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Abstract: It is important to identify source information after a river chemical spill incident occurs.
Among various source inversion approaches, a Bayesian-based framework is able to directly
characterize inverse uncertainty using a probability distribution and has recently become of interest.
However, the literature has not reported its application to actual spill incidents, and many aspects in
practical use have not yet been clearly illustrated, e.g., feasibility for large scale pollution incidents,
algorithm parameters, and likelihood functions. This work deduced a complete modular-Bayesian
approach for river chemical spills, which combined variance assumptions on a pollutant concentration
time series with Adaptive-Metropolis sampling. A retrospective case study was conducted based
on the ‘landmark’ spill incident in China, the Songhua River nitrobenzene spill of 2005. The results
show that release mass, place, and moment were identified with biases of −26.9%, −7.9%, and
16.9%, respectively. Inverse uncertainty statistics were also quantified for each source parameter.
Performance, uncertainty sources, and future work are discussed. This study provides an important
real-life case to demonstrate the usefulness of the modular-Bayesian approach in practice and provides
valuable references for the setting of parameters for the sampling algorithm and variance assumptions.

Keywords: emergency response; Modular Bayesian Approach; dynamic risk warning; Songhua river
spill; inverse source problem

1. Introduction

Intentional or unintentional chemical spills continue to occur not only in developing countries
but also in developed countries [1]. In China, there has been a notable increase in the occurrence of
environmental accidents in the past decade as a consequence of the increasing activities associated
with economic growth [2,3]. As reported by Yao et al. and Li and An [3,4], there have been, on average,
approximately 60 surface water pollution accidents each year since 2011. Many soluble pollutants are
invisible or cannot be detected on-line when released into rivers and streams. It is very common that
only if the effects of pollution are visible, e.g., dead fish floating or dangerous colors shown in a river,
that the hazard or spill incident is reported, and the emergency response started. Therefore, quickly
identifying the source information for unreported or clandestine incidents would provide scientific
support for making mitigation and adaptation strategies in emergency management.
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Given known concentrations monitored downstream, the problem of identifying the source
characteristics (location, release history, and loading) can be categorized as a “time inversion” problem.
This problem has been well established as a subset of “inverse problems” [5]. In the mathematics and
engineering fields, it is popularly known as the “inverse source problem” (ISP) [6,7]. Many methods have
been developed in the literature for ISP, such as regularization methods [8,9], simulation-optimization
methods [9], and Bayesian inference methods [8].

Recently, surface water pollution source identification has received increased attention, and several
approaches have been reported. For example, Chen et al. [10] presented the correlation coefficients
optimization method. Cheng and Jia [11] developed the backward location probability density function
method. Boano et al. [12] successfully applied a geostatistical approach. Wei et al. [13] reported the use
of a Bayesian approach. Among them, Bayesian approaches have a number of distinct advantages
and have been used in several areas, e.g., reservoir operation [14], water quality model parameters
estimation [15], and rainfall-runoff modeling [16]. This approach utilizes probabilistic prior information
and observes data to update and provide a posterior probability distribution of the corresponding
source parameters and quantify inverse uncertainty, determining the uncertainties of the model inputs
due to the uncertainties of given responses [17,18].

Zhu [19] first investigated the Bayesian application in surface water pollution source identification.
This early study is based on simple hypothetical cases without reference to specific case studies, and
traditional Markov chain Monte Carlo (MCMC) was used. Wang and Harrison [20] used Bayesian
and MCMC methods to identify the contaminant profiles in hypothetical water distribution systems.
Wei et al. [13] induced source parameter uncertainty analysis before running the Bayesian inference
process and adopting Delayed Rejection and Adaptive Metropolis MCMC for sampling posteriors.

However, knowledge gaps still hinder the use of a modular-Bayesian approach in practice. Firstly,
the formulation of the modular-Bayesian framework for the ISP of surface water pollution has not been
reported in the literature. Technically, it also lacks investigation on how the source inversion performs
when using different likelihood functions, the key component of Bayesian inference, based on different
error assumptions in monitoring data. Details of parameter setting in Adaptive-Metropolis sampling
algorithms [16] for this ISP problem have never been reported. Furthermore, using Bayesian source
inversion on real river chemical spill incidents has rarely been investigated because of the challenge of
collecting pollution data. Actual pollutant concentration data are not readily available in some cases.
Only a few research groups are able to take part in the field work of emergency disposal. Additionally,
in many cases, monitoring has one chance to be completed since when incidents are reported and
responded to, the pollutant plume has spread into lakes, reservoirs, and coastal areas or run into
the mainstream.

Therefore, this study focuses on the Bayesian reasoning application in a historical nitrobenzene
spill incident that occurred in the Songhua River, China, in 2005. It is the most severe spill incident
in the 21st century in China [21]. Firstly, we present the deduction and establishment of the
modular-Bayesian framework for chemical spill oriented ISP. The scenario of emergency monitoring
and source identification is reconstructed according to reality. After parameterizing the water quality
model and Adaptive Metropolis (AM) sampling algorithm, the modular-Bayesian inference process is
calculated. Two types of likelihood functions are used and compared. The results are discussed based
on our knowledge of the incidents. Future works are then discussed from the watershed management
point of view.

2. Modular-Bayesian Approach for Pollution Source Identification

Bayesian estimation provides a formal mechanism for combining prior information based on
historical data or expert knowledge and data collected by observation. In this section, we will deduce
the modular-Bayesian framework for ISP problems with regard to river chemical spill incidents.
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2.1. General Statement of ISP Problems

For a typical ISP problem, n samples are collected with the data C, which is also relative to the
forward modeling operator g. This operator g maps models into a data space. Taking the river chemical
spill for instance (Figure 1), C stands for a group of in-stream pollutant concentrations, and g stands
for the in-stream water quality model, i.e., the pollutant transport model.
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In practice, the forward operator is always an approximation. Therefore, there is a systematic
error associated with the use of g in modeling. Let us represent it by an n-dimensional vector emodel.
There is also an n-dimensional vector of random observation errors, denoted as eobs. The connection
between the model and observed data can be represented as:

C = g(s;m) + eobs + emodel, (1)

where s represents the unknown source parameters, and m denotes the known model parameters.
The goal is to estimate s [or a function of s, L(s)] given a vector of C [22]. It should be noted that
s could sometimes be the boundary conditions or initial condition in the forward model. For river
pollution sources, s normally covers release time ts, location xs, and total load Ms, as well as the release
history L(s).

2.2. Model-Based Bayesian Inferences

The Bayes theorem provides a formal framework for combining the prior information based on
historical data and expert knowledge with observational data. In the context of the ISP, Bayes theorem
can be stated as follows:

p(s|C, I) =
p(s

∣∣∣I)l(C∣∣∣s, I)

p(C
∣∣∣I) , (2)

p(C|I) =
∫

all s

p(s)l(C
∣∣∣I, s)ds , (3)

where p(s|C,I) is the posterior distribution of source parameters given C and I, p(s|I) is the prior, l(C|s,I)
is the likelihood, p(C|I) is the evidence, s is the source term, C is the observation data at a given location
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x and time t, and I is the information (e.g., that is used to determine the prior distribution of s). The
probability can be substituted by the probability distribution function p.

The procedure of model-based Bayesian inference can be summarized into four steps [23]: model
building, calculation of the posterior distribution, analysis of the posterior distribution, and inference.

2.2.1. Step 1: Model Building

(1) Bayesian formulation for ISP

Let Ci and Ri denote the observed and modeled concentrations, respectively, at location xi and
time ti, where i = 1, . . . , n; and (xi, ti) is the sampling pair. It can be assumed that any discrepancy
between Ci and Ri arises from two sources: the measurement errors eobs

i and mechanism model

errors emodel
i . Let us also assume that the errors have a standard normal distribution, N

(
0, σobs,i

)
and

N
(
0, σmodel,i

)
, respectively.

For eobs
i , Ctrue,i is the unknown true value of the concentration at the sampling point at a given time,

i.e., (xi, ti). Therefore, Ci = Ctrue,i + eobs
i . Similarly, for the model, Ri = Ctrue,i + emodel

i . The difference
between measured and modeled values can be written as Ci − Ri = eobs

i − emodel
i , which bridges a

connection between the source and measurement data.
In practice, however, there will be n different normal distributions of measurement errors and

another n of model errors. Each sampling and analysis process of chemical concentration will also
induce its own eobs

i . For simplicity, it is safe to assume an independent distribution of all the ns of σobs,i
and σmodel,i. The joint distributions are as follows:

Ci −Ri = N
(
0, σ2

obs,i + σ2
model,i

)
, (4)

Ri = N
(
Ci, σ2

obs,i + σ2
model,i

)
, (5)

where we take Ci as a constant, while Ri is a stochastic variable derived from the stochastic parameter s.
The conditional probability under the condition of knowing the real value Ctrue to get the observed

values of Ci can be written as the formula below:

p(C|Ctrue, I) =
∏

i

(2πσ2
obs,i

)−1/2
· exp

− (Ci −Ctrue,i)
2

2σ2
obs,i


 ∝ exp

−∑
i

(Ci −Ctrue,i)
2

2σ2
obs,i

. (6)

It is the joint probability distribution function (PDF) of n numbers of samples. If we assume all
the measurement error to be independently and identically distributed (IID), then all the n of σobs,i are
equal to σobs and Equation (6) becomes:

p(C|C true, I) ∝ exp

−1
2

∑
i

(Ci −Ctrue,i)
2

σ2
obs

. (7)

Equation (7) represents the probability that the observed concentrations are measured as C when
the true values are actually Ctrue and are proportionate to the right term. Furthermore, we obtain
Equation (8)

p(Ctrue|s, I) =
∏

i

(2πσ2
model,i

)−1/2
· exp

− (Ri −Ctrue,i)
2

2σ2
obs,i


 ∝ exp

−∑
i

(Ri −Ctrue,i)
2

2σ2
model,i

, (8)
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where σ is the known constant, which refers to p(Ctrue|s, I). The model error is then given by Equation (9)
with the same IID assumption.

p(Ctrue|s, I) ∝ exp

−1
2

∑
i

(Ctrue,i −Ri(s))
2

σ2
model

. (9)

It states the probability that the true data (e.g., pollutant concentration) are predicted by the
forward model, e.g., the pollutant transport model here, when the source parameters are s.

The likelihood is then obtained by marginalizing the joint PDF of C and Ctrue with respect to Ctrue:

p(C|s, I) =
∫ ∏

i

(2πσ2
obs,i

)−1/2
· exp

− (Ci −Ctrue,i)
2

2σ2
obs,i

−
(Ri −Ctrue,i)

2

2σ2
model,i


dCtrue. (10)

Evaluating the integral of Equation (10) yields the likelihood:

p(C|s, I) ∝ exp

∑
i

−
(Ci −Ri)

2

2
(
σ2

obs,i + σ2
model,i

) . (11)

Further, if we take σ2
all = σ2

obs + σ2
model, since σobs and σmodel are interchangeable and cannot be

distinguished from the data, therefore:

p(C|s) =
(
2πσ2

all

)−n/2
·

∏
i

exp

− (Ci −Ri)
2

2σ2
all

. (12)

If C and σall are known, calculating Ri(s) for various s yields p(C|s, I). The problem is transferred
to the estimate σall.

It should be noted that the abovementioned error terms eobs
i and emodel

i are assumed to be
homoscedastic and uncorrelated. One can also assume that the errors are different, such as
heteroscedastic and uncorrelated and heteroscedastic and correlated. Therefore, depending upon the
type of errors, there will be different likelihood functions. Further details on such likelihood function
can be seen in Bates and Campbell [24].

The variance of the heteroscedastic uncorrelated error term can be stabilized using the class of
transformation, Box-Cox transformation, of the original monitoring data as in Equation (13), especially
when a large data size is available [25,26]. It has demonstrated the feasibility of this transformation on
hydrological datasets and is widely used [26,27]. Other new power distribution approaches like the
recently proposed log-sinh transformation [28] are not tested in this work.

Xt =

 (Ci+λ2)
λ1−1

λ1
, λ1 , 0

log(Ci + λ2), λ1 = 0
. (13)

Here, λ1 can be estimated from the mean residual of Ci. If the variance of the binned mean residuals
increase linearly with the mean, then one can set λ1 = 0.5; if the variance increases quadratically
with the mean, then one can set λ1 = 0 [24]. Worth noticing, the Box-Cox transformation’s primary
motivation is to restore a greater degree of normality in the transformed data. It is not, strictly speaking,
a variance-stabilizing transformation, although that may be a by-product of the transformation process.

The likelihood function based on the assumption of a heteroscedastic uncorrelated error term is
given by:

p(Ci|s) = (2πσ2)
−n/2

·

∏
n

exp

−
[log( Ci+λ2

Cmodel,i+λ2
)]

2

2σ2
all

 · (Ci + λ2)
−1, λ1 = 0, (14)
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where σall is the variance of Ci.

(2) Assignment of the prior probability

The requirement of using the Bayes approach to conduct statistical inferences is assigning a
prior probability to the parameters. Several alternatives are available to the assignment of a prior
probability [29]: (a) the objective method or so called empirical Bayes method, which is based on
historical data or knowledge; (b) the subjective probability method, which assigns the prior PDF based
on personal understanding; (c) the principle of indifference, which assigns equal probabilities to all
possibilities, i.e., uniform PDF; and (d) the conjugate prior, which makes prior PDF and posterior PDF
the same distribution type from a purely mathematical point of view. Approaches can also be classified
as noninformative, highly informative, and moderately informative ways [30].

In hydrology studies, the empirical Bayes method is usually used, i.e., distribution from historical
records, and the prior is set as a Gamma distribution, normal distribution, uniform distribution,
etc. [30,31]. However, information for assigning the prior PDF of source parameters is usually quite
limited in many real-life cases. Therefore, a non-informatively uniform distribution seems to be the
first choice here. If potential environmental risk sources, such as the chemical industry and livestock
farms, are located along the objective river reaches, we can give priority to the possibility that the
pollution source was released in those sections and set an integrated PDF. The prior probability of a
uniform distribution can be given as follows:

p(s|I) = constant, s ∈ R. (15)

(3) The posterior probability density function

The homoscedastic posterior probability density function can be presented as follows:

p(s|C, I) ∝ p(s|I)p(C|s, I) ∝ I(s ∈ R)exp

−1
2

∑
i

(Ci −Ri(s))
2

σ2
obs + σ2

model

, (16)

where I denotes the indicator function.

2.2.2. Step 2: Calculation of the Posterior Distribution—MCMC Sampling

The posterior distribution is always not conjugated (with regard to posterior), and the
approximation is intractable, or the full conditionals do not look like any known distributions.
Therefore, techniques based on drawing dependent samples from the posterior distribution are
developed. A broad class of techniques, collectively referred to as Markov chain Monte Carlo (MCMC),
has been reported since the mid-twentieth century. The Metropolis–Hastings (MH) algorithm [32,33]
and Gibbs sampling [34] are two of the most important techniques used in MCMC [35].

Many variants and extensions of these algorithms have been proposed in the literature to date.
Although they are based on the same principles of the original algorithms, most of them are more
advanced and complicated than the original ones and usually focus on specific problems. In this study,
the Adaptive Metropolis algorithm is adopted for this ISP-oriented Bayesian inference framework.

In the conventional MH algorithm, the posterior distribution of the model parameter θ = (θ1

. . . θd), where d is the number of iterations, is sampled as Marshall et al. [16]. One variation of
the conventional MH algorithm is the AM algorithm [36], which was used in this study. The AM
algorithm is characterized by a proposal distribution based on the estimated posterior covariance
matrix of the parameter; the posterior covariance matrix is calculated at each iteration based on past
iterations. Thus, the proposal distribution is updated using the knowledge learned so far about the
posterior distribution.

Many approaches have been developed to diagnose the convergence of the Markov chain [37].
The convergence diagnostics developed by Gelman and Rubin and Raftery and Lewis [38,39] are
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currently the most popular among the statistical community. We use the Gelman–Rubin potential
scale reduction factor (R) to diagnose the convergence of the algorithm in this work. See Gelman and
Rubin [38] for more details.

2.2.3. Step 3: Analysis of the Posterior Distribution

There are two ways to analyze the posterior distribution available: (1) statistical measurement of
the posterior samples using the mean, square deviation, median values, fractal quantile, skewness,
and other descriptive statistics; and (2) calculating the marginal distribution of source parameters by
the numerical integration. For example, xs can be calculated by Equation (17) [18]. In this work, we
adopt the first option for easily understanding by decision makers.

P(xs|C, I) =
∫

all Ms

∫
all ts

P(xs, ts, Ms
∣∣∣C, I)dtsdMs . (17)

2.2.4. Step 4: Inference

In this final step, an inference on source information was made based on the above results.
It adopts median values of xs and Bayesian intervals as the final inference. To be sure, physical
investigations in the field have to be conducted in practice to confirm the real source information.

2.3. Solute Transport in Rivers (Forward Model)

The following coupled hydrodynamics-water quality system is able to describe the soluble
pollutant transport behavior in rivers and streams:

∇·u =0, (18)

∂u
∂t

+u · ∇u =
∇p
ρ

+v∇2u, (19)

∂c
∂t

+u · ∇c =∇ · (D∇c)−Kc + S, (20)

where u is the velocity vector of the fluid parcel, ρ is the fluid density, ν is the kinematic viscosity,
p is the pressure, c is the pollutant concentration, D is the diffusion coefficient, K is the pollutant
degradation coefficient, and S is the source term of the pollutant. Equation (19) is the Navier–Stokes
equations of incompressible fluid flow, and Equation (20) is an advection-diffusion-reaction (ADR)
equation based on first-order reaction kinetics.

It is normal that hydrodynamic processes and water quality processes are considered independently
for inland water. The shallow water equation is a common simplification of hydrodynamic processes.
For the steady-state, the ADR equation has an analytic solution, which is very useful for first responders.
For single sources with impulse discharge, depicted by the delta function s = M0δ(x− xs)δ(t− ts), the
theoretical concentration at the point (x, t) can be calculated by the following formula [10]:

C(x, t) =
Ms

A
√

4πDx(t− ts)
exp

− (x− xs −Ut + Uts)
2

4Dx(t− ts)

exp[−K(t− ts)], (21)

where A is the area of the river’s cross section (m2), Dx is the average longitudinal dispersion coefficient
(m2/min), U is the average river velocity (m/min), K is the decaying coefficient (min−1), t is the
monitored time (min), and x denotes the location of the monitoring site.
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3. Case Study on the Songhua River Nitrobenzene Spill Incident

3.1. Description of the Songhua River Nitrobenzene spill

The Songhua River (Figure 2), located in Northeast China, is the third largest river basin in China.
It covers a 5,568,000 km2 area and runs through four provinces where 62 million residents live. What is
commonly referred to as the Songhua River includes the Second Songhua River in the Jilin Province
and the main stream in the Heilongjiang Province. Its headstream has two sources: the Nen River
(north source) and the Second Songhua River (south source). The two run confluent at Sanchahe,
developing the main stream of the Songhua River (939 km). At Tongjiang City, the Songhua River
flows into the Heilongjiang River (Amur River), the Sino-Russian boundary river. Finally, it runs into
the Okhotsk Sea [40,41].
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Figure 2. The Songhua River nitrobenzene spill incident occurred in 2005.

The Songhua River nitrobenzene spill incident, due to the explosion that occurred at a petrochemical
plant of the Jilin Petrochemical Co in Jilin City, Jilin Province, in 2005, is a ‘landmark’ spill incident
in China. An estimated 100 tons of mixtures of benzene, aniline, and nitrobenzene with firefighting
water spilled into the Songhua River [21,42]. The whole pollutant plume moved across two provinces,
four cities, and 26 counties in 43 days. As the pollutant plume flowed downstream, the spill lead to
the suspension of Harbin’s (the capital of the Heilongjiang Province with a population of 4 million)
water supply and a Russian lawsuit against China. After this ‘landmark’ spill incident, the Chinese
government put a lot of effort into developing emergency response technologies for pollution incidents.
This case study is conducted based on this typical historical event to illustrate the usefulness and
merits of the modular-Bayesian approach in practice.

3.2. Reconstructed Source Identification Scenario

The source identification scenario was reconstructed as follows. The Second Songhua River in
the Jilin Province (dark blue river reach in Figure 2) was selected as the objective study area, which is
more reasonable for emergency pollution source inversion than in the mainstream. Compared with
the mainstream of the Songhua River in the Heilongjiang Province, the Second Songhua River has
fewer tributaries and is closer to the release location.

We assume the national monitoring section at Ganshuigang (the green section closest to the
mainstream in Figure 2) first detected and reported the nitrobenzene in the water. Then, emergency
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monitoring was planned, and monitoring sections were set in the upstream of the Ganshuigang section.
In total, four nationally controlled monitoring sections were set for sampling: Songhuajiang Village,
Songyuan Waterworks, Xidazuizi, and Ganshuigang, which are 155, 276, 281, and 336 km downstream
of the release point, respectively. According to the real monitoring process during the incident and
the available concentration data, the monitoring period ranged from 6 p.m., 18 November 2005 to
7 p.m., 19 November 2005 (25 h), with a frequency of 2 to 6 h. The origin of the space-time coordinate
axis was defined as the Baiqi monitoring section (75 km downstream the release location) and 0 a.m.,
16 November 2005 (convenient for time conversion). Figure 3 presents the nitrobenzene breaking
through curves obtained during the monitoring period.

Hydrology 2019, 6, x FOR PEER REVIEW 9 of 17 

 

Village, Songyuan Waterworks, Xidazuizi, and Ganshuigang, which are 155, 276, 281, and 336 km 

downstream of the release point, respectively. According to the real monitoring process during the 

incident and the available concentration data, the monitoring period ranged from 6 p.m., November 

18, 2005 to 7 p.m., November 19, 2005 (25 h), with a frequency of 2 to 6 h. The origin of the space-time 

coordinate axis was defined as the Baiqi monitoring section (75 km downstream the release location) 

and 0 a.m., November 16, 2005 (convenient for time conversion). Figure 3 presents the nitrobenzene 

breaking through curves obtained during the monitoring period. 

It should be noted that emergency monitoring for source inversion would have been completed 

in a short period. However, we have no choice and have to use the available monitoring data collected 

at the time, which are restricted to the real sampling conditions and response. For a retrospective 

study, this is acceptable. Compared with the 43 days of pollutant plume transportation on the river, 

one day of upstream monitoring is also acceptable for emergency response. 

 

Figure 3. Nitrobenzene concentrations at four emergency monitoring sections during the chemical 

spill incidents. 

3.3. Parameters of Forward Model and Bayesian Inference Process 

We assumed the pollutant load Ms equaled 92 tons (nitrobenzene), as was reported and 

estimated. Since it is rational to use a simple water quality model for first responders, a one-

dimensional pollutant transport model was used, as depicted in Equation (21). The average flow 

velocity U is the mean value of historical hydrological observations in the same period. The 

longitudinal diffusion coefficient Dx can be estimated by the Fisher formula as follows [43]: 

2
20.011

50%
x

u B
D

d u


 


, (22) 

where u  is the average flow velocity, B is the width of the river, d is the depth of the river, u  is the 

shear velocity of the river equal to g d s  , g is the gravitational acceleration, and s is the slope of 

the river. 

Due to 50% of the relative errors induced by using the Fisher formula, Dx was revised and 

rounded after comparison with the study [40]. The cross-section area of the given reach is estimated 

by average streamflow and flow speed. Nitrobenzene decay coefficients were obtained from the 

literature. Table 1 lists the values of the source and model parameters. We also assumed that those 

parameters can be easily and quickly obtained from field work and literature inquiry. 

Table 1. Source and model parameter information for the case of the Songhua River spill. 
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spill incidents.

It should be noted that emergency monitoring for source inversion would have been completed in
a short period. However, we have no choice and have to use the available monitoring data collected at
the time, which are restricted to the real sampling conditions and response. For a retrospective study,
this is acceptable. Compared with the 43 days of pollutant plume transportation on the river, one day
of upstream monitoring is also acceptable for emergency response.

3.3. Parameters of Forward Model and Bayesian Inference Process

We assumed the pollutant load Ms equaled 92 tons (nitrobenzene), as was reported and estimated.
Since it is rational to use a simple water quality model for first responders, a one-dimensional pollutant
transport model was used, as depicted in Equation (21). The average flow velocity U is the mean value
of historical hydrological observations in the same period. The longitudinal diffusion coefficient Dx

can be estimated by the Fisher formula as follows [43]:

Dx =
0.011u2

× B2

d× u∗
± 50%, (22)

where u is the average flow velocity, B is the width of the river, d is the depth of the river, u∗ is the shear
velocity of the river equal to

√
g× d× s, g is the gravitational acceleration, and s is the slope of the river.

Due to 50% of the relative errors induced by using the Fisher formula, Dx was revised and rounded
after comparison with the study [40]. The cross-section area of the given reach is estimated by average
streamflow and flow speed. Nitrobenzene decay coefficients were obtained from the literature. Table 1
lists the values of the source and model parameters. We also assumed that those parameters can be
easily and quickly obtained from field work and literature inquiry.
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Table 1. Source and model parameter information for the case of the Songhua River spill.

Parameter Value Units Reference Notes

Ms ~92 tons [33], UNEP Report [35] Nitrobenzene

xs −75 km UNEP Report [35] #10 north outlet pipeline of the
Jilin Petrochemical Plant

ts −58 h UNEP Report [35] 14:00, 13 November 2005

U 3.6 km/h assumed by historical hydrology
statistics [44] 1.00 m/s

Dx 0.18 km2/h typical value; Fisher formula 500 m2/s
A 1.6 × 10−3 km2 measured on GIS map 400 × 4 m
K 0.001325 h−1 as estimated in [33] 0.0318 day−1

Worth noticing, two- or three-dimensional models are more popular nowadays for forward
modelling [45–47]. However, due to the challenges of calibration on large scale (about 100 km) rivers
and association with physical search of pollution sources in practices, the one-dimensional model was
tested here for a real-life case study. Other options are using surrogate models such as neural networks
like in [48,49].

The prior PDF and AM algorithm parameters were set as in Table 2. The prior distribution
of pollution discharge parameters were set as a uniform distribution: Ms~U (20 tons, 200 tons),
xs = U(−200 km, 5 km), and ts = U(−72 h,−24 h), where the boundaries of the parameter interval
were empirically assumed and rounded. The prior PDF of source vector s is generated by the joint
distribution of Ms, xs, and ts. It is also assumed that errors were not related both for homoscedastic
(Run 1) and heteroscedastic (Run 2) samples, and sampling was conducted 100,000 times. For Run
1, the incipient 20,000 sampling times were discarded for final statistical calculation. For Run 2, the
latter 80,000 sampling times were used in the final statistical calculation. If the acceptance rates were
outside the range of 25–75% (see [16]), manually tuning the proposal scaling factor, sd, would be
adopted to adjust the proposal density (see [16]). Moreover, here, the AM algorithm calculated the log
transformation of the likelihood function. Other parameters can be seen in Table 2.

Table 2. The Adaptive Metropolis (AM) algorithm parameter settings.

Parameters Symbol Run 1 Run 2

Error

Homoscedastic,
uncorrelated adopt this assumption

Heteroscedastic,
uncorrelated

λ1,
λ2

λ1 = 0;
λ2 = 0.35

AM

Number of iterations nIter 100,000 same
Initial source parameter
values (Ms, Xs, Ts, σ2) S0 [60, −50, −40, 105] [80, −80, −48, 40]

Proposal scaling factor sd 0.3 0.25
Epsilon ε 1 × 10−16 same

First i0 iterations for fixed
covariance C0

i0 0.05 × nIter same

Initial variation of parameters
(Ms, Xs, Ts, σ2) varParm [400, 400, 200, 1 × 108] [400, 400, 200, 100]

Initial covariance matrix B0
0.5 × varParm × I3
(I3 is a unit matrix) same

Parameter constriction const.
Ms:[20, 200]
Xs:[−200, 5]

Ts:[−72, −24]
same

3.4. Inversion Results

The summary statistics of the results based on the modular-Bayesian inversion are shown in
Table 3 and Figure 4, and the posterior distributions of source parameters are shown in Figures 5 and 6.
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The running mean value of the source parameter is shown in Figure 7. The convergence process of
the parameter run means it became more unsteady in the late stage, and σ2 has a slower convergence
speed (Figure 7).

Table 3. Summary statistics of the inverse results at the Songhua River.

Real
Values Mean SD Skewness P0.025 P0.5 P0.975 Bayes Interval *

Likelihood Function Defined by Equation (11), Homoscedastic # (Run 1)
Ms (ton) 92 67.2 37.8 0.776 21.5 58.0 152 [20, 122]
Xs (km) −75 −80.9 45.9 0.346 −147 −86.4 8.38 [−150, −14]
Ts (h) −58 −48.2 12.9 0.146 −68.6 −49.0 −25.3 [−68, −28]

σ2 (mg2/L2) 1.95 × 105 8.9 × 104 3.016 9.30 × 104 1.76 × 105 3.98 × 105 [8.28 × 104,
2.99 × 105]

Likelihood Function Defined by Equation (12), Heteroscedastic (Run 2)
Ms (ton) 92 114 51.2 −0.081 25.7 116 196 [42.0, 200]
Xs (km) −75 −69.3 48.6.0 0.488 −142 −76.4 33.7 [−147, 3.5]
Ts (h) −58 −51.4 13.0 0.307 −71.0 −52.9 −26.2 [−72.0, −32.3]

σ2 (mg2/L2) 0.2 11.1 1.475 15.2 28.1 57.4 [14.0, 45.6]

Note: SD denotes standard deviation, P0.025 denotes 0.025 quantiles of cumulative distribution. * Highest probability
density intervals at α = 0.1 # The last 60,000 samples were used for Run 1, and the last 80,000 samples were used for
Run 2.
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Figure 4. Comparison of the inverse source parameters based on different likelihood functions.

Estimated source parameters are relatively close to real values, and the standard deviations are
also relatively small. It demonstrates that the modular-Bayesian approach appropriately succeeded
in such a complex real case, despite not being perfect. The results also indicate that the results from
the heteroscedastic assumption slightly outweigh the results by homoscedastic assumption (Figure 4).
They have the same size of errors on release time inversion, but nevertheless have different sizes for
inversion on pollutant load and release time.

Taking Run 1 for instance, pollutant load Ms has the largest error among source parameters, and
it is approximately 25 tons less than the real amount of released nitrobenzene. This can, to some extent,
account for the deviation of the breakthrough curves (BTCs) observed (Figure 3) from hypothetical
simplification of forward model as Equation (21). Estimated release location is close to the real release
point. However, this deviation presents different directions compared with our unreported studies on
some tracer experiment cases. The released time estimated is 10 h earlier than the true release moment.
Bayes intervals indicate that Ms and Xs have more uncertainty to Ts.
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We can argue for those non-perfect results based on the following reasons. The reason is probably
that the hydraulic conditions of the study area are more complex than the forward model. The scale is as
large as several hundreds of kilometers. A wide river cross-section led to a longer time for completing
lateral mixing. If reconstructing the release history, i.e., L(s) in Section 2.1, a more elaborate forward
model should be used, such as the 2D unsteady segmentation model. In addition, nitrobenzene is not
completely soluble in the initial river reach after the release, such as the inaccuracy of first order decay
kinetics. Even though, more complex models are not easily accessible and tend to be more expensive
in practice.

Generally speaking, the posterior PDFs for both Run 1 and Run 2 present a skewed and smooth
status (Figures 5 and 6). Long right tails are all present, except the PDF of Ms in Run 2. However,
differences are significant for the posterior PDFs between Run 1 and Run 2, especially for Ms and Ts.
In Run 1, the skewness of Ms PDF is large and the Ts PDF shows an obvious plateau, while in Run 2,
the skewness of Xs is significant and the Ms PDF shows a plateau.

Run 2 seems slightly better than the homoscedastic based Run 1. It indicates to some degree that
the heteroscedastic assumption is more acceptable for such a real case. In fact, the distribution styles of
monitoring errors at each section are possibly more different; they are tens of kilometers away from
each other.

4. Discussion

The Bayesian paradigm of estimation and inference is growing increasingly popular in natural
resource management problems and one of its major strengths is the ability to incorporate expert
knowledge and opinion in the form of prior probability distributions. However, this strength is not
fully exploited in the study. We used the most straightforward uniform probability model throughout
for simplicity in practice. It is worth investigating the sensitivity and desirability of using more
sophisticated prior probability models and indicating how these capture ‘expert’ opinion or prior belief
about the source of a pollution incident (rarely is it the case that environmental agencies and people
with local knowledge are ignorant as to the source and timing of an unlawful chemical discharge).

Some may be concerned with the use of uniform prior distributions in that the results of the
Bayesian analysis will differ very little from those obtained from more conventional measurement
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error models. This aspect needs to be investigated and addressed before claims of superiority of the
Bayesian approach can be made.

The error terms in Section 2.2 may take more consideration. For example, there are potentially
three error components: (1) model mis-specification (non-random); (2) observational and measurement
error; and (3) purely random/stochastic error. In addition, for simplicity, we assume an independent
distribution of all the observation errors σobs,i and model errors σmodel,i. It is not easy to prove this
assumption in general if only tested with field data.

In the practice of surface water quality management, some future improvements can be made for
this study. Firstly, it is necessary to conduct more case studies based on field work and different release
and monitoring scenarios. For the uncertainty analysis, to be used in an emergency response, a simple
forward model is sufficient and preferred [50]. How to establish an optimal emergency monitoring
network for quickly identifying and recovering pollution source information is an interesting and
important question worthy of investigation. To be used for environmental forensics in the aftermath of
a spill incident, more sophisticated hydrodynamic and water quality models are required to reconstruct
a detailed source release history and pollutant transport processes, i.e., exposure history. A more
robust monitoring plan should be developed in advance. Moreover, it seems to be more complex
for non-point source pollutant incidents, e.g., pesticides and chemical fertilizer pollution induced by
heavy rainfall in agriculture areas. All in all, modular-Bayesian approaches do provide promising and
useful tools in many circumstances of watershed management, but more studies still need to be done
for developing a sound technique in practice.

5. Conclusions

More and more attention has been paid to the application of the Bayesian method in the estimation
of surface water pollution parameters. However, few papers directly apply this method to the
source term estimation of actual river pollution. In this work, a model-based Bayesian approach was
developed for source identification in response to chemical spill incidents. Self-adaptive MCMC was
used to capture the marginal probability distribution of likelihood functions. A reconstructed source
inversion scenario based on a historical Songhua River nitrobenzene spill incident was first tested
using a modular-Bayesian approach. The results were acceptable for such a large-scale case and under
complex circumstances. The inverse uncertainties of each source parameter were depicted as well.
The likelihood function and the parameter setting of the AM sampling algorithm of the posterior PDF
can be referred to by other spill cases in practice. This paper illustrated that the modular Bayesian
based approach is an effective alternative in practice for river pollution source identification. More
technique details of the application of Bayesian framework are worthy of being tested and proved,
such as to incorporate expert knowledge and opinion in the form of prior probability distributions.
Further studies on emergency monitoring network optimization and forward model calibration are
also significant.
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