79 45 278.40 1.15 L 
7.62 3.05 2 254.09 10.94 1.52 2.540 1.39 45 1111.84 1.1 L 
7.62 3.05 2 254.09 10.94 1.52 10.163 5.57 30 99.86 1.17 L 
7.62 3.05 2 254.09 10.94 1.52 5.083 2.79 30 394.04 1.15 L 
7.62 3.05 2 254.09 10.94 1.52 2.540 1.39 30 1572.69 1.1 L 
7.62 2.13 2 148.81 9.15 0.46 1.488 9.07 90 100.93 1.07 L 
7.62 2.13 2 148.81 9.15 0.46 1.488 9.07 45 143.74 1.01 L 
7.62 2.13 2 148.81 9.15 0.46 1.488 9.07 30 203.60 1.01 L 
7.62 2.13 2 148.81 9.15 0.91 5.952 9.07 90 25.23 1.36 W 
7.62 2.13 2 148.81 9.15 0.91 2.976 4.54 90 100.93 1.14 L 
7.62 2.13 2 148.81 9.15 0.91 1.488 2.27 90 403.73 1.07 L 
7.62 2.13 2 148.81 9.15 0.91 5.952 9.07 45 36.69 1.11 L 
7.62 2.13 2 148.81 9.15 0.91 2.976 4.54 45 143.74 1.09 L 
7.62 2.13 2 148.81 9.15 0.91 1.488 2.27 45 571.97 1.07 L 
7.62 2.13 2 148.81 9.15 0.91 5.952 9.07 30 52.20 1.11 L 
7.62 2.13 2 148.81 9.15 0.91 2.976 4.54 30 203.60 1.08 L 
7.62 2.13 2 148.81 9.15 0.91 1.488 2.27 30 809.20 1.06 L 
7.62 2.13 2 148.81 9.15 1.52 5.952 3.26 90 70.09 1.43 W 
7.62 2.13 2 148.81 9.15 1.52 2.976 1.63 90 280.37 1.14 L 
7.62 2.13 2 148.81 9.15 1.52 1.488 0.82 90 1121.48 1.07 L 
7.62 2.13 2 148.81 9.15 1.52 5.952 3.26 45 100.13 1.22 L 
7.62 2.13 2 148.81 9.15 1.52 2.976 1.63 45 397.50 1.12 L 
7.62 2.13 2 148.81 9.15 1.52 1.488 0.82 45 1587.01 1.06 L 
7.62 2.13 2 148.81 9.15 1.52 5.952 3.26 30 141.92 1.2 L 
7.62 2.13 2 148.81 9.15 1.52 2.976 1.63 30 562.47 1.12 L 
7.62 2.13 2 148.81 9.15 1.52 1.488 0.82 30 2244.70 1.06 L 
7.62 1.22 2 64.28 6.92 0.46 1.286 7.83 90 44.16 1.17 L 
7.62 1.22 2 64.28 6.92 0.46 0.643 3.92 90 176.63 1.07 L 
7.62 1.22 2 64.28 6.92 0.46 1.286 7.83 45 63.45 1.08 L 
7.62 1.22 2 64.28 6.92 0.46 0.643 3.92 45 250.79 1.02 L 
7.62 1.22 2 64.28 6.92 0.46 1.286 7.83 30 90.04 1.01 L 
7.62 1.22 2 64.28 6.92 0.46 0.643 3.92 30 354.98 1.01 L 
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7.62 1.22 2 64.28 6.92 0.91 2.571 3.92 90 44.16 1.39 W 
7.62 1.22 2 64.28 6.92 0.91 1.286 1.96 90 176.63 1.17 L 
7.62 1.22 2 64.28 6.92 0.91 0.643 0.98 90 706.50 1.08 L 
7.62 1.22 2 64.28 6.92 0.91 2.571 3.92 45 63.45 1.27 L 
7.62 1.22 2 64.28 6.92 0.91 1.286 1.96 45 250.79 1.15 L 
7.62 1.22 2 64.28 6.92 0.91 0.643 0.98 45 1000.14 1.07 L 
7.62 1.22 2 64.28 6.92 0.91 2.571 3.92 30 90.04 1.25 L 
7.62 1.22 2 64.28 6.92 0.91 1.286 1.96 30 354.98 1.14 L 
7.62 1.22 2 64.28 6.92 0.91 0.643 0.98 30 1414.73 1.06 L 

Table A3. FLOW-3D simulation results for W = 15.24 m (50’) and Fr = 2. 

W 
(m) 

H0 
(m) 

Fr 
(-) 

Q 
Chan. 
(m3/s) 

V 
Chan. 
(m/s) 

D Pipe 
(m) 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

θ Junc. 
(deg.) 

𝐐𝐕 + 𝐪𝐯(𝐜𝐨𝐬 𝛉𝐪𝐯(𝐬𝐢𝐧 𝛉) 𝐇𝐇𝟎 Impact 

15.24 3.05 2 508.15 10.94 0.46 2.540 15.48 90 141.38 1.01 L 
15.24 3.05 2 508.15 10.94 0.46 2.540 15.48 45 200.94 1.01 L 
15.24 3.05 2 508.15 10.94 0.46 2.540 15.48 30 284.49 1.01 L 
15.24 3.05 2 508.15 10.94 0.91 10.163 15.48 90 35.33 1.23 L 
15.24 3.05 2 508.15 10.94 0.91 5.083 7.74 90 141.22 1.07 L 
15.24 3.05 2 508.15 10.94 0.91 2.540 3.87 90 565.52 1.01 L 
15.24 3.05 2 508.15 10.94 0.91 10.163 15.48 45 50.96 1.07 L 
15.24 3.05 2 508.15 10.94 0.91 5.083 7.74 45 200.72 1.02 L 
15.24 3.05 2 508.15 10.94 0.91 2.540 3.87 45 800.76 1.01 L 
15.24 3.05 2 508.15 10.94 0.91 10.163 15.48 30 72.38 1.02 L 
15.24 3.05 2 508.15 10.94 0.91 5.083 7.74 30 284.17 1.01 L 
15.24 3.05 2 508.15 10.94 0.91 2.540 3.87 30 1132.76 1.01 L 
15.24 3.05 2 508.15 10.94 1.52 10.163 5.57 90 98.13 1.24 L 
15.24 3.05 2 508.15 10.94 1.52 5.083 2.79 90 392.28 1.08 L 
15.24 3.05 2 508.15 10.94 1.52 2.540 1.39 90 1570.88 1.03 L 
15.24 3.05 2 508.15 10.94 1.52 10.163 5.57 45 139.77 1.14 L 
15.24 3.05 2 508.15 10.94 1.52 5.083 2.79 45 555.77 1.08 L 
15.24 3.05 2 508.15 10.94 1.52 2.540 1.39 45 2222.55 1.05 L 
15.24 3.05 2 508.15 10.94 1.52 10.163 5.57 30 197.98 1.12 L 
15.24 3.05 2 508.15 10.94 1.52 5.083 2.79 30 786.29 1.06 L 
15.24 3.05 2 508.15 10.94 1.52 2.540 1.39 30 3143.48 1.01 L 
15.24 2.13 2 297.61 9.15 0.46 1.488 9.07 90 201.87 1.05 L 
15.24 2.13 2 297.61 9.15 0.46 1.488 9.07 45 286.48 1.01 L 
15.24 2.13 2 297.61 9.15 0.46 1.488 9.07 30 405.47 1.01 L 
15.24 2.13 2 297.61 9.15 0.91 5.952 9.07 90 50.47 1.25 L 
15.24 2.13 2 297.61 9.15 0.91 2.976 4.54 90 201.87 1.11 L 
15.24 2.13 2 297.61 9.15 0.91 1.488 2.27 90 807.47 1.09 L 
15.24 2.13 2 297.61 9.15 0.91 5.952 9.07 45 72.37 1.09 L 
15.24 2.13 2 297.61 9.15 0.91 2.976 4.54 45 286.48 1.06 L 
15.24 2.13 2 297.61 9.15 0.91 1.488 2.27 45 1142.93 1.02 L 
15.24 2.13 2 297.61 9.15 0.91 5.952 9.07 30 102.67 1.07 L 
15.24 2.13 2 297.61 9.15 0.91 2.976 4.54 30 405.47 1.04 L 
15.24 2.13 2 297.61 9.15 0.91 1.488 2.27 30 1616.67 1.01 L 
15.24 2.13 2 297.61 9.15 1.52 5.952 3.26 90 140.19 1.3 L 
15.24 2.13 2 297.61 9.15 1.52 2.976 1.63 90 560.74 1.11 L 
15.24 2.13 2 297.61 9.15 1.52 1.488 0.82 90 2242.96 1.07 L 
15.24 2.13 2 297.61 9.15 1.52 5.952 3.26 45 199.25 1.17 L 
15.24 2.13 2 297.61 9.15 1.52 2.976 1.63 45 794.01 1.07 L 
15.24 2.13 2 297.61 9.15 1.52 1.488 0.82 45 3173.03 1.02 L 
15.24 2.13 2 297.61 9.15 1.52 5.952 3.26 30 282.10 1.17 L 
15.24 2.13 2 297.61 9.15 1.52 2.976 1.63 30 1123.21 1.08 L 
15.24 2.13 2 297.61 9.15 1.52 1.488 0.82 30 4487.66 1.02 L 
15.24 1.22 2 128.56 6.92 0.46 1.286 7.83 90 88.31 1.08 L 
15.24 1.22 2 128.56 6.92 0.46 0.643 3.92 90 353.25 1.06 L 
15.24 1.22 2 128.56 6.92 0.46 1.286 7.83 45 125.89 1.03 L 
15.24 1.22 2 128.56 6.92 0.46 0.643 3.92 45 500.57 1.01 L 
15.24 1.22 2 128.56 6.92 0.46 1.286 7.83 30 178.36 1.01 L 
15.24 1.22 2 128.56 6.92 0.46 0.643 3.92 30 708.23 1.01 L 
15.24 1.22 2 128.56 6.92 0.91 2.571 3.92 90 88.31 1.23 L 
15.24 1.22 2 128.56 6.92 0.91 1.286 1.96 90 353.25 1.06 L 
15.24 1.22 2 128.56 6.92 0.91 0.643 0.98 90 1413.00 1.03 L 
15.24 1.22 2 128.56 6.92 0.91 2.571 3.92 45 125.89 1.15 L 
15.24 1.22 2 128.56 6.92 0.91 1.286 1.96 45 500.57 1.04 L 
15.24 1.22 2 128.56 6.92 0.91 0.643 0.98 45 1999.28 1.02 L 
15.24 1.22 2 128.56 6.92 0.91 2.571 3.92 30 178.36 1.14 L 
15.24 1.22 2 128.56 6.92 0.91 1.286 1.96 30 708.23 1.03 L 
15.24 1.22 2 128.56 6.92 0.91 0.643 0.98 30 2827.73 1.01 L 
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Table A4. FLOW-3D simulation results for W = 3.05 m (10’) and Fr = 1.2. 

W 
(m) 

H0 
(m) 

Fr (-
) 

Q Chan. (m3/s) 
V Chan. 

(m/s) 
D Pipe 

(m) 
q Pipe 
(m3/s) 

v Pipe 
(m/s) 

θ Junc. 
(deg.) 

𝐐𝐕 + 𝐪𝐯(𝐜𝐨𝐬 𝛉)𝐪𝐯(𝐬𝐢𝐧 𝛉)  
𝐇𝐇𝟎 Impa

ct 
3.05 3.05 1.2 60.97 6.56 0.46 1.524 9.29 90 28.26 1.2 L 
3.05 3.05 1.2 60.97 6.56 0.46 1.524 9.29 45 40.97 1.2 L 
3.05 3.05 1.2 60.97 6.56 0.46 1.524 9.29 30 58.25 1.2 L 
3.05 3.05 1.2 60.97 6.56 0.91 6.097 9.29 90 7.07 1.78 L 
3.05 3.05 1.2 60.97 6.56 0.91 3.048 4.64 90 28.26 1.43 L 
3.05 3.05 1.2 60.97 6.56 0.91 1.524 2.32 90 113.04 1.18 L 
3.05 3.05 1.2 60.97 6.56 0.91 6.097 9.29 45 10.99 1.26 L 
3.05 3.05 1.2 60.97 6.56 0.91 3.048 4.64 45 40.97 1.23 L 
3.05 3.05 1.2 60.97 6.56 0.91 1.524 2.32 45 160.86 1.15 L 
3.05 3.05 1.2 60.97 6.56 0.91 6.097 9.29 30 15.86 1.22 L 
3.05 3.05 1.2 60.97 6.56 0.91 3.048 4.64 30 58.25 1.2 L 
3.05 3.05 1.2 60.97 6.56 0.91 1.524 2.32 30 227.81 1.15 L 
3.05 3.05 1.2 60.97 6.56 1.52 6.097 3.34 90 19.63 1.84 L 
3.05 3.05 1.2 60.97 6.56 1.52 3.048 1.67 90 78.50 1.43 L 
3.05 3.05 1.2 60.97 6.56 1.52 1.524 0.84 90 314.00 1.19 L 
3.05 3.05 1.2 60.97 6.56 1.52 6.097 3.34 45 28.75 1.57 L 
3.05 3.05 1.2 60.97 6.56 1.52 3.048 1.67 45 112.02 1.33 L 
3.05 3.05 1.2 60.97 6.56 1.52 1.524 0.84 45 445.06 1.17 L 
3.05 3.05 1.2 60.97 6.56 1.52 6.097 3.34 30 40.98 1.54 L 
3.05 3.05 1.2 60.97 6.56 1.52 3.048 1.67 30 158.73 1.32 L 
3.05 3.05 1.2 60.97 6.56 1.52 1.524 0.84 30 629.73 1.17 L 
3.05 2.13 1.2 35.71 5.49 0.46 1.785 10.88 90 10.10 1.28 L 
3.05 2.13 1.2 35.71 5.49 0.46 0.893 5.44 90 40.38 1.2 L 
3.05 2.13 1.2 35.71 5.49 0.46 1.785 10.88 45 15.28 1.2 L 
3.05 2.13 1.2 35.71 5.49 0.46 0.893 5.44 45 58.11 1.2 L 
3.05 2.13 1.2 35.71 5.49 0.46 1.785 10.88 30 21.92 1.2 L 
3.05 2.13 1.2 35.71 5.49 0.46 0.893 5.44 30 82.50 1.2 L 
3.05 2.13 1.2 35.71 5.49 0.91 3.571 5.44 90 10.10 1.85 L 
3.05 2.13 1.2 35.71 5.49 0.91 1.785 2.72 90 40.38 1.36 L 
3.05 2.13 1.2 35.71 5.49 0.91 0.893 1.36 90 161.54 1.15 L 
3.05 2.13 1.2 35.71 5.49 0.91 3.571 5.44 45 15.28 1.33 L 
3.05 2.13 1.2 35.71 5.49 0.91 1.785 2.72 45 58.11 1.23 L 
3.05 2.13 1.2 35.71 5.49 0.91 0.893 1.36 45 229.45 1.12 L 
3.05 2.13 1.2 35.71 5.49 0.91 3.571 5.44 30 21.92 1.27 L 
3.05 2.13 1.2 35.71 5.49 0.91 1.785 2.72 30 82.50 1.22 L 
3.05 2.13 1.2 35.71 5.49 0.91 0.893 1.36 30 324.81 1.11 L 
3.05 2.13 1.2 35.71 5.49 1.52 3.571 1.96 90 28.04 1.87 L 
3.05 2.13 1.2 35.71 5.49 1.52 1.785 0.98 90 112.18 1.35 L 
3.05 2.13 1.2 35.71 5.49 1.52 0.893 0.49 90 448.71 1.15 L 
3.05 2.13 1.2 35.71 5.49 1.52 3.571 1.96 45 40.66 1.66 L 
3.05 2.13 1.2 35.71 5.49 1.52 1.785 0.98 45 159.64 1.31 L 
3.05 2.13 1.2 35.71 5.49 1.52 0.893 0.49 45 635.58 1.13 L 
3.05 2.13 1.2 35.71 5.49 1.52 3.571 1.96 30 57.82 1.63 L 
3.05 2.13 1.2 35.71 5.49 1.52 1.785 0.98 30 226.09 1.31 L 
3.05 2.13 1.2 35.71 5.49 1.52 0.893 0.49 30 899.16 1.13 L 
3.05 1.22 1.2 15.43 4.15 0.46 1.543 9.41 90 4.41 1.65 L 
3.05 1.22 1.2 15.43 4.15 0.46 0.772 4.70 90 17.66 1.2 L 
3.05 1.22 1.2 15.43 4.15 0.46 0.386 2.35 90 70.62 1.08 L 
3.05 1.22 1.2 15.43 4.15 0.46 1.543 9.41 45 7.24 1.1 L 
3.05 1.22 1.2 15.43 4.15 0.46 0.772 4.70 45 25.97 1.07 L 
3.05 1.22 1.2 15.43 4.15 0.46 0.386 2.35 45 100.88 1.03 L 
3.05 1.22 1.2 15.43 4.15 0.46 1.543 9.41 30 10.56 1.03 L 
3.05 1.22 1.2 15.43 4.15 0.46 0.772 4.70 30 37.04 1.03 L 
3.05 1.22 1.2 15.43 4.15 0.46 0.386 2.35 30 142.98 1.03 L 
3.05 1.22 1.2 15.43 4.15 0.91 1.543 2.35 90 17.66 1.78 L 
3.05 1.22 1.2 15.43 4.15 0.91 0.772 1.18 90 70.62 1.28 L 
3.05 1.22 1.2 15.43 4.15 0.91 0.386 0.59 90 282.50 1.09 L 
3.05 1.22 1.2 15.43 4.15 0.91 1.543 2.35 45 25.97 1.52 L 
3.05 1.22 1.2 15.43 4.15 0.91 0.772 1.18 45 100.88 1.25 L 
3.05 1.22 1.2 15.43 4.15 0.91 0.386 0.59 45 400.51 1.08 L 
3.05 1.22 1.2 15.43 4.15 0.91 1.543 2.35 30 37.04 1.48 L 
3.05 1.22 1.2 15.43 4.15 0.91 0.772 1.18 30 142.98 1.25 L 
3.05 1.22 1.2 15.43 4.15 0.91 0.386 0.59 30 566.72 1.07 L 
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Table A5. FLOW-3D simulation results for W = 7.62 m (25’) and Fr = 1.2. 

W 
(m) 

H0 
(m) 

Fr (-
) 

Q Chan. 
(m3/s) 

V Chan. 
(m/s) 

D Pipe 
(m) 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

θ Junc. 
(deg.) 

𝐐𝐕 + 𝐪𝐯(𝐜𝐨𝐬 𝛉)𝐪𝐯(𝐬𝐢𝐧 𝛉)  
𝐇𝐇𝟎 

Im
pa
ct 

7.62 3.05 1.2 152.43 6.56 0.46 1.524 9.29 90 70.66 1.01 L 
7.62 3.05 1.2 152.43 6.56 0.46 1.524 9.29 45 100.92 1.01 L 
7.62 3.05 1.2 152.43 6.56 0.46 1.524 9.29 30 143.05 1.01 L 
7.62 3.05 1.2 152.43 6.56 0.91 6.097 9.29 90 17.66 1.27 W 
7.62 3.05 1.2 152.43 6.56 0.91 3.048 4.64 90 70.66 1.07 L 
7.62 3.05 1.2 152.43 6.56 0.91 1.524 2.32 90 282.63 1.01 L 
7.62 3.05 1.2 152.43 6.56 0.91 6.097 9.29 45 25.98 1.06 L 
7.62 3.05 1.2 152.43 6.56 0.91 3.048 4.64 45 100.92 1.01 L 
7.62 3.05 1.2 152.43 6.56 0.91 1.524 2.32 45 400.69 1.01 L 
7.62 3.05 1.2 152.43 6.56 0.91 6.097 9.29 30 37.06 1.01 L 
7.62 3.05 1.2 152.43 6.56 0.91 3.048 4.64 30 143.05 1.01 L 
7.62 3.05 1.2 152.43 6.56 0.91 1.524 2.32 30 566.98 1.01 L 
7.62 3.05 1.2 152.43 6.56 1.52 6.097 3.34 90 49.07 1.26 L 
7.62 3.05 1.2 152.43 6.56 1.52 3.048 1.67 90 196.27 1.17 L 
7.62 3.05 1.2 152.43 6.56 1.52 1.524 0.84 90 785.07 1.01 L 
7.62 3.05 1.2 152.43 6.56 1.52 6.097 3.34 45 70.39 1.14 L 
7.62 3.05 1.2 152.43 6.56 1.52 3.048 1.67 45 278.57 1.06 L 
7.62 3.05 1.2 152.43 6.56 1.52 1.524 0.84 45 1111.26 1.01 L 
7.62 3.05 1.2 152.43 6.56 1.52 6.097 3.34 30 99.87 1.13 L 
7.62 3.05 1.2 152.43 6.56 1.52 3.048 1.67 30 394.27 1.05 L 
7.62 3.05 1.2 152.43 6.56 1.52 1.524 0.84 30 1571.88 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.46 1.785 10.88 90 25.24 1.04 L 
7.62 2.13 1.2 89.28 5.49 0.46 0.893 5.44 90 100.98 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.46 1.785 10.88 45 36.70 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.46 0.893 5.44 45 143.80 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.46 1.785 10.88 30 52.22 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.46 0.893 5.44 30 203.69 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.91 3.571 5.44 90 25.24 1.21 W 
7.62 2.13 1.2 89.28 5.49 0.91 1.785 2.72 90 100.98 1.06 L 
7.62 2.13 1.2 89.28 5.49 0.91 0.893 1.36 90 403.91 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.91 3.571 5.44 45 36.70 1.04 L 
7.62 2.13 1.2 89.28 5.49 0.91 1.785 2.72 45 143.80 1.02 L 
7.62 2.13 1.2 89.28 5.49 0.91 0.893 1.36 45 572.21 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.91 3.571 5.44 30 52.22 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.91 1.785 2.72 30 203.69 1.01 L 
7.62 2.13 1.2 89.28 5.49 0.91 0.893 1.36 30 809.54 1.01 L 
7.62 2.13 1.2 89.28 5.49 1.52 3.571 1.96 90 70.12 1.21 W 
7.62 2.13 1.2 89.28 5.49 1.52 1.785 0.98 90 280.49 1.05 L 
7.62 2.13 1.2 89.28 5.49 1.52 0.893 0.49 90 1121.96 1.01 L 
7.62 2.13 1.2 89.28 5.49 1.52 3.571 1.96 45 100.17 1.15 L 
7.62 2.13 1.2 89.28 5.49 1.52 1.785 0.98 45 397.67 1.04 L 
7.62 2.13 1.2 89.28 5.49 1.52 0.893 0.49 45 1587.69 1.01 L 
7.62 2.13 1.2 89.28 5.49 1.52 3.571 1.96 30 141.98 1.13 L 
7.62 2.13 1.2 89.28 5.49 1.52 1.785 0.98 30 562.71 1.04 L 
7.62 2.13 1.2 89.28 5.49 1.52 0.893 0.49 30 2245.66 1.01 L 
7.62 1.22 1.2 38.60 4.15 0.46 1.543 9.41 90 11.04 1.25 W 
7.62 1.22 1.2 38.60 4.15 0.46 0.772 4.70 90 44.16 1.09 L 
7.62 1.22 1.2 38.60 4.15 0.46 0.386 2.35 90 176.62 1.01 L 
7.62 1.22 1.2 38.60 4.15 0.46 1.543 9.41 45 16.61 1.18 L 
7.62 1.22 1.2 38.60 4.15 0.46 0.772 4.70 45 63.45 1.05 L 
7.62 1.22 1.2 38.60 4.15 0.46 0.386 2.35 45 250.79 1.01 L 
7.62 1.22 1.2 38.60 4.15 0.46 1.543 9.41 30 23.81 1.01 L 
7.62 1.22 1.2 38.60 4.15 0.46 0.772 4.70 30 90.04 1.01 L 
7.62 1.22 1.2 38.60 4.15 0.46 0.386 2.35 30 354.98 1.01 L 
7.62 1.22 1.2 38.60 4.15 0.91 1.543 2.35 90 44.16 1.27 L 
7.62 1.22 1.2 38.60 4.15 0.91 0.772 1.18 90 176.62 1.12 L 
7.62 1.22 1.2 38.60 4.15 0.91 0.386 0.59 90 706.50 1.04 L 
7.62 1.22 1.2 38.60 4.15 0.91 1.543 2.35 45 63.45 1.2 L 
7.62 1.22 1.2 38.60 4.15 0.91 0.772 1.18 45 250.79 1.09 L 
7.62 1.22 1.2 38.60 4.15 0.91 0.386 0.59 45 1000.14 1.02 L 
7.62 1.22 1.2 38.60 4.15 0.91 1.543 2.35 30 90.04 1.17 L 
7.62 1.22 1.2 38.60 4.15 0.91 0.772 1.18 30 354.98 1.08 L 
7.62 1.22 1.2 38.60 4.15 0.91 0.386 0.59 30 1414.73 1.01 L 
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Table A6. FLOW-3D simulation results for W = 15.24 m (50’) and Fr = 1.2. 

W 
(m) 

H0 
(m) 

Fr (-
) 

Q 
Chan. 
(m3/s) 

V 
Chan. 
(m/s) 

D Pipe 
(m) 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

θ Junc. 
(deg.) 

𝐐𝐕 + 𝐪𝐯(𝐜𝐨𝐬 𝛉)𝐪𝐯(𝐬𝐢𝐧 𝛉)  
𝐇𝐇𝟎 Impa

ct 

15.24 3.05 1.2 304.83 6.56 0.46 1.524 9.29 90 141.30 1.01 L 
15.24 3.05 1.2 304.83 6.56 0.46 1.524 9.29 45 200.83 1.01 L 
15.24 3.05 1.2 304.83 6.56 0.46 1.524 9.29 30 284.33 1.01 L 
15.24 3.05 1.2 304.83 6.56 0.91 6.097 9.29 90 35.33 1.1 L 
15.24 3.05 1.2 304.83 6.56 0.91 3.048 4.64 90 141.30 1.02 L 
15.24 3.05 1.2 304.83 6.56 0.91 1.524 2.32 90 565.20 1.01 L 
15.24 3.05 1.2 304.83 6.56 0.91 6.097 9.29 45 50.96 1.03 L 
15.24 3.05 1.2 304.83 6.56 0.91 3.048 4.64 45 200.83 1.01 L 
15.24 3.05 1.2 304.83 6.56 0.91 1.524 2.32 45 800.31 1.01 L 
15.24 3.05 1.2 304.83 6.56 0.91 6.097 9.29 30 72.38 1.01 L 
15.24 3.05 1.2 304.83 6.56 0.91 3.048 4.64 30 284.33 1.01 L 
15.24 3.05 1.2 304.83 6.56 0.91 1.524 2.32 30 1132.13 1.01 L 
15.24 3.05 1.2 304.83 6.56 1.52 6.097 3.34 90 98.13 1.1 L 
15.24 3.05 1.2 304.83 6.56 1.52 3.048 1.67 90 392.50 1.02 L 
15.24 3.05 1.2 304.83 6.56 1.52 1.524 0.84 90 1570.00 1.01 L 
15.24 3.05 1.2 304.83 6.56 1.52 6.097 3.34 45 139.77 1.03 L 
15.24 3.05 1.2 304.83 6.56 1.52 3.048 1.67 45 556.08 1.02 L 
15.24 3.05 1.2 304.83 6.56 1.52 1.524 0.84 45 2221.32 1.01 L 
15.24 3.05 1.2 304.83 6.56 1.52 6.097 3.34 30 197.98 1.05 L 
15.24 3.05 1.2 304.83 6.56 1.52 3.048 1.67 30 786.73 1.02 L 
15.24 3.05 1.2 304.83 6.56 1.52 1.524 0.84 30 3141.73 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.46 1.785 10.88 90 50.48 1.02 L 
15.24 2.13 1.2 178.54 5.49 0.46 0.893 5.44 90 201.92 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.46 1.785 10.88 45 72.39 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.46 0.893 5.44 45 286.56 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.46 1.785 10.88 30 102.69 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.46 0.893 5.44 30 405.57 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.91 3.571 5.44 90 50.48 1.11 L 
15.24 2.13 1.2 178.54 5.49 0.91 1.785 2.72 90 201.92 1.03 L 
15.24 2.13 1.2 178.54 5.49 0.91 0.893 1.36 90 807.68 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.91 3.571 5.44 45 72.39 1.02 L 
15.24 2.13 1.2 178.54 5.49 0.91 1.785 2.72 45 286.56 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.91 0.893 1.36 45 1143.24 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.91 3.571 5.44 30 102.69 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.91 1.785 2.72 30 405.57 1.01 L 
15.24 2.13 1.2 178.54 5.49 0.91 0.893 1.36 30 1617.10 1.01 L 
15.24 2.13 1.2 178.54 5.49 1.52 3.571 1.96 90 140.22 1.12 L 
15.24 2.13 1.2 178.54 5.49 1.52 1.785 0.98 90 560.89 1.04 L 
15.24 2.13 1.2 178.54 5.49 1.52 0.893 0.49 90 2243.57 1.01 L 
15.24 2.13 1.2 178.54 5.49 1.52 3.571 1.96 45 199.31 1.06 L 
15.24 2.13 1.2 178.54 5.49 1.52 1.785 0.98 45 794.22 1.02 L 
15.24 2.13 1.2 178.54 5.49 1.52 0.893 0.49 45 3173.89 1.01 L 
15.24 2.13 1.2 178.54 5.49 1.52 3.571 1.96 30 282.18 1.06 L 
15.24 2.13 1.2 178.54 5.49 1.52 1.785 0.98 30 1123.52 1.02 L 
15.24 2.13 1.2 178.54 5.49 1.52 0.893 0.49 30 4488.87 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.46 1.543 9.41 90 22.07 1.19 L 
15.24 1.22 1.2 77.16 4.15 0.46 0.772 4.70 90 88.28 1.04 L 
15.24 1.22 1.2 77.16 4.15 0.46 0.386 2.35 90 353.12 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.46 1.543 9.41 45 32.21 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.46 0.772 4.70 45 125.85 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.46 0.386 2.35 45 500.39 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.46 1.543 9.41 30 45.87 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.46 0.772 4.70 30 178.29 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.46 0.386 2.35 30 707.97 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.91 1.543 2.35 90 88.28 1.14 L 
15.24 1.22 1.2 77.16 4.15 0.91 0.772 1.18 90 353.12 1.05 L 
15.24 1.22 1.2 77.16 4.15 0.91 0.386 0.59 90 1412.48 1.02 L 
15.24 1.22 1.2 77.16 4.15 0.91 1.543 2.35 45 125.85 1.05 L 
15.24 1.22 1.2 77.16 4.15 0.91 0.772 1.18 45 500.39 1.02 L 
15.24 1.22 1.2 77.16 4.15 0.91 0.386 0.59 45 1998.55 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.91 1.543 2.35 30 178.29 1.02 L 
15.24 1.22 1.2 77.16 4.15 0.91 0.772 1.18 30 707.97 1.01 L 
15.24 1.22 1.2 77.16 4.15 0.91 0.386 0.59 30 2826.69 1.01 L 
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Table A7. FLOW-3D simulation results for W = 3.05 m (10’) and Fr = 0.8. 

W 
(m) 

H0 
(m) 

Fr (-
) 

Q 
Chan. 
(m3/s) 

V Chan. 
(m/s) 

D Pipe 
(m) 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

θ Junc. 
(deg.) 

𝐐𝐕 + 𝐪𝐯(𝐜𝐨𝐬 𝛉)𝐪𝐯(𝐬𝐢𝐧 𝛉)  
𝐇𝐇𝟎 Impact 

3.05 3.05 0.8 40.66 4.38 0.46 2.033 12.39 90 7.07 1.33 W 
3.05 3.05 0.8 40.66 4.38 0.46 1.017 6.20 90 28.26 1.17 L 
3.05 3.05 0.8 40.66 4.38 0.46 2.033 12.39 45 10.99 1.1 L 
3.05 3.05 0.8 40.66 4.38 0.46 1.017 6.20 45 40.97 1.1 L 
3.05 3.05 0.8 40.66 4.38 0.46 2.033 12.39 30 15.86 1.1 L 
3.05 3.05 0.8 40.66 4.38 0.46 1.017 6.20 30 58.25 1.1 L 
3.05 3.05 0.8 40.66 4.38 0.91 4.066 6.20 90 7.07 1.71 W 
3.05 3.05 0.8 40.66 4.38 0.91 2.033 3.10 90 28.26 1.39 W 
3.05 3.05 0.8 40.66 4.38 0.91 1.017 1.55 90 113.04 1.19 L 
3.05 3.05 0.8 40.66 4.38 0.91 4.066 6.20 45 10.99 1.36 L 
3.05 3.05 0.8 40.66 4.38 0.91 2.033 3.10 45 40.97 1.31 L 
3.05 3.05 0.8 40.66 4.38 0.91 1.017 1.55 45 160.86 1.18 L 
3.05 3.05 0.8 40.66 4.38 0.91 4.066 6.20 30 15.86 1.32 L 
3.05 3.05 0.8 40.66 4.38 0.91 2.033 3.10 30 58.25 1.29 L 
3.05 3.05 0.8 40.66 4.38 0.91 1.017 1.55 30 227.81 1.18 L 
3.05 3.05 0.8 40.66 4.38 1.52 4.066 2.23 90 19.63 1.7 W 
3.05 3.05 0.8 40.66 4.38 1.52 2.033 1.12 90 78.50 1.4 W 
3.05 3.05 0.8 40.66 4.38 1.52 1.017 0.56 90 314.00 1.2 L 
3.05 3.05 0.8 40.66 4.38 1.52 4.066 2.23 45 28.75 1.58 W 
3.05 3.05 0.8 40.66 4.38 1.52 2.033 1.12 45 112.02 1.35 W 
3.05 3.05 0.8 40.66 4.38 1.52 1.017 0.56 45 445.06 1.2 L 
3.05 3.05 0.8 40.66 4.38 1.52 4.066 2.23 30 40.98 1.54 W 
3.05 3.05 0.8 40.66 4.38 1.52 2.033 1.12 30 158.73 1.35 W 
3.05 3.05 0.8 40.66 4.38 1.52 1.017 0.56 30 629.73 1.2 L 
3.05 2.13 0.8 23.81 3.66 0.46 2.381 14.51 90 2.52 1.72 W 
3.05 2.13 0.8 23.81 3.66 0.46 1.191 7.26 90 10.09 1.36 W 
3.05 2.13 0.8 23.81 3.66 0.46 0.595 3.63 90 40.36 1.14 L 
3.05 2.13 0.8 23.81 3.66 0.46 2.381 14.51 45 4.57 1.08 L 
3.05 2.13 0.8 23.81 3.66 0.46 1.191 7.26 45 15.27 1.08 L 
3.05 2.13 0.8 23.81 3.66 0.46 0.595 3.63 45 58.07 1.08 L 
3.05 2.13 0.8 23.81 3.66 0.46 2.381 14.51 30 6.78 1.05 L 
3.05 2.13 0.8 23.81 3.66 0.46 1.191 7.26 30 21.91 1.05 L 
3.05 2.13 0.8 23.81 3.66 0.46 0.595 3.63 30 82.45 1.05 L 
3.05 2.13 0.8 23.81 3.66 0.91 2.381 3.63 90 10.09 1.76 W 
3.05 2.13 0.8 23.81 3.66 0.91 1.191 1.81 90 40.36 1.41 W 
3.05 2.13 0.8 23.81 3.66 0.91 0.595 0.91 90 161.43 1.16 L 
3.05 2.13 0.8 23.81 3.66 0.91 2.381 3.63 45 15.27 1.47 W 
3.05 2.13 0.8 23.81 3.66 0.91 1.191 1.81 45 58.07 1.32 L 
3.05 2.13 0.8 23.81 3.66 0.91 0.595 0.91 45 229.29 1.16 L 
3.05 2.13 0.8 23.81 3.66 0.91 2.381 3.63 30 21.91 1.42 W 
3.05 2.13 0.8 23.81 3.66 0.91 1.191 1.81 30 82.45 1.31 L 
3.05 2.13 0.8 23.81 3.66 0.91 0.595 0.91 30 324.59 1.15 L 
3.05 2.13 0.8 23.81 3.66 1.52 2.381 1.31 90 28.03 1.73 W 
3.05 2.13 0.8 23.81 3.66 1.52 1.191 0.65 90 112.10 1.4 W 
3.05 2.13 0.8 23.81 3.66 1.52 0.595 0.33 90 448.41 1.17 L 
3.05 2.13 0.8 23.81 3.66 1.52 2.381 1.31 45 40.63 1.7 W 
3.05 2.13 0.8 23.81 3.66 1.52 1.191 0.65 45 159.54 1.35 W 
3.05 2.13 0.8 23.81 3.66 1.52 0.595 0.33 45 635.15 1.17 L 
3.05 2.13 0.8 23.81 3.66 1.52 2.381 1.31 30 57.78 1.64 W 
3.05 2.13 0.8 23.81 3.66 1.52 1.191 0.65 30 225.94 1.35 W 
3.05 2.13 0.8 23.81 3.66 1.52 0.595 0.33 30 898.55 1.17 L 
3.05 1.22 0.8 10.28 2.77 0.46 1.028 6.26 90 4.42 1.72 W 
3.05 1.22 0.8 10.28 2.77 0.46 0.514 3.13 90 17.67 1.34 L 
3.05 1.22 0.8 10.28 2.77 0.46 0.257 1.57 90 70.69 1.15 L 
3.05 1.22 0.8 10.28 2.77 0.46 1.028 6.26 45 7.25 1.18 L 
3.05 1.22 0.8 10.28 2.77 0.46 0.514 3.13 45 25.99 1.18 L 
3.05 1.22 0.8 10.28 2.77 0.46 0.257 1.57 45 100.97 1.09 L 
3.05 1.22 0.8 10.28 2.77 0.46 1.028 6.26 30 10.57 1.18 L 
3.05 1.22 0.8 10.28 2.77 0.46 0.514 3.13 30 37.08 1.18 L 
3.05 1.22 0.8 10.28 2.77 0.46 0.257 1.57 30 143.11 1.09 L 
3.05 1.22 0.8 10.28 2.77 0.91 1.028 1.57 90 17.67 1.65 W 
3.05 1.22 0.8 10.28 2.77 0.91 0.514 0.78 90 70.69 1.38 W 
3.05 1.22 0.8 10.28 2.77 0.91 0.257 0.39 90 282.76 1.17 L 
3.05 1.22 0.8 10.28 2.77 0.91 1.028 1.57 45 25.99 1.63 W 
3.05 1.22 0.8 10.28 2.77 0.91 0.514 0.78 45 100.97 1.34 W 
3.05 1.22 0.8 10.28 2.77 0.91 0.257 0.39 45 400.88 1.17 L 
3.05 1.22 0.8 10.28 2.77 0.91 1.028 1.57 30 37.08 1.55 W 
3.05 1.22 0.8 10.28 2.77 0.91 0.514 0.78 30 143.11 1.31 W 
3.05 1.22 0.8 10.28 2.77 0.91 0.257 0.39 30 567.24 1.17 L 
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Table A8. FLOW-3D simulation results for W = 7.62 m (25’) and Fr = 0.8. 

W 
(m) 

H0 
(m) 

Fr (-
) 

Q 
Chan. 
(m3/s) 

V Chan. 
(m/s) 

D Pipe 
(m) 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

θ Junc. 
(deg.) 

𝐐𝐕 + 𝐪𝐯(𝐜𝐨𝐬 𝛉)𝐪𝐯(𝐬𝐢𝐧 𝛉)  
𝐇𝐇𝟎 Impact 

7.62 3.05 0.8 101.66 4.38 0.46 2.033 12.39 90 17.66 1.14 L 
7.62 3.05 0.8 101.66 4.38 0.46 1.017 6.20 90 70.65 1.01 L 
7.62 3.05 0.8 101.66 4.38 0.46 2.033 12.39 45 25.98 1.01 L 
7.62 3.05 0.8 101.66 4.38 0.46 1.017 6.20 45 100.91 1.01 L 
7.62 3.05 0.8 101.66 4.38 0.46 2.033 12.39 30 37.06 1.01 L 
7.62 3.05 0.8 101.66 4.38 0.46 1.017 6.20 30 143.03 1.01 L 
7.62 3.05 0.8 101.66 4.38 0.91 4.066 6.20 90 17.66 1.4 L 
7.62 3.05 0.8 101.66 4.38 0.91 2.033 3.10 90 70.65 1.16 L 
7.62 3.05 0.8 101.66 4.38 0.91 1.017 1.55 90 282.60 1.04 L 
7.62 3.05 0.8 101.66 4.38 0.91 4.066 6.20 45 25.98 1.14 L 
7.62 3.05 0.8 101.66 4.38 0.91 2.033 3.10 45 100.91 1.08 L 
7.62 3.05 0.8 101.66 4.38 0.91 1.017 1.55 45 400.66 1.01 L 
7.62 3.05 0.8 101.66 4.38 0.91 4.066 6.20 30 37.06 1.09 L 
7.62 3.05 0.8 101.66 4.38 0.91 2.033 3.10 30 143.03 1.07 L 
7.62 3.05 0.8 101.66 4.38 0.91 1.017 1.55 30 566.93 1.01 L 
7.62 3.05 0.8 101.66 4.38 1.52 4.066 2.23 90 49.06 1.41 L 
7.62 3.05 0.8 101.66 4.38 1.52 2.033 1.12 90 196.25 1.17 L 
7.62 3.05 0.8 101.66 4.38 1.52 1.017 0.56 90 785.00 1.04 L 
7.62 3.05 0.8 101.66 4.38 1.52 4.066 2.23 45 70.38 1.28 L 
7.62 3.05 0.8 101.66 4.38 1.52 2.033 1.12 45 278.54 1.15 L 
7.62 3.05 0.8 101.66 4.38 1.52 1.017 0.56 45 1111.16 1.04 L 
7.62 3.05 0.8 101.66 4.38 1.52 4.066 2.23 30 99.86 1.26 L 
7.62 3.05 0.8 101.66 4.38 1.52 2.033 1.12 30 394.23 1.13 L 
7.62 3.05 0.8 101.66 4.38 1.52 1.017 0.56 30 1571.73 1.04 L 
7.62 2.13 0.8 59.55 3.66 0.46 2.381 14.51 90 6.31 1.25 L 
7.62 2.13 0.8 59.55 3.66 0.46 1.191 7.26 90 25.23 1.11 L 
7.62 2.13 0.8 59.55 3.66 0.46 0.595 3.63 90 100.92 1.01 L 
7.62 2.13 0.8 59.55 3.66 0.46 2.381 14.51 45 9.92 1.01 L 
7.62 2.13 0.8 59.55 3.66 0.46 1.191 7.26 45 36.68 1.01 L 
7.62 2.13 0.8 59.55 3.66 0.46 0.595 3.63 45 143.72 1.01 L 
7.62 2.13 0.8 59.55 3.66 0.46 2.381 14.51 30 14.35 1.01 L 
7.62 2.13 0.8 59.55 3.66 0.46 1.191 7.26 30 52.19 1.01 L 
7.62 2.13 0.8 59.55 3.66 0.46 0.595 3.63 30 203.57 1.01 L 
7.62 2.13 0.8 59.55 3.66 0.91 2.381 3.63 90 25.23 1.38 L 
7.62 2.13 0.8 59.55 3.66 0.91 1.191 1.81 90 100.92 1.13 L 
7.62 2.13 0.8 59.55 3.66 0.91 0.595 0.91 90 403.67 1.03 L 
7.62 2.13 0.8 59.55 3.66 0.91 2.381 3.63 45 36.68 1.18 L 
7.62 2.13 0.8 59.55 3.66 0.91 1.191 1.81 45 143.72 1.09 L 
7.62 2.13 0.8 59.55 3.66 0.91 0.595 0.91 45 571.87 1.01 L 
7.62 2.13 0.8 59.55 3.66 0.91 2.381 3.63 30 52.19 1.17 L 
7.62 2.13 0.8 59.55 3.66 0.91 1.191 1.81 30 203.57 1.08 L 
7.62 2.13 0.8 59.55 3.66 0.91 0.595 0.91 30 809.06 1.01 L 
7.62 2.13 0.8 59.55 3.66 1.52 2.381 1.31 90 70.08 1.38 L 
7.62 2.13 0.8 59.55 3.66 1.52 1.191 0.65 90 280.32 1.14 L 
7.62 2.13 0.8 59.55 3.66 1.52 0.595 0.33 90 1121.30 1.04 L 
7.62 2.13 0.8 59.55 3.66 1.52 2.381 1.31 45 100.11 1.3 L 
7.62 2.13 0.8 59.55 3.66 1.52 1.191 0.65 45 397.44 1.13 L 
7.62 2.13 0.8 59.55 3.66 1.52 0.595 0.33 45 1586.75 1.03 L 
7.62 2.13 0.8 59.55 3.66 1.52 2.381 1.31 30 141.89 1.29 L 
7.62 2.13 0.8 59.55 3.66 1.52 1.191 0.65 30 562.38 1.13 L 
7.62 2.13 0.8 59.55 3.66 1.52 0.595 0.33 30 2244.32 1.02 L 
7.62 1.22 0.8 25.71 2.77 0.46 1.028 6.26 90 11.05 1.3 L 
7.62 1.22 0.8 25.71 2.77 0.46 0.514 3.13 90 44.20 1.16 L 
7.62 1.22 0.8 25.71 2.77 0.46 0.257 1.57 90 176.82 1.04 L 
7.62 1.22 0.8 25.71 2.77 0.46 1.028 6.26 45 16.63 1.11 L 
7.62 1.22 0.8 25.71 2.77 0.46 0.514 3.13 45 63.52 1.06 L 
7.62 1.22 0.8 25.71 2.77 0.46 0.257 1.57 45 251.06 1.02 L 
7.62 1.22 0.8 25.71 2.77 0.46 1.028 6.26 30 23.83 1.04 L 
7.62 1.22 0.8 25.71 2.77 0.46 0.514 3.13 30 90.14 1.03 L 
7.62 1.22 0.8 25.71 2.77 0.46 0.257 1.57 30 355.37 1.01 L 
7.62 1.22 0.8 25.71 2.77 0.91 1.028 1.57 90 44.20 1.35 L 
7.62 1.22 0.8 25.71 2.77 0.91 0.514 0.78 90 176.82 1.15 L 
7.62 1.22 0.8 25.71 2.77 0.91 0.257 0.39 90 707.28 1.05 L 
7.62 1.22 0.8 25.71 2.77 0.91 1.028 1.57 45 63.52 1.28 L 
7.62 1.22 0.8 25.71 2.77 0.91 0.514 0.78 45 251.06 1.12 L 
7.62 1.22 0.8 25.71 2.77 0.91 0.257 0.39 45 1001.24 1.03 L 
7.62 1.22 0.8 25.71 2.77 0.91 1.028 1.57 30 90.14 1.27 L 
7.62 1.22 0.8 25.71 2.77 0.91 0.514 0.78 30 355.37 1.13 L 
7.62 1.22 0.8 25.71 2.77 0.91 0.257 0.39 30 1416.29 1.01 L 
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Table A9. FLOW-3D simulation results for W = 15.24 m (50’) and Fr = 0.8. 

W 
(m) 

H0 
(m) 

Fr (-
) 

Q 
Chan. 
(m3/s) 

V Chan. 
(m/s) 

D Pipe 
(m) 

q Pipe 
(m3/s) 

v Pipe 
(m/s) 

θ Junc. 
(deg.) 

𝐐𝐕 + 𝐪𝐯(𝐜𝐨𝐬 𝛉)𝐪𝐯(𝐬𝐢𝐧 𝛉)  
𝐇𝐇𝟎 Impact 

15.24 3.05 0.8 203.32 4.38 0.46 2.033 12.39 90 35.33 1.03 L 
15.24 3.05 0.8 203.32 4.38 0.46 1.017 6.20 90 141.30 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.46 2.033 12.39 45 50.96 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.46 1.017 6.20 45 200.83 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.46 2.033 12.39 30 72.38 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.46 1.017 6.20 30 284.33 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.91 4.066 6.20 90 35.33 1.18 L 
15.24 3.05 0.8 203.32 4.38 0.91 2.033 3.10 90 141.30 1.05 L 
15.24 3.05 0.8 203.32 4.38 0.91 1.017 1.55 90 565.20 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.91 4.066 6.20 45 50.96 1.04 L 
15.24 3.05 0.8 203.32 4.38 0.91 2.033 3.10 45 200.83 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.91 1.017 1.55 45 800.31 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.91 4.066 6.20 30 72.38 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.91 2.033 3.10 30 284.33 1.01 L 
15.24 3.05 0.8 203.32 4.38 0.91 1.017 1.55 30 1132.13 1.01 L 
15.24 3.05 0.8 203.32 4.38 1.52 4.066 2.23 90 98.13 1.17 L 
15.24 3.05 0.8 203.32 4.38 1.52 2.033 1.12 90 392.50 1.04 L 
15.24 3.05 0.8 203.32 4.38 1.52 1.017 0.56 90 1570.00 1.01 L 
15.24 3.05 0.8 203.32 4.38 1.52 4.066 2.23 45 139.77 1.1 L 
15.24 3.05 0.8 203.32 4.38 1.52 2.033 1.12 45 556.08 1.03 L 
15.24 3.05 0.8 203.32 4.38 1.52 1.017 0.56 45 2221.32 1.01 L 
15.24 3.05 0.8 203.32 4.38 1.52 4.066 2.23 30 197.98 1.09 L 
15.24 3.05 0.8 203.32 4.38 1.52 2.033 1.12 30 786.73 1.01 L 
15.24 3.05 0.8 203.32 4.38 1.52 1.017 0.56 30 3141.73 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.46 2.381 14.51 90 12.61 1.16 L 
15.24 2.13 0.8 119.07 3.66 0.46 1.191 7.26 90 50.45 1.03 L 
15.24 2.13 0.8 119.07 3.66 0.46 0.595 3.63 90 201.79 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.46 2.381 14.51 45 18.84 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.46 1.191 7.26 45 72.34 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.46 0.595 3.63 45 286.37 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.46 2.381 14.51 30 26.96 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.46 1.191 7.26 30 102.62 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.46 0.595 3.63 30 405.30 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.91 2.381 3.63 90 50.45 1.18 L 
15.24 2.13 0.8 119.07 3.66 0.91 1.191 1.81 90 201.79 1.07 L 
15.24 2.13 0.8 119.07 3.66 0.91 0.595 0.91 90 807.14 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.91 2.381 3.63 45 72.34 1.08 L 
15.24 2.13 0.8 119.07 3.66 0.91 1.191 1.81 45 286.37 1.03 L 
15.24 2.13 0.8 119.07 3.66 0.91 0.595 0.91 45 1142.47 1.01 L 
15.24 2.13 0.8 119.07 3.66 0.91 2.381 3.63 30 102.62 1.08 L 
15.24 2.13 0.8 119.07 3.66 0.91 1.191 1.81 30 405.30 1.02 L 
15.24 2.13 0.8 119.07 3.66 0.91 0.595 0.91 30 1616.01 1.01 L 
15.24 2.13 0.8 119.07 3.66 1.52 2.381 1.31 90 140.13 1.17 L 
15.24 2.13 0.8 119.07 3.66 1.52 1.191 0.65 90 560.51 1.06 L 
15.24 2.13 0.8 119.07 3.66 1.52 0.595 0.33 90 2242.06 1.02 L 
15.24 2.13 0.8 119.07 3.66 1.52 2.381 1.31 45 199.17 1.12 L 
15.24 2.13 0.8 119.07 3.66 1.52 1.191 0.65 45 793.69 1.04 L 
15.24 2.13 0.8 119.07 3.66 1.52 0.595 0.33 45 3171.75 1.01 L 
15.24 2.13 0.8 119.07 3.66 1.52 2.381 1.31 30 281.99 1.12 L 
15.24 2.13 0.8 119.07 3.66 1.52 1.191 0.65 30 1122.76 1.05 L 
15.24 2.13 0.8 119.07 3.66 1.52 0.595 0.33 30 4485.85 1.01 L 
15.24 1.22 0.8 51.40 2.77 0.46 1.028 6.26 90 22.09 1.2 L 
15.24 1.22 0.8 51.40 2.77 0.46 0.514 3.13 90 88.36 1.09 L 
15.24 1.22 0.8 51.40 2.77 0.46 0.257 1.57 90 353.44 1.02 L 
15.24 1.22 0.8 51.40 2.77 0.46 1.028 6.26 45 32.24 1.07 L 
15.24 1.22 0.8 51.40 2.77 0.46 0.514 3.13 45 125.96 1.04 L 
15.24 1.22 0.8 51.40 2.77 0.46 0.257 1.57 45 500.85 1.01 L 
15.24 1.22 0.8 51.40 2.77 0.46 1.028 6.26 30 45.91 1.02 L 
15.24 1.22 0.8 51.40 2.77 0.46 0.514 3.13 30 178.45 1.01 L 
15.24 1.22 0.8 51.40 2.77 0.46 0.257 1.57 30 708.62 1.01 L 
15.24 1.22 0.8 51.40 2.77 0.91 1.028 1.57 90 88.36 1.24 L 
15.24 1.22 0.8 51.40 2.77 0.91 0.514 0.78 90 353.44 1.08 L 
15.24 1.22 0.8 51.40 2.77 0.91 0.257 0.39 90 1413.78 1.02 L 
15.24 1.22 0.8 51.40 2.77 0.91 1.028 1.57 45 125.96 1.19 L 
15.24 1.22 0.8 51.40 2.77 0.91 0.514 0.78 45 500.85 1.07 L 
15.24 1.22 0.8 51.40 2.77 0.91 0.257 0.39 45 2000.38 1.01 L 
15.24 1.22 0.8 51.40 2.77 0.91 1.028 1.57 30 178.45 1.16 L 
15.24 1.22 0.8 51.40 2.77 0.91 0.514 0.78 30 708.62 1.01 L 
15.24 1.22 0.8 51.40 2.77 0.91 0.257 0.39 30 2829.29 1.01 L 
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