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Abstract: Parametrising the spatially distributed dynamic catchment water balance is a critical factor
in studying the hydrological system responses to climate and land use changes. This study presents
the development of a geographic information system (GIS)-based set of algorithms (geographical
spatially distributed water balance model (GEO-CWB)), which is developed from integrating physical,
statistical, and machine learning models. The GEO-CWB tool has been developed to simulate and
predict future spatially distributed dynamic water balance using GIS environment at the catchment
scale in response to the future changes in climate variables and land use through a user-friendly
interface. The tool helps in bridging the gap in quantifying the high-resolution dynamic water balance
components for the large catchments by reducing the computational costs. Also, this paper presents
the application and validation of GEO-CWB on the Shannon catchment in Ireland as an example of a
large and complicated hydrological system. It can be concluded that climate and land use changes
have significant effects on the spatial and temporal patterns of the different water balance components
of the catchment.

Keywords: dynamic water balance; GIS; large catchment; machine learning; climate change

1. Introduction

The effectiveness of water resources management and policies needs to consider the dynamic
nature of any catchment’s water balance in order to develop innovative strategies for the future. Hence,
future management planning scenarios and policies for a specific catchment should integrate a dynamic
water balance with future changes in climate variables and land use in a spatially distributed form. This
integration allows decision makers and water resources modellers to predict climate change impacts
and land use effects with more confidence in simulations for future scenarios or plans. A spatially
distributed dynamic water balance across a catchment is defined as the mathematical simulation to
track the changes in water budget spatially and temporally [1–3].

Most studies on catchment water balances focus on the calculation of mean annual quantities as
absolute values for the catchment without addressing the spatial variability of the dynamical water
balance components, for example, [4–8]. However, spatial and temporal variability can be significant
factors in many catchments.

Although long-term dynamic water balance trends and variations estimations are required for
sustainable water resource planning and management, mapping spatial variability of the dynamic
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water balance components are essential for quantifying the impacts of climate change on different
environmental systems [6,8,9].

Land use, anthropogenic activities, and climate change can significantly affect the dynamic
catchment water balance. Irrigation, which is one of the significant land use-related activities, is one of
the main factors that affects the water balance across the globe [10–16].

Hydrological modelling is a simplified simulation of the real-world system, and, usually, the best
model is the one that gives the closest results to reality. During the last decade, many hydrological
models have been developed and used to study different hydrological process through simulating
the catchment water balance, these models are classified under empirical models, conceptual models,
and physical-based models [17–19]. Different datasets would be needed to run different hydrological
models. However, physical-based models, such as MIKE SHE, and Soil and Water Assessment Tool
(SWAT), can be the classified as the ones that would need the most significant datasets to run, which
might not be available for a large number of catchments. Other models for comprehensively describing
the hydrology process can be used, such as Sacramento Soil Moisture Accounting (SAC-SMA) model.
SAC-SMA is a continuous soil moisture quantifying model with spatially distributed lumped variables
that model the surface runoff within a basin [20]. In order to study the dynamic water balance at the
catchment scale, an integrated modelling framework needs to be designed, integrating conceptual,
empirical, and physical concepts. Such a model would facilitate modelling the ungagged catchment by
applying different modelling techniques such as machine learning and geostatistical modelling. The
designed model should contain groundwater modelling, vegetation mapping, hydro-geochemical, and
climatic/land physiographic analysis in a geographic information system (GIS) platform to take into
account the multidimensional case of the dynamic water balance estimation process [21–24].

This study contributes to the understanding of the spatially distributed dynamic water balance
calculation in response to climate and land use changes conditions over variable time scales by
developing geographical spatially distributed water balance model (GEO-CWB) as a user-friendly
set of GIS algorithms. This study describes and illustrates the developed catchment dynamic water
balance model (GEO-CWB) in terms of the concept, the general framework, the physical basis, and its
integration with the GIS platform.

GEO-CWB works on the integration of physical-based models and formulas, statistics, and
computer learning techniques. This multi-stage and multi-scale system fills the gap in the current
state of the art models regarding combining several environmental systems effects such as climate
and land use change on the hydrological systems. It also helps in bridging the gap in quantifying
the high-resolution dynamic water balance components for the large catchments by reducing the
computational costs. Also, this paper presents the application of GEO-CWB on the Shannon catchment
in Ireland as an example of a large and complicated hydrological system. This paper presents the
simulated and projected annual, winter, and summer average raster maps and results for the GEO-CWB
outputs for each simulated land use and climate change scenario for the baseline period and the three
projected periods 2020, 2050, and 2080.

2. Materials and Methods

2.1. The Conceptualisation of GEO-CWB Framework

The main idea behind GEO-CWB is to use different integrated modelling methods such as machine
learning, physical representation, and geostatistical modelling in order to simplify the simulation of
such a complicated environmental problem. The model simulates three different systems, which are
climate, land use, and the hydrological system; these simulations capture the geographical changes
in addition to temporal changes from climate and land use on the simulated hydrological system.
This integration between all the multi-stage modelling processes for the large catchment gives the
GEO-CWB an advantage on the other available models, which are limited to small catchment system
without the integration between all the modelling stages. In such models, due to computation and
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practical issues, it would be impossible to include all the known processes in each system in the
computation process. Also, it would be challenging to get the physical model or relationship behind
each step in the simulation. This is the reason for the use of statistically based models and machine
learning techniques in the design of the developed model.

In GEO-CWB, physical-based models have been used in the simulation of hydrological systems
and the calculation of different components of the dynamic water balance such as runoff and subsurface
water component. The use of physical-based relationships at this stage (see Figure 1) gives the ability
to do the multi-iteration process in the simulation without checking the different assumptions inherent
in other techniques (such as the assumption of normality for some statistical-based models). Figure 1
shows the relationship between the main GEO-CWB simulation steps: Climate change, land use, and
water balance modelling. It shows how the model deals with the spatial and temporal scales in the
simulations, and it illustrates that the machine learning techniques are applied in order to get the
fine temporal scale outputs for the hydrological parameters. During the dynamical water balance
stage, the model works on a high spatial resolution and a fixed temporal scale, which is a monthly
time step, after that the results from the water balance stage with the monthly time step are fed to
the machine learning techniques in order to work on the finer temporal scale (daily). As illustrated
in Figure 1, statistical-based techniques have been used in the fine-scale resolution downscaling for
climate simulations. Statistically based models have been used widely in addressing complicated
hydrological problems [25–29]. In the developed framework, statistical-based models and machine
learning techniques play a crucial role in the parameters scaling process in both spatial and/or temporal
dimensions. GEO-CWB provides the ability to use a series of produced land use/cover scenarios using
the cellular automata method [29–33] and spatial regression models over a defined temporal scale. GIS
is the platform used to run GEO-CWB. This gives GEO-CWB three main advantages: (i) the ability to
work with multidimensional files and phenomena, (ii) the ability to reuse the output from GEO-CWB
as inputs for other impact models because of the flexibility with the file formats, and (iii) providing a
simple, user-friendly interface for such a complicated tool, so the user does not need to use any coding
to complete the simulation process.
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Figure 1. Geographical spatially distributed water balance model (GEO-CWB) general framework.

2.2. GEO-CWB: The Physical Base and Algorithm Design

For the GEO-CWB design process, an integrated approach was adopted to combine all of the
simulation processes. This approach, invented in this study, is named as the Pixelated Cubical Balance
Approach (PCBA). The idea behind PCBA is to describe the model as a three-dimensional problem
moving within a particular time scale, which turns the problem to multidimensional problem, or a
four-dimensional problem. The imaginary model extent can be divided into three-dimensional cubes,
each cube can be assumed as a single isolated cell moving in time which can be solved against a
particular phenomenon by applying its related baseline and boundary conditions. PCBA divides the
model extent to small cubes, the higher the number of cubes, the higher the accuracy, with each small
cube having its simulation process, which happens within the same time scale. The PCBA concept is
applied in GEO-CWB in order to simplify the multidimensional scale complication problem and to
allow the linkage between the physical and statistical-based models.

Every single pixel in the domain in each time step runs through the GEO-CWB designed algorithm
(Appendix A (Figure A1) and Appendix B), using the input rasterised datasets, as following:

• Land cover: Vegetation area fraction, bare area fraction, impervious area fraction, open water area
fraction, rooting depth, leaf area index, minimal stomatal resistance, interception percentage, and
vegetation height.

• Precipitation.
• Potential evapotranspiration.
• Wind speed.
• Temperature.
• Groundwater level.
• Soil texture: Porosity, wilting point, field capacity, residual water content, a soil empirical

parameter for Evapotranspiration (ET) calculation, plant available water, tension saturated height,
and soil evaporation depth.
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• Slope.
• Topography: Digital Elevation Model DEM raster.
• Average porosity (as a single value) or average porosity raster.
• Runoff coefficients: this table contains the runoff coefficients for each single combination of soil,

slope, and land use types.

The use of these parameters in GEO-CWB is illustrated in the subsections below.
The following assumptions were made as part of the development of GEO-CWB:

1. GEO-CWB does not take into account the bedrock geologies of the catchment, so at the moment,
it is not possible to get the absolute groundwater recharge value because the data is not available
for the Shannon catchment [34]. GEO-CWB instead uses the recharge caps applied to different
geological aquifers, which are available for Ireland. So, the aquifer can only accept up to a
maximum amount of water. Anything more than this leads to an increase in the subsurface
flow/runoff via shallow subsoil pathways [35,36]. These kinds of caps and levels have lots of
variabilities and uncertainties in addition to the fact that they are not mapped or available for the
Shannon catchment at both temporal and spatial scales. GEO-CWB calculates the subsurface
water component which includes both the subsurface flow and the groundwater recharge. The
model separates the two main components, subsurface flow and groundwater recharge, once the
spatially distributed data for the recharge caps are available.

2. The actual evapotranspiration, soil evaporation, and transpiration components for the
catchment are calculated based on pre-calculated potential evapotranspiration maps. As
the actual evapotranspiration is the summation of some calculated sub-fractions of Potential
Evapotranspiration (PET) as illustrated in the GEO-CWB equations illustrated in the next sections.
Depending on which fraction of each cell is being modelled, the evapotranspiration could be
equal to PET (open water fraction) or fraction of it (bare soil or impervious surface fractions) or
just equal to the simulated transpiration (vegetated fraction).

3. GEO-CWB calculates evapotranspiration and interception components individually, which
means that the total water loss from precipitation in the catchment is the summation of the two
components. A summary of the GEO-CWB assumptions and limitations is provided in Table 1.

Table 1. Assumptions and limitations that have been used in GEO-CWB related to different water
balance component.

Output Parameters Assumptions/Limitations

Surface Runoff
It represents the direct surface runoff, and it does not include the
subsurface runoff (subsurface flow via shallow subsoil pathways)

Subsurface water This includes many components mainly subsurface flow via shallow
pathways and the groundwater recharge component.

Interception
Based on the vegetation type interception fraction represents a constant
percentage of the annual precipitation value, which is the main part of

the total water loss in the catchment.

Evapotranspiration

Depending on which fraction of each cell is being modelled, the
evapotranspiration could be equal to PET (open water fraction) or

fraction of it (bare soil or impervious surface fractions) or just equal to
the simulated transpiration (vegetated fraction).

Soil evaporation Based on the soil type, soil evaporation is a fraction of the PET.

Transpiration
Based on the vegetation type, root depth, groundwater level, soil

moisture, tension saturated height, temperature, and many other factors,
transpiration is calculated for the vegetated fraction of each cell.
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2.2.1. GEO-CWB Calculation Stages

In order to parameterise the hydrological response of a catchment to the changes in climate and
land use, GEO-CWB has several simulation stages as follows:

2.2.2. GEO-CWB-Stage (1)—Dynamical Water Balance

As illustrated in the previous section, GEO-CWB divides the model domain into pixels and then
runs the simulation for each pixel, so each calculation step has to be run for every single pixel. Figure 2
shows the GEO-CWB single-cell water balance components.

Figure 2. GEO-CWB single-cell water balance components (adapted from [37]).

In this stage of GEO-CWB, individual dynamical pixel water balance is calculated by summing
up the independent pixel’s subdivision simulated water balance. Depending on the land use type
assigned to each pixel, GEO-CWB divides the upper pixel’s surface, into the vegetated area, bare soil
area, open- water bodies, and impervious area. The dynamic water balance parameters, which were
used in the first stage of the framework, are listed with the assumptions associated with them.

The water balance components of vegetated, bare-soil, open-water, and impervious surfaces were
used to calculate the total water balance of a raster cell. A precipitation event was taken as a starting
point for the computation of the water balance of each of the above-mentioned components of a raster
cell, the rest of the processes (runoff, interception, evapotranspiration, and recharge) follow in an
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orderly manner, see Appendix A (Equation (35)–Equation (38)). This order became a prerequisite for
the dynamical monthly time scale within which the processes will be quantified. Appendix A shows
the flowchart for the dynamic water balance simulation stage; the flowchart shows that for every single
pixel in the model extent, GEO-CWB divides and carries out the pixel simulation, as defined in the
following sections.

As illustrated in the flowchart, Appendix A, GEO-CWB divided the modelled area into pixels (50
m by 50 m in the Shannon case study), and then it divided each pixel into fractions (vegetated, open
water, bare soil, and impervious surface) each fraction is moving in the time frame (has a temporal
dimension). Modelling the water balance using the baseline data and the boundary conditions for
every single fraction can be done in a simple and fast way: Each fraction was solved separately and
then all the fractions were merged for a single pixel. After running the described simulation for each
pixel in the model extent, using all the time steps within the defined temporal dimension, GEO-CWB
can then process the large catchment dynamical water balance.

The water balance for a vegetated area depends on the mean seasonal precipitation, interception
fraction, surface runoff, actual transpiration, and groundwater recharge. The equations are detailed in
Appendix B (Equation (1)–Equation (42)).

Depending on the type of vegetation, the interception fraction represents a constant percentage of
the annual precipitation value. Thus, the fraction decreases with an increase in an annual total rainfall
amount (since the vegetation cover is assumed to be constant throughout the simulation period).
Surface runoff was calculated based on precipitation amount, precipitation intensity, interception, and
soil infiltration capacities, using the surface runoff coefficient for vegetated infiltration areas. The
surface runoff coefficient is a function of vegetation type, soil type, and slope. Saturated surface
runoff occurs in groundwater discharge areas giving rise to a very high surface runoff coefficient. This
was due to the reduced dependency on soil, vegetation type, and the vicinity of the area to the river,
and was, usually, assumed to be constant. The actual surface runoff is calculated by considering the
differences in precipitation intensities and soil infiltration capacities. For example, the coefficient to
calculate the actual surface runoff from the potential surface runoff for the groundwater discharge areas
is equal to unity since all intensities of precipitation contribute to surface runoff. Only high-intensity
storms can generate surface runoff in infiltration areas.

Evapotranspiration depends on which fraction of each cell was being modelled; the
evapotranspiration could be equal to PET (open water fraction) or fraction of it (bare soil or
impervious surface fractions) or just equal to the simulated transpiration (vegetated fraction). The
evapotranspiration calculation depends on the reference value of transpiration, which was obtained
from open-water evaporation value and a vegetation coefficient as outlined in the Penman method [38].
The vegetation coefficient can be calculated as the ratio of reference vegetation transpiration to
the potential open-water evaporation [38]. For vegetated groundwater discharge areas, the actual
transpiration was equal to the reference transpiration as there is no soil or water availability.

The last component, which was the subsurface water component, was then calculated as a residual
term of the water balance. This component includes, mainly, a subsurface flow component via shallow
pathways and the groundwater recharge component. In general, if the catchment that is being modelled
has a shallow sand/gravel aquifer, this subsurface water component will be equal to the groundwater
recharge. However, in Ireland a lot of the country is covered in so-called low productivity aquifers
where they have an annual recharge cap and the spatially and temporally distributed data for these
cap values for the Shannon catchment are not currently available. The spatially distributed subsurface
water component was therefore estimated from the vegetation type, soil type, slope, groundwater
depth, and climatic variables of precipitation, potential evapotranspiration, temperature, and wind
speed. Also, the subsurface water component will be associated with discharge areas, owing to the
concept that there was a thin unsaturated zone present even in discharge areas, though this may not
have been the case in the summer season. In the summer season, there is high potential transpiration
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due to vegetation and these result in negative subsurface water component values in discharge areas.
In some cases, high winter subsurface water component will compensate for the negative values.

There are two ways of incorporating the change in storage into the model on a seasonal basis. The
first was by using different groundwater depth values for winter and summer, while in the second
case, the plant available soil moisture reservoir in the winter was assumed to be filled up (i.e., at field
capacity) but can be depleted in the summer. A similar procedure to that on vegetated surfaces was
followed for the calculation of water balance for bare-soil, open-water, and impervious surfaces. The
only difference was that there was no vegetation in these cases, and thus, there were no interception
and transpiration terms, see Equation (16)–Equation (34) in Appendix B. To conclude the concepts
used in GEO-CWB model in relation to the rainfall-infiltration-runoff computation were based on
using a rationale method through actual surface runoff and soil moisture coefficient. Surface runoff

was calculated for each pixel and time step using the rational method, which relates runoff peak
discharge to rainfall intensity. This was a purely empirical method that correlates peak discharge to
catchment characteristics. Once the surface runoff is calculated and the rest of the pixel water balance
components were estimated, as discussed above, the only missing component was the subsurface
water component which includes infiltration and groundwater recharge and is calculated using the
equations in Appendix B.

2.2.3. GEO-CWB-Stage (2)—Surface Runoff Iteration (Calibration Process)

The main aim of this stage was to recalculate the subsurface water component and surface runoff

maps by iterating the groundwater depth variable.
The inputs in this stage will be the output from the first stage, and the outputs will be the same

variables but after the iteration, all the outputs will have the number two in the file name to indicate
that this file was the final map for this parameter, which has resulted from the stage (2).

The main function of this stage was to recalculate the groundwater depth as a response to the
simulated subsurface water component and runoff values, then reuse the new groundwater depth
values to get the subsurface water component and runoff values; the process was an iteration loop,
which stops when the last 10 iterations are equal.

The GEO-CWB calibration process was based on the second stage iteration process of tuning the
model based on the measured groundwater levels. The R2 for the calibration process after completing
the iteration is 79.3%. After the calibration process of the GEO-CWB against the measured groundwater
levels in the stage (2) by the iteration process for the surface runoff results, the results of the model
need were validated, see Section 3.1. The calibration of the GEO-CWB has shown good results for
the simulated parameters, but the model needs further work on developing parameters’ calibration
protocol. More parameters had to be taken into account to obtain better results, and surface storage
was one of the main settings that needed to be taken into account in the calibration process.

2.2.4. GEO-CWB-Stage (3)—Climate and Land Use Vulnerability Parameters

This stage of GEO-CWB aimed to calculate parameters using the outputs from all the previous
stages to assess the vulnerability to climate and land use changes for each climatic period and land use
scenario. The calculated parameters were as following:

• The accumulated runoff volume in the rainy season was an indication of how much runoff water
could be harvested every year during the rainy season.

• The safe yield groundwater abstraction rate expressed in (m3/d/ha). GEO-CWB produced
groundwater safe yield maps, which estimated how much groundwater can be pumped sustainably
without depleting the groundwater resources. Safe yield is usually expressed as a percentage
of the groundwater recharge. Several authors from the least conservative 100% to a reasonably
conservative 10% have suggested different values [39–41]. In general, sustainable yield should
be considerably less than the groundwater recharge to sustain both the quantity and quality
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of streams, springs, wetlands, and groundwater dependent ecosystems [39–41]. Based on the
different studies reviewed, GEO-CWB adapted the 25% as a sustainable groundwater yield
percentage from the calculated subsurface water component. This was a simplistic formula for a
country such as Ireland which has such differences in geology and aquifer types, so the results for
Shannon were just a good indication for the decision makers.

• The water deficit for ideal crop growth (WD) can be estimated as the difference between the crop
water requirement and the actual evapotranspiration that was feasible only by rainfall. The crop
water requirement can be defined as the amount of water needed to meet the water loss through
evapotranspiration for optimal crop growth, which can be estimated as a crop coefficient time’s
reference evapotranspiration of well-watered grass [42,43]. Crop coefficients vary between 0.70
and 1.15 depending on crop type and growing stage. The crop coefficient can be assumed to be
one and reference evaporation to equal PET, which allows an estimation of how much water was
needed for supplementary irrigation for optimal crop growth [44,45]. This calculation can be
made on an annual basis, but it was more interesting to do this separately for the summer season,
and the winter season, GEO-CWB used Equation (42) in Appendix B, where WD was the water
deficit, PET was the potential evapotranspiration, ET was the actual evapotranspiration, and Dn
was the number of days in the season.

2.2.5. GEO-CWB-Stage (4)-Statistics Tables

This stage imported all the outputs from all the previous stages and ran spatial statistical algorithms
to get the following statistical parameters for each resulted raster file. The results were exported as
Excel tables (.csv files).

• The frequency
• The summation of all the cells
• The mean of all cells
• The minimum value
• The maximum value
• The range
• The standard deviation
• The count of the cell numbers

Table A1 in the appendix shows a summary of the annual, summer, and winter rasters’ areal
statistics for all simulated water balance components by GEO-CWB for the baseline period and the
projected periods with the calculated average values of the error in the simulated water balance for the
case study.

2.2.6. GEO-CWB Integration with GIS

GEO-CWB was fully integrated into the GIS platform; the model is a geospatial multi-dimensional
model written in Python and uses ArcMap from ESRI as a running environment. GEO-CWB has a
friendly interface integrated into the ArcMap toolbox, which means that the user does not need to
use any coding to run the model. The user interfaces for GEO-CWB are presented in Appendix C
(Figures A1–A5).

2.3. GEO-CWB Application: Climate and Land Use Changes Effects on the Shannon River Catchment

This section provides the results of applying GEO-CWB on the Shannon catchment in Ireland
as an example of a large and complicated hydrological system. This study shows the simulated and
projected annual, winter, and summer average raster maps and results for the GEO-CWB outputs for
each land use and climate change scenario for the baseline period and the three projected periods 2020,
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2050, and 2080. The baseline period is defined as the long-term average raster data from 1961 to 2000.
This section also shows the validation process for the GEO-CWB simulations.

2.4. Data Setup and Study Area

This study presents the primary results of the calculated PETS for both the baseline period
and the future periods, based on climate change projections, for the Shannon River catchment in
Ireland [13,32,46–49]. The River Shannon catchment, the focus of this study, is the largest transboundary
river system and catchment in the island of Ireland and one of the most important water and power
resources in the Republic of Ireland, see Figure 3.

Figure 3. Location map for the Shannon River catchment.

In this study, GEO-CWB simulated different scenarios based on the different inputs scenarios
of climate, potential evapotranspiration, and land use scenarios simulated by [32,46,47,49]. The
GEO-CWB inputs in this study are listed as follows:

• Land cover scenarios simulated by [32].
• Precipitation simulated by [49].
• Potential evapotranspiration simulated by [46].
• Wind speed simulated by [49].
• Temperature simulated by [49].
• Groundwater level obtained from Geological Survey Ireland (GSI).
• Soil texture obtained from GSI.
• Slope obtained from NASA’s Shuttle Radar Topography Mission (SRTM).
• Topography (DEM raster) obtained from NASA’s SRTM.
• Average porosity derived from data collected by GSI.
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• River flow and levels data which were obtained from Irish Environmental Protection Agency
(EPA), Office of Public Works (OPW), and Electricity Supply Board (ESB).

Regarding the land cover/use scenarios, in this study, GEO-CWB used four different land cover
scenarios baselines, 2020, 2050, and 2080 obtained from [32]. Gharbia et al. [32] showed that the
Shannon Basin area indicated an increase of urban area around 1.75% in 2020 from the baseline, which
is a total of 28.53 km2 of land will be converted into urban areas in 2020. The simulated increase of
urban area in 2050 was around 2.34%, which is a total of 136.38 km2 of land will be converted into
urban areas in 2050. However, the simulations showed that the Shannon Basin area indicated an
increase of the urban area of 2.92% in 2080, which is a total of 244.05 km2 of land will be converted
into urban areas in 2080. That means the overall urban change percentage from baseline scenario to
2080 will be 83.37%. Most of the urban area will come from the conversion of agricultural to urban
areas; also, a small portion of the increase will be from converting wetlands and forest to an urban area.
Climatic variables and scenarios were adapted from [47,49]. In addition to the baseline period, climate
change projections for the Shannon River Basin District were obtained from multi Global Climate
Model (GCM) ensembles for three future time intervals (2020, 2050, and 2080) using a range of different
representative concentration pathways (RCPs). The climate change models were based upon two
different RCPs; using a radiative forcing of 4.5 W/m2 and 8.5 W/m2, respectively, which were produced
from 50% (median) and 75% (3rd quartile) multi-GCM ensembles results.

In general, Gharbia et al. [49] simulations results show that temperature will increase every year,
in particular, RCP 8.5 (75%) has the highest increasing rate (1.85 ◦C in 2080 as an average over Shannon
catchment), which is consistent with the global rise in air temperatures. Gharbia et al. [49] concluded
that all seasons would have an increase in temperature with the highest increases occurring in the
spring and summer. Trends in precipitation show greater regional variation than temperatures, with
occasional conflicting trends from stations which are geographically relatively close. However, there
is evidence of an increase in the quantity of precipitation with time in general, except for RCP 4.5
(50%) values, they are higher in 2050 than 2080 and that because of the different adapted parameters
in the downscaled GCMs in that particular climate scenario. Gharbia et al. [49] show that RCP 8.5
(75%) would predict the highest future precipitation quantities over the catchment. Gharbia et al. [49]
provide multidimensional climatological datasets and simulations for the Shannon River catchment
based on four future scenarios RCP4.5(50%), RCP4.5(75%), RCP8.5(50%), and RCP8.5(75%). The same
scenarios were developed for potential evapotranspiration by [46], and they have been used in his
study as input from the GEO-CWB.

3. Results and Discussion

3.1. GEO-CWB Validation

After the calibration process of the GEO-CWB against the measured groundwater levels in the
stage (2) by the iteration process for the surface runoff results, the results of the model need to be
validated. The spatial scale used in the application of GEO-CWB on the Shannon River catchment was
50m and the temporal scale was daily time steps. The results of the GEO-CWB model are validated
against river flow observations for selected hydrometric stations for the Shannon River catchment,
see Figure 4. The river flow data was collected by the Irish EPA, OPW, and ESB data which are
available as daily values covering the period from 1972 to 2014. Accumulated monthly river flows
were calculated and then accumulated to annual flows at the seven gauging stations, representing the
main sub-catchments, then the average daily values got calculated, as shown in Table 2. In order to
estimate the annual river discharge at the river gauging stations from the GEO-CWB results, surface
runoff and subsurface water component, which includes subsurface water flow and groundwater
recharge, were accumulated based on topography for the baseline period simulation, see Figure 5.
Because surface runoff flows downgradient, it was possible to calculate the accumulated surface
runoff at each point in the basin, using the standard hydrology GIS toolbox. The accumulated surface
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runoff represents the direct river flow. For the baseflow, it follows from the groundwater balance that
long-term average drainage of groundwater should equal the groundwater recharge minus possible
groundwater abstractions such as pumping wells. The groundwater abstraction can be ignored in the
Shannon river catchment because most of the water consumption was taken from the surface water
and any wells are only domestic with very small pumping rates compared to the total recharge [50].

The relationships between areas where groundwater recharge and discharge are occurring depend
upon the groundwater flow system in the catchment, which is largely unknown and complicated
in the Shannon River catchment. Groundwater flow systems are often strongly conditioned by
topography [51–54]. As an approximation, it was assumed that the groundwater flow was also
influenced by topography and river baseflow could be estimated by accumulating the GEO-CWB
calculated subsurface water component, which includes subsurface flow and groundwater recharge,
on the basis of topography as was done for surface runoff. The accumulated GEO-CWB surface runoff

and subsurface water component at the locations of the hydrometric stations were calculated, then
the average daily simulated water flow has been calculated and compared with the observed daily
average flows in Table 2. The model results are close to the observations with an average percent of
error around 5% and the standard deviation for the validation is around 2.13 m3/s with an R2 98.3%.
The maximum error percentage (33.88%) was associated with the Nenagh hydrometric station and that
was mainly because it was a relatively small catchment with short retention time. The results of the
validation process indicated that GEO-CWB simulated the water balance to a high level of accuracy.
Table A1 in the appendix shows a summary of the annual, summer, and winter rasters’ areal statistics
including the error values in the simulated water balance for the Shannon River case study.

Figure 4. Location map for the selected validation hydrometric stations.
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Table 2. GEO-CWB evaluation table between the simulated average daily flow and the observed
average daily flow for the simplified Shannon system.

Hydrometric Stations Simulated Average
Daily Flow (m3/s)

Observed Average
Daily Flow (m3/s) Difference (m3/s) Error %

Inny 16.90 15.51 1.39 8.99

Mid-Shannon 15.31 17.76 −2.45 −13.78

Suck 22.91 20.57 2.34 11.37

Brosna 12.96 14.94 −1.99 −13.30

Nenagh 9.15 6.83 2.31 33.88

Dead 14.26 12.89 1.37 10.60

Lower-Shannon 152.30 153.96 −1.66 −1.08

Figure 5. Baseline period GEO-CWB simulation results for the Shannon catchment.

3.2. Water Balance Simulated Parameters Results and Discussions

This section shows the simulated annual, summer, and winter water balance variables and
components for the Shannon River catchment by GEO-CWB model forced by the simulated climate
change scenarios, land use scenarios, and the simulated PET scenarios.

3.2.1. Surface Runoff

The annual average surface runoff maps simulated by GEO-CWB are shown in Figure 6. The
runoff simulations and projections were presented for the baseline period and four climatic scenarios,
which were RCP 4.5 50%, RCP 4.5 75% RCP 8.5 50%, and RCP 8.5 75%, projected for three future time
steps 2020, 2050, and 2080. The overall statistics for the surface runoff simulations are presented in
Appendix D (Table A1), which show that, in general, the annual simulated surface runoff values vary
through the climate change scenarios between the positive changes from the baseline and the negative
changes from the baseline, as shown in Figure 6. Most of the changes in runoff were negative changes
except for 2050 and 2080 of RCP 8.5 (75%) scenario, as the precipitation has a significant increase based
on this climate scenario.
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Figure 6. Simulated surface runoff changes percent for each climate change scenario from the
baseline period.

The largest surface runoff occured on the rock soil group with wetlands, while the lowest values
were for Luisol soil group with agricultural areas. The traceability of the soil type boundaries and the
higher standard deviation values of the runoff for different soil groups indicated that surface runoff

was more influenced by soil type than by land-use.
Studying the different runoff values based on different soil profiles interactions with land use

categories was very important in deriving conclusions about which land use category combined by
which soil group gives the lowest or the highest runoff values. That helps in the designing process of
structures like rainwater collection basin, landfill, or wastewater plants. The simulations showed that
urban areas seem to have lower runoff values for some of the soil groups except groundwater gley,
rendzina soil, brown earth, and rock. This was mainly because most of the urban areas in the Shannon
catchment were placed on top of relatively permeable soil groups which helped in increasing the
infiltration process and that decrease the surface runoff. One can notice that there were wide variations
of runoff values over the water bodies. These variations were mainly because of the different type of
water body bed soil group and if there is any vegetation in it or not.

3.2.2. Subsurface Water Component

Groundwater recharge is concerned with the percolation of water through the soil, subsoil,
and down through the unsaturated zone to the water table [50]. In general, groundwater
recharge is estimated by first calculating the effective rainfall (defined as total rainfall minus actual
evapotranspiration) through a soil moisture deficit method and then multiplying the calculated
effective rainfall by a recharge coefficient [34,50,55–57]. The recharge coefficient is the percent of the
effective rainfall that forms the groundwater recharge. The recharge coefficient depends mainly on the
characteristics of the superficial deposits that overlie the aquifer. Where an aquifer is covered by thick
glacial tills of low hydraulic conductivity, the recharge coefficient will be low, with most the effective
rainfall being ‘lost’ to surface runoff or interflow.

On the other hand, the recharge coefficient will be high where the overburden is thin, absent,
or has high hydraulic conductivity [56]. Misstear et al. [34] stated that there is a clear relationship
between recharge coefficient and groundwater vulnerability, with high recharge coefficients expected
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in highly vulnerable aquifers and so on, based on that, Misstear et al. [34] developed a methodology for
making initial estimates of groundwater recharge from groundwater vulnerability mapping. However,
the developed methodology gives a good starting estimation, but it is not enough to use its results
for any management of the modelling approach. GEO-CWB provides the framework of a cell by cell
multidimensional dynamical groundwater recharge calculation for the catchment scale by applying
the water balance calculation for each cell’s subfraction, which provides a high accuracy simulation
compared with the currently used approaches, when the spatially distributed recharge caps data
is available.

Based on the fact that, currently, GEO-CWB does not take into account the bedrock geologies
of the catchment and, also, the spatially distributed recharge caps data is not available, GEO-CWB
provides as one of the main outputs the sub-surface water component, which includes mainly the
subsurface water flow and the groundwater recharge. Groundwater recharge in the Shannon River
catchment basin, and anywhere else is promoted by low evapotranspiration and low surface runoff, e.g.,
typically for a flat topography and permeable soils. The annual averages of the spatially distributed
subsurface water component, subsurface flow and groundwater recharge, maps for baseline period
and the three projected periods, 2020, 2050, and 2080, forced by four different climatic scenarios are
shown in Appendix D (Figure A7).

The simulated annual subsurface water component values vary through the climate change
scenarios between 1% to 9% positive increasing changes from the baseline (see Figure 5), this was
because the RCP models are predicting higher rainfall quantities which offset the ET, see Figure 7.
The annual subsurface water component in the Shannon River catchment is estimated as 40%–55% of
the total annual precipitation over the catchment. In general, around 84% of the contribution in the
subsurface water component during the 6 months’ rainy season in the winter while the remaining 16%
occurs in the 6 months’ summer season. The largest subsurface water component was observed for the
agricultural area on Podzol soil. This was basically because of the high permeability of these soils but
could partly also be due to lower evaporation rates and less runoff on the relatively gentler slopes of
agricultural lands.

Figure 7. Simulated subsurface water component (groundwater recharge and subsurface runoff

aggregated together) changes percent for each climate change scenario from the baseline period.

3.2.3. Rainfall Interception

Rainfall interception is the fraction of precipitation which falls onto vegetation but never reaches the
ground. Instead, it evaporates from the wet canopy. The most direct way to measure rainfall interception
evaporation is through the construction of weighing lysimeters, which is a major undertaking for
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forests [58]. Therefore interception loss (the amount of rainfall lost to wet canopy evaporation) has
usually been derived as the residual between event gross precipitation measured above the canopy or
in a nearby clearing, and net precipitation, the latter calculated as the sum of separately measured
through fall and streamflow below the canopy [2]. GEO-CWB calculates the interception as a direct
fraction of precipitation, separated from the evapotranspiration, which means the total water loss from
the precipitation in the catchment can be calculated by the summation of both evapotranspiration
and interception. The annual spatially distributed interception maps for the baseline period and the
three projected periods, 2020, 2050, and 2080, forced by four different climatic scenarios are shown in
Appendix D (Figure A8).

As shown in Figure 8, the simulated annual interception values vary through the climate change
scenarios between 0.1% to 9% positive increasing changes from the baseline, Figure 5. The annual
rainfall interception in the Shannon River catchment makes around 11% of the total annual precipitation
over the catchment. In general, around 65% of the interception occurs during the 6 months’ summer
season while the remaining 35% occurs in the 6 months’ winter season.

Figure 8. Simulated interception changes percent for each climate change scenario from the
baseline period.

3.2.4. Evapotranspiration

Evapotranspiration was calculated in the GEO-CWB as the sum of transpiration, and evaporation
from open water bodies and soil. The actual evapotranspiration was a summation of some calculated
sub-fractions of PET as illustrated in the equations in Appendix B. Depending on which fraction of each
cell was being modelled, the evapotranspiration could be equal to PET (open water fraction) or fraction
of it (bare soil or impervious surface fractions) or just equal to the simulated transpiration (vegetated
fraction). GEO-CWB calculates evapotranspiration and interception components individually, which
means that the total water loss from precipitation in the catchment was the summation of the
two components.

The annual averages spatially distributed evapotranspiration maps for the baseline period and
the three projected periods, 2020, 2050, and 2080, forced by the four different climatic scenarios are
shown in Appendix D (Figure A9).

The maximum annual evapotranspiration in the catchment is potential evapotranspiration from
open water. Evapotranspiration and interception together were estimated to be around 30%-40% of
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the annual precipitation in the Shannon River catchment. Around 76% of the evapotranspiration takes
place during the summer season, while the remaining 24% takes place during the winter season, which
was obviously due to the unequal temporal distribution of the temperature but also partly to the fact
that the vegetation was less active in the winter season.

It can be noticed that evapotranspiration of the catchment was heavily influenced by soil type.
The evapotranspiration maps areal statistics are presented in Appendix D (Table A1), which shows
that, in general, the annual simulated evapotranspiration values vary through the climate change
scenarios between the positive changes from the baseline and the negative changes from the baseline,
(see Figure 9). The mean annual evapotranspiration for different land uses categories showed that
urban areas had the lowest values. While overall evapotranspiration was highly influenced by
precipitation and to some extent by soil texture, the standard deviation values in Table A1 show that
evapotranspiration in the Shannon River catchment was more variable within land-use categories than
within soil group.

Figure 9. Simulated evapotranspiration changes percent for each climate change scenario from the
baseline period.

3.2.5. Soil Evaporation

Soil evaporation was the evaporation from an open soil area as a fraction of each simulated
pixel and forms a part of the total evapotranspiration. The annual averages spatially distributed soil
evaporation maps for the baseline period and the three projected periods, 2020, 2050, and 2080, forced
by the four different climatic scenarios are shown in Appendix D (Figure A10).

The soil evaporation maps areal statistics are presented in Table A1, which show that, in general,
the annual simulated soil evaporation has positive changes from the baseline (see Figure 10). As the
precipitation increases through all the climatic scenarios, the soil moisture increases as well, which
means more water was available for the evaporation process and, thus, the temperature increases. This
led to a positive increase in the soil moisture among all the climatic periods and scenarios, as shown in
Figure 10 compared to the baseline soil evaporation values, see Figure 5.
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Figure 10. Simulated soil evaporation changes percent for each climate change scenario from the
baseline period.

3.2.6. Transpiration

Transpiration was the vaporisation of water which was contained in plant tissues, that mainly
occurs through the stem and leaf stomata. Transpiration, like direct evaporation, depends on factors
such as radiation, air temperature, air humidity, and wind speed. Also, the soil water content and the
ability of the soil to conduct water upwards play a role. The length of the plant’s root system also
plays an important role in determining the transpiration rate, in addition to the vegetation type. The
annual spatially distributed average transpiration maps for the baseline period and the three projected
periods, 2020, 2050, and 2080, forced by the four different climatic scenarios are shown in Appendix D
(Figure A11). The transpiration maps areal statistics are presented in Table A1, which show that, in
general, the annual simulated transpiration varies between positive and negative changes from the
baseline, based on the different simulated climatic scenarios (see Figure 11). As RCP8.5 (75%) has
the highest increase in temperature and solar radiation, in addition to the predicted increase in the
vegetation cover by 2080, the climatic period 2080 has the highest increase in transpiration as shown
in Figure 11 compared with the baseline period transpiration, see Figure 5. The average baseline
transpiration is around 30 mm/year, and the highest increase related to RCP 8.5 (75%) was about 8.2%
in 2080 which is equal to 2.5 mm/year, this amount of increase is very little in term of quantity.
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Figure 11. Simulated transpiration changes percent for each climate change scenario from the
baseline period.

3.2.7. Error in Water Balance/Change in Storage

GEO-CWB calculates the error/change in storage fraction in each simulated cell water balance,
which provides an error/change in storage in water balance map for each simulated time step in each
simulated climatic scenario. The small error/change in storage in the water balance comes from the
assumption that water bodies can always evaporate at the PET rate. Hence, this error should be
subtracted from the runoff as open water bodies are supplied by runoff from surrounding areas, and
it does not leave the basin as river flow but is evaporated instead. The annual spatially distributed
average error in water balance maps for baseline period and the three projected periods, 2020, 2050, and
2080, forced by the four different climatic scenarios are shown in Appendix D (Figure A12). However,
the average simulated error in water balance for each climatic period can be shown in Figure 12.

3.2.8. Simulated and Projected Water Balance for Shannon Catchment

The water balance simulation was based upon the continuity equation, i.e., inflow equals outflow
plus the storage. Precipitation was the most significant inflow component. The most important
outflow components of water balance were surface runoff, evapotranspiration, and subsurface water
component, which includes groundwater recharge and subsurface runoff. Any simulated area that
receives higher precipitation than the amount of water that it loses has a water surplus. However,
regions with a water deficit would get a smaller amount of rainfall than the amount that they lost
through evapotranspiration.

Summaries of the numerical contributions to this net balance of the various components, which
were discussed earlier in this study are presented in Figure 13, based on the simulated climatic scenarios
for each projected period. The overall summary of the water balance of the Shannon River catchment
is given in Appendix D (Table A1).
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Figure 12. The average error/change in storage in water balance (%) for each climatic period and land use scenario simulated by GEO-CWB.
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Figure 13. GEO-CEB simulated water balance (mm/year).
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3.2.9. Vulnerability Parameters Results

GEO-CWB produces some parameters from which an assessment can be made of the vulnerability
to climate and land use changes for each climatic period and land use scenario, as follows.

Accumulated Surface Runoff Volume

The accumulated runoff volume in the winter season was an indication of how much runoff water
could be harvested every year during the winter. Figure A13, in Appendix D, shows the calculated
accumulated runoff volume as results of the different climate change conditions and land use scenarios.
For the illustrated annual accumulated runoff, the baseline annual areal average accumulated runoff

was 14.59 × 106 m3 as an average for all cells in the simulation domain. However, the areal average
value for the accumulated runoff for the climatic period the 2080s forced by RCP 8.5 (75%) climatic
scenario was 15.48 × 106 m3, which means the average increase in the accumulated runoff was around
6%. However, the areal accumulated runoff average for the whole catchment was increased, but
hotspot areas spatial distribution is changed as results of climate and land use changes.

The Safe Yield Groundwater Abstraction

The safe yield groundwater abstraction rates expressed in (m3/d/ha) calculated by GEO-CWB
were simplification values for such a large catchment like Shannon, which can only be used as an
indication and a rough estimate for how much groundwater can be abstracted in a sustainable way
without depleting the groundwater resources. Figure A14, in Appendix D, shows the annual and
seasonal calculated safe yield groundwater abstraction volume as results to the different climate change
conditions and land use scenarios.

The Water Deficit for Ideal Crop

The water deficit for ideal crop growth, which can be estimated as the difference between the crop
water requirement and the actual evapotranspiration. In the Shannon River catchment, most of the
catchment was covered in grass (pasture), and there was hardly any deficit, which one can observe.

4. Conclusions

Parameterising the spatially distributed dynamic catchment water balance was a key factor in studying
the hydrological system responses to climate and land use changes. This research study presents a developed
GIS-based algorithm, which was designed, based, on integrated physical, statistical, and machine learning
algorithms. GEO-CWB has been applied on the Shannon catchment in Ireland as an example of a large
and complex hydrological system. The results of the GEO-CWB model were validated against river flow
observations for seven hydrometric stations for the Shannon River catchment. The model results were close
to the observations with an average percent of error around 5%, and the standard deviation for the validation
was around 2.13 m3/s and the R2 is 98.3%. The results of the validation process indicated that GEO-CWB
simulates the water balance with high accuracy. This study shows the simulated annual, summer, and
winter water balance variables and components for the Shannon River catchment by the GEO-CWB model
forced by the simulated climate change scenarios, land use scenarios, and the simulated PET scenarios. The
water balance simulations and projections are presented for the baseline period (1961-2000) and four climatic
scenarios, which are RCP 4.5 50%, RCP 4.5 75%, RCP 8.5 50%, and RCP 8.5 75%, projected for three
future time steps 2020, 2050, and 2080. The results show that the largest surface runoff occured on the
rock soil group with wetlands, while the lowest values were for Luisol soil group with agricultural
areas, and the traceability of the soil type boundaries and the higher standard deviation values of the
runoff for different soil groups indicate that Shannon’s surface runoff was more influenced by soil
type than by land-use. GEO-CWB provides cell by cell multidimensional dynamic subsurface water
component values, which include groundwater recharge and subsurface runoff, for the catchment scale
by applying the water balance calculation for each cell’s subfraction, which provides a high accuracy
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simulation compared with the currently used approaches. The simulated annual subsurface water
component values vary through the climate change scenarios between 1% to 9% positive increasing
changes from the baseline. In general, around 84% of the subsurface water component contribution
occurs during the 6 months of the winter season while the remaining 16% occurs in the 6 months’
summer season. The largest subsurface water component was observed for the agricultural area on
Podzol soils. This was attributed to the high permeability of these soils but could partly also be due
to lower evaporation rates and less runoff on the relatively gentler slopes of agricultural lands. The
simulated annual interception values vary through the climate change scenarios between 0.1% to 9%
positive increasing changes from the baseline. The annual rainfall interception in the Shannon River
catchment makes around 11% of the total annual precipitation over the catchment. In general, around
65% of the interception occurs during the 6 months’ winter season while the remaining 35% occurs
in the 6 months’ summer season. The maximum annual evapotranspiration in the catchment was
potential evapotranspiration from open water. Evapotranspiration and interception together can be
estimated to around 30%-40% of the annual precipitation in the Shannon River catchment. Around
76% of the evapotranspiration takes place during the summer season, while the remaining 24% takes
place during the winter season, which was obviously due to the unequal temporal distribution of
the temperature but also partly to the fact that the vegetation was less active in the winter season. In
general, the annual simulated evapotranspiration values vary through the climate change scenarios
between the positive changes from the baseline and the negative changes from the baseline. The mean
annual evapotranspiration for different land uses categories showed that urban areas have the lowest
values. While the overall evapotranspiration was highly influenced by precipitation and to some extent
by soil texture, the standard deviation values show that evapotranspiration in the Shannon River
catchment is more variable within land-use categories than within soil group. GEO-CWB produces
some calculated parameters to assess the vulnerability to climate and land use changes for each climatic
period and land use scenario. These parameters are the accumulated surface runoff volume, the safe
yield groundwater abstraction rate, and the water deficit for ideal crop growth. For example, the
baseline annual areal average accumulated runoff was 14.59 × 106 m3 as an average for all cells in the
simulation domain, however, the areal average value for the accumulated runoff for the climatic period
the 2080s forced by RCP 8.5 (75%) climatic scenario was 15.48 × 106 m3, which means the average
increase in the accumulated runoff was around 6%. However, the areal accumulated runoff average
for the whole catchment is increased, but hotspot areas spatial distribution is changed as a result of
climate and land use changes.

GWO-CWB has some critical assumptions and limitations. GEO-CWB does not take into account
the bedrock geologies of the catchment. Thus, it provides as one of the main outputs of the sub-surface
water component, which includes mainly the subsurface water flow and the groundwater recharge.
Also, GEO-CWB does not use the physical basis for the routing process in order to calculate the water
flow. It has the unique application of using the machine learning techniques to estimate the flows,
so there is potential to develop a technique with integrates the physics and the machine learning
techniques to calculate flows as part of GEO-CWB. The application of the GEO-CWB has shown good
results for the simulated parameters, but the model needs further work on developing parameters’
calibration protocol. More parameters have to be taken into account to obtain better results, and surface
storage is one of the main settings that need to be taken into account in the calibration process.
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Appendix A. GEO-CWB Cell-by-Cell Calculations Flow Chart

Figure A1. GEO-CWB cell-by-cell calculations flow chart.
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Appendix B. GEO-CWB Main Equations

Equations’ Parameters and abbreviations:
Fv: Vegetated fraction
Fow: Open water
Fbs: bare soil fraction
Fis: Impervious surface fraction
P: Precipitation
I: Interception
Sv: Surface runoff in the vegetated fraction
Tv: Transpiration
Trv: Reference transpiration
Eo: Seasonal potential evapotranspiration
Sr: Potential surface runoff

C: Vegetation coefficient
T: Temperature
H: Vegetation height
hw: Wind measuring height
U: Wind speed (Km/hr)
Gwd: Groundwater depth
Rd: Rood depth
ht: Tension saturated height
PWA: Plant available water content
a: Calibrated soil texture factor [59]
Eps: Penman evaporation for wet soil
So: Runoff of open water fraction
Ro: subsurface water of open water fraction
Pet: Potential evapotranspiration
Rcell: The cell subsurface water component

Interception= F(function of land use/cover) × P (1)

Potential surface runoff (Ro(PO))= F(vg,so,sl,wd) × (p − I) (2)

Final surface runoff = F(Intensity, infiltration rate, wd) × Ro(PO) (3)

Ra = Ln( (hw − 0.499H)/(0.123H))/(0.16 U × 0278) (4)

When H(vegetation height ) < 0.15 m, LAI = 24 × H (5)

When H(vegetation height ) > 0.15 m, LAI = 1.5 Ln (H) + 5.5 (6)

Rc = 100/(0.5 × LAI) (7)

γ/∆ = 1.5411 eˆ(−0.057 × Temperature) (8)

C (vegetation coefficient) = (1 + γ/∆)/(1 + γ/∆ × (1 + (Rc/Ra)) (9)

Trv (reference transpiration) = C × Pet (10)
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When Gwd > Rd + ht, W = P + n × (PAW) × Rd (11)

F(PAW) = 1 − Aˆ(W/Trv) (12)

Transpiration = F (PAW) × Trv (13)

When Gwd < Rd + ht (14)

Transpiration in vegetated groundwater discharge areas = Trv (15)

Subsurface water for vegetated fraction
= P − Interception − Vegetated surface runoff − Transpiration

(16)

Open Water Fraction (Fow)

Interception = F(function of land use/cover) × P = 0 (17)

Final surface runoff = 1 × (P − I) (18)

Tv = 0.00 (19)

Open water evaporation = 1 × Pet (20)

Open water subsurface water = P − Eow − Sow (21)

Bare Soil Fraction (Fbs)

Interception = F(function of land use/cover and soil texture) × P (22)

Potential surface runoff = F(vg,so,sl,wd) × (p − I) (23)

Final surface runoff = F(Intensity, infiltration rate, wd) × Ro(po) (24)

Final surface runoff = F(Intensity, infiltration rate, wd) × Ro(po) (25)

W = P + n × (PAW) × Rd (26)

Eps (Penman evaporation rate for wet soil)
= F (function of water content at field capacity and at root zoon, welting point)

(27)

F (PAW) = 1 − Aˆ(W/Eps) (28)

Soil evaporation = F (PAW) × Pet (29)

Bare soil subsurface water = P − soil runoff − soil evaporation (30)

Impervious surface fraction (Fis)

Interception = F(function of land use/cover) × P (31)

Potential surface runoff = F(lu,so,sl,wd) × (p − I) (32)

Final surface runoff = F(Intensity, infiltration rate, wd) × Ro(po) (33)

Fie = F(Impervious surface evaporation fraction a function of land use type) (34)
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Impervious surface evaporation = Pet × Fie (35)

Impervious surface subsurface water component
= P − Impervious surface evaporation − Impervious surface runoff

(36)

Pixel/Cell water balance

Et cell = (Fv × Etv) + (Fow × Eow) + (Fis × Ei) + (Fbs × Es) (37)

S cell = (Fv × Sv) + (Fow × Sow) + (Fis × Si) + (Fbs × Sbs) (38)

R cell = (Fv × Rv)+ (Row × Eow )+ (Fis × Ri) + (Fbs × Rs) (39)

Cell Water Balance:
P cell = Et cell + S cell + R cell + I cell (40)

Error and the change in the storage in pixel water balance
The following equation quantifies the proportional error and the change in the storage per time

step in the simulated water balance.

Error in Water Balance = (P cell − R cell − Et cell − S cell)/P cell (41)

Climate and Land Use Vulnerability Parameters

Accumulated runoff
(
m3

)
=

∫
A

(Sur f ace runo f f )da× 10−3 (42)

Safe yield
(
m3/day/ha

)
= 6.85× 10−3

× Recharge (mm) (43)

WD
(
m3/day/ha

)
=

10× (PET − ET)
Dn

(44)
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Appendix C. GEO-CWB User Interfaces

Figure A2. GEO-CWB as a tool in the ARC toolbox.
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Figure A3. GEO-CWB stage (1) interface.

Figure A4. GEO-CWB stage (2) interface.
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Figure A5. GEO-CWB stage (3) interface.
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Appendix D. GEO-CWB Spatially Distributed Mapped Results

Figure A6. The average annual surface runoff for each climatic period and land use scenario simulated by GEO-CWB.
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Figure A7. The average annual subsurface water component for each climatic period and land use scenario simulated by GEO-CWB.
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Figure A8. The average annual interception for each climatic period and land use scenario simulated by GEO-CWB.
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Figure A9. The average annual evapotranspiration for each climatic period and land use scenario simulated by GEO-CWB.
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Figure A10. The average annual soil evaporation for each climatic period and land use scenario simulated by GEO-CWB.
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Figure A11. The average annual transpiration for each climatic period and land use scenario simulated by GEO-CWB.
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Figure A12. The spatially distributed average annual error/change in storage in water balance (mm/year) for each climatic period and land use scenario simulated
by GEO-CWB.
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Figure A13. The accumulated surface runoff for each climatic period and land use scenario simulated by GEO-CWB.
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Figure A14. The average annual safe yield groundwater abstraction for each climatic period and land use scenario simulated by GEO-CWB.
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Table A1. Annual, summer and winter rasters’ areal statistics for all simulated water balance components by GEO-CWB for the baseline period and the projected
periods with the calculated average values of the error in the simulated water balance.

Scenario Period Component Annual-Mean Annual-SD Summer-Mean Summer-SD Winter-Mean Winter-SD

Baseline Period 1961–2014

Runoff (Ro) mm 271.30 496.61 34.05 99.44 47.73 139.91

Evapotranspiration (Et) mm 166.37 107.21 126.57 81.69 39.81 25.57

Interception (In) mm 125.59 142.46 82.09 47.16 43.49 97.57

Transpiration (Tr) mm 30.63 55.28 23.57 42.48 7.06 12.90

Soil evaporation (Se) mm 102.29 70.58 77.57 53.48 24.72 17.10

Subsurface water component (Re) mm 744.90 292.95 248.14 116.48 500.27 180.84

Precipitation (P) mm 1136.27 224.02 486.22 83.58 650.04 143.10

Water balance (WB) = P-Ro-Et-Re; mm −46.30 − 77.46 − 62.23 −

Error in water balance (WB/P; %) −4.07 − 15.93 − 9.57 −

RCP 4.5 (50%)

2020

Runoff (Ro) mm 267.25 497.17 31.10 95.72 44.02 135.86

Evapotranspiration (Et) mm 165.40 106.65 130.38 84.19 35.03 22.52

Interception (In) mm 126.64 144.18 82.49 47.63 44.14 99.66

Transpiration (Tr) mm 30.25 55.49 24.05 44.08 6.21 11.51

Soil evaporation (Se) mm 104.06 71.11 81.81 55.85 22.24 15.27

Subsurface water component (Re) mm 751.09 291.00 281.44 118.93 532.92 180.11

Precipitation (P) mm 1137.67 223.67 484.31 83.02 653.37 143.43

Water balance (WB) = P-Ro-Et-Re; mm −46.07 − 41.39 − 41.40 −

Error in water balance (WB/P; %) −4.05 − 8.55 − 6.34 −

2050

Runoff (Ro) mm 252.44 502.26 21.46 85.47 28.97 115.74

Evapotranspiration (Et) mm 159.40 100.55 125.46 79.40 159.40 100.55

Interception (In) mm 139.73 159.42 92.65 54.54 47.07 107.60

Transpiration (Tr) mm 30.13 58.04 23.99 46.56 6.15 11.95

Soil evaporation (Se) mm 109.36 71.99 86.04 56.56 23.32 11.43

Subsurface water component (Re) mm 812.41 292.70 281.44 118.93 532.92 180.11

Precipitation (P) mm 1193.54 239.25 525.06 96.41 668.48 144.61

Water balance (WB) = P-Ro-Et-Re; mm −30.71 − 96.70 − −52.81 −

Error in water balance (WB/P; %) −2.57 − 18.42 − −7.90 −
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Table A1. Cont.

Scenario Period Component Annual-Mean Annual-SD Summer-Mean Summer-SD Winter-Mean Winter-SD

2080

Runoff (Ro) mm 255.15 505.23 17.87 74.50 27.04 112.85

Evapotranspiration (Et) mm 159.26 100.00 125.50 78.85 33.97 21.24

Interception (In) mm 132.78 157.02 83.50 48.72 49.27 110.69

Transpiration (Tr) mm 30.23 58.10 23.99 46.20 6.22 12.10

Soil evaporation (Se) mm 110.17 72.58 86.64 57.00 23.53 15.59

Subsurface water component (Re) mm 780.54 275.63 242.86 102.99 540.57 179.85

Precipitation (P) mm 1174.86 221.16 470.30 78.75 677.55 145.37

Water balance (WB) = P-Ro-Et-Re; mm −20.09 − 84.07 − 75.97 −

Error in water balance (WB/P; %) −1.71 − 17.88 − 11.21 −

RCP 4.5 (75%)

2020

Runoff (Ro) mm 267.54 497.54 31.19 95.97 42.94 135.64

Evapotranspiration (Et) mm 165.44 106.67 130.41 84.21 35.03 22.52

Interception (In) mm 126.80 144.06 82.75 47.80 44.05 99.38

Transpiration (Tr) mm 30.59 58.16 24.25 46.11 6.37 12.19

Soil evaporation (Se) mm 104.06 71.11 81.81 55.85 22.24 15.27

Subsurface water component (Re) mm 750.40 290.99 256.58 114.34 508.22 180.39

Precipitation (P) mm 1137.08 223.94 485.67 83.51 651.41 143.17

Water balance (WB) = P-Ro-Et-Re; mm −46.30 − 67.49 − 65.22 −

Error in water balance (WB/P; %) −4.07 − 13.90 − 10.01 −

2050

Runoff (Ro) mm 251.07 499.78 19.78 78.93 29.27 116.93

Evapotranspiration (Et) mm 159.95 100.95 126.10 79.58 33.86 21.35

Interception (In) mm 132.95 159.13 85.24 49.60 47.71 109.03

Transpiration (Tr) mm 30.29 55.55 24.08 44.13 6.21 11.52

Soil evaporation (Se) mm 109.97 72.42 86.51 56.90 23.47 15.53

Subsurface water component (Re) mm 789.54 283.24 251.52 107.93 540.83 181.64

Precipitation (P) mm 1160.53 226.42 483.15 83.18 677.38 145.71

Water balance (WB) = P-Ro-Et-Re; mm −40.03 − 85.75 − 73.42 −

Error in water balance (WB/P; %) −3.45 − 17.75 − 10.84 −
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Table A1. Cont.

Scenario Period Component Annual-Mean Annual-SD Summer-Mean Summer-SD Winter-Mean Winter-SD

2080

Runoff (Ro) mm 250.23 498.52 19.25 76.90 29.25 116.94

Evapotranspiration (Et) mm 161.50 101.86 127.29 80.36 34.22 21.59

Interception (In) mm 130.61 154.59 82.79 47.82 47.80 109.21

Transpiration (Tr) mm 29.98 57.80 23.80 45.89 6.19 12.03

Soil evaporation (Se) mm 111.09 73.13 87.39 57.45 23.70 15.68

Subsurface water component (Re) mm 779.81 280.36 241.13 104.39 542.03 182.13

Precipitation (P) mm 1173.33 229.49 481.63 82.99 691.69 149.02

Water balance (WB) = P-Ro-Et-Re; mm −18.21 − 93.96 − 86.19 −

Error in water balance (WB/P; %) −1.55 − 19.51 − 12.46 −

RCP 8.5 (50%)

2020

Runoff (Ro) mm 267.31 497.26 31.07 95.61 44.06 135.97

Evapotranspiration (Et) mm 165.72 106.85 130.63 84.35 35.09 22.56

Interception (In) mm 126.65 144.23 82.44 47.57 44.20 99.79

Transpiration (Tr) mm 30.91 58.72 24.50 46.54 6.44 12.39

Soil evaporation (Se) mm 104.25 71.25 81.97 55.96 22.28 15.30

Subsurface water component (Re) mm 751.22 291.01 245.23 113.83 510.43 180.86

Precipitation (P) mm 1148.40 221.01 469.49 78.51 678.90 145.49

Water balance (WB) = P-Ro-Et-Re; mm −35.85 − 62.56 − 89.32 −

Error in water balance (WB/P; %) −3.12 − 13.33 − 13.16 −

2050

Runoff (Ro) mm 248.62 500.57 18.18 75.77 27.54 114.95

Evapotranspiration (Et) mm 160.52 100.77 126.44 79.42 34.09 21.43

Interception (In) mm 135.86 160.86 85.55 50.26 50.30 113.05

Transpiration (Tr) mm 30.14 58.13 23.88 46.08 6.28 12.19

Soil evaporation (Se) mm 111.00 73.17 87.26 57.44 23.74 15.73

Subsurface water component (Re) mm 800.57 281.89 250.47 105.79 552.82 183.27

Precipitation (P) mm 1137.92 223.58 483.88 82.79 654.09 143.43

Water balance (WB) = P-Ro-Et-Re; mm −71.79 − 88.79 − 39.64 −

Error in water balance (WB/P; %) −6.31 − 18.35 − 6.06 −
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Table A1. Cont.

Scenario Period Component Annual-Mean Annual-SD Summer-Mean Summer-SD Winter-Mean Winter-SD

2080

Runoff (Ro) mm 247.67 499.28 17.07 71.30 28.11 117.33

Evapotranspiration (Et) mm 167.55 105.22 131.96 82.93 35.60 22.41

Interception (In) mm 131.58 159.44 80.06 46.32 51.52 115.49

Transpiration (Tr) mm 30.31 55.59 24.09 44.16 6.22 11.53

Soil evaporation (Se) mm 115.92 79.37 91.20 59.95 24.73 16.00

Subsurface water component (Re) mm 788.75 278.67 225.74 97.05 567.92 186.71

Precipitation (P) mm 1161.69 218.05 451.37 73.34 710.32 148.23

Water balance (WB) = P-Ro-Et-Re; mm −42.28 − 76.60 − 78.69 −

Error in water balance (WB/P; %) −3.64 − 16.97 − 11.08 −

RCP 8.5 (75%)

2020

Runoff (Ro) mm 267.80 497.98 30.04 95.22 42.46 135.14

Evapotranspiration (Et) mm 165.76 106.88 130.67 84.37 35.10 22.57

Interception (In) mm 127.04 144.75 82.71 47.79 44.33 100.08

Transpiration (Tr) mm 30.35 55.66 24.13 44.22 6.22 11.54

Soil evaporation (Se) mm 104.25 71.25 81.97 55.96 22.28 15.30

Subsurface water component (Re) mm 754.03 292.01 246.32 114.30 512.10 181.40

Precipitation (P) mm 1141.70 224.82 485.55 83.49 656.15 140.97

Water balance (WB) = P-Ro-Et-Re; mm −45.89 − 78.52 − 66.49 −

Error in water balance (WB/P; %) −4.02 − 16.17 − 10.13 −

2050

Runoff (Ro) mm 284.54 510.21 47.65 129.97 70.52 191.81

Evapotranspiration (Et) mm 163.26 102.95 128.72 81.24 34.55 21.79

Interception (In) mm 133.72 158.41 84.90 49.37 48.82 111.56

Transpiration (Tr) mm 30.61 59.02 24.22 46.82 6.24 12.32

Soil evaporation (Se) mm 112.23 73.93 88.31 58.09 23.92 15.84

Subsurface water component (Re) mm 769.38 312.20 239.64 111.71 531.45 207.82

Precipitation (P) mm 1175.13 229.75 481.39 82.96 693.73 149.32

Water balance (WB) = P-Ro-Et-Re; mm −42.05 − 65.38 − 57.21 −

Error in water balance (WB/P; %) −3.58 − 13.58 − 8.25 −
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Table A1. Cont.

Scenario Period Component Annual-Mean Annual-SD Summer-Mean Summer-SD Winter-Mean Winter-SD

2080

Runoff (Ro) mm 283.70 511.54 46.63 127.69 74.62 203.68

Evapotranspiration (Et) mm 171.71 107.81 135.48 85.13 36.28 22.83

Interception (In) mm 137.99 167.35 84.46 49.56 53.78 120.66

Transpiration (Tr) mm 33.19 63.05 26.30 50.01 6.93 13.24

Soil evaporation (Se) mm 118.60 78.23 93.41 61.52 25.20 16.71

Subsurface water component (Re) mm 796.81 317.32 230.45 108.94 568.42 216.87

Precipitation (P) mm 1216.77 235.33 475.93 82.05 741.29 156.21

Water balance (WB) = P-Ro-Et-Re; mm −35.45 − 63.37 − 61.97 −

Error in water balance (WB/P; %) −2.91 − 13.31 − 8.36 −
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