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Abstract: Perennial snowfields in Gates of the Arctic National Park and Preserve (GAAR) in the
central Brooks Range of Alaska are a critical component of the cryosphere. They serve as habitat for
an array of wildlife, including caribou, a species that is crucial as a food and cultural resource for
rural subsistence hunters and Native Alaskans. Snowfields also influence hydrology, vegetation,
permafrost, and have the potential to preserve valuable archaeological artifacts. By deriving time series
maps using cloud computing and supervised classification of Landsat satellite imagery, we calculated
areas and evaluated extent changes. We also derived changes in elevations of the perennial snowfields
that remained stable for at least four years. For the study period of 1985 to 2017, we found that total
areas of perennial snowfields in GAAR are decreasing, with most of the notable changes in the latter
half of the study period. Equilibrium areas, or bright areas, of the snowfields are shrinking, while
ablation, or dark areas, are growing. We also found that the snowfields occur at higher elevations over
time. Climate change may be altering the distribution, elevation, and extent of perennial snowfields
in GAAR, which could affect caribou populations and subsistence lifestyles in rural Alaska.

Keywords: snow hydrology; remote sensing; perennial snowfields; Brooks Range; Landsat;
supervised classification; climate change; Arctic; alpine hydrology; Google Earth Engine

1. Introduction

Pronounced warming of the climate is driving significant physical and ecological changes
throughout the Arctic cryosphere [1–4], including both a shortening of the annual duration of seasonal
snow cover [5], as well as retreat and loss of glaciers and perennial snowfields. Perennial snowfields,
like glaciers, are masses of snow and ice that persist for many years and form through accumulation
and compaction of seasonal layers of snow. However, in contrast to glaciers, these features never grow
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thick enough to flow under the influence of gravity. They are most persistent where the climatological
snowline intercepts subtle terrain and plateau topography in the Arctic [6], and where preferential snow
deposition occurs and topography limits exposure to solar radiation [7]. Preferential snow deposition
involves the uneven distribution of snow cover due to orographic influences on winter precipitation,
wind-influenced snow transport, and avalanches [8–12]. Perennial snowfields are vulnerable to
climate changes because they are strongly controlled by the height of the summer freezing level in
the atmosphere.

Perennial snowfields are an important component of the Arctic cryosphere because they influence
hydrology, downslope vegetation [13], bedrock weathering through freeze-thaw cycles [14], soil
temperatures, and permafrost distribution [15]. They are also important ecosystems for an array of
birds and mammal species [16]. Reductions in the extent of both glaciers and snowfields during the
late twentieth century [17] have been observed across the Arctic, including in Gates of the Arctic
National Park and Preserve (GAAR) in the central Brooks Range of Alaska [18]. Changes in perennial
snowfields could influence caribou in GAAR, since caribou often flock to these snowfields in the
summer to stay cool and to avoid mosquitos [19–22]. Caribou are crucial to traditional subsistence
for indigenous Native Alaskan people [23–27]. The loss of perennial snowfields in GAAR may also
have the potential to reveal well-preserved archeological artifacts and ancient animal remains with
significant cultural and paleoecological value, as have been found in other alpine snow and ice fields
in Alaska and Canada [28–33]. Federal agencies in Alaska also consider perennial snowfields to be
important cultural, hydrological, and ecological resources [34,35].

Perennial and seasonal snow and ice encompass a substantial portion of the planet, and by
utilizing satellite imagery, snow hydrologists and glaciologists can gain a better understanding of their
behavior [36–40]. Satellite imagery and earth remote sensing are important for monitoring changes in
the cryosphere, including past [6,41–43], present [44–47], and future behavior of seasonal and perennial
snow and ice. One of the most widely used of these datasets for observing snow and ice is the National
Aeronautics and Space Administration’s (NASA’s) Land Remote-Sensing Satellite System (Landsat).
Landsat has been used for years to obtain information about the cryosphere [42,48–58], including
glacier and ice sheet mapping [37,38,59–62] and the tracking of seasonal snow cover [49,63,64]. Few
remote sensing studies have targeted perennial snowfields specifically, and instead, typically focus on
mapping glaciers [57,58,65]. Other studies have specifically focused on the contributions of perennial
snowfields to the cryosphere [6,39,41,66,67].

Automated and semi-automated multispectral glacier and land ice mapping methods are
common, including supervised classification [61,68–70] and the Normalized Difference Snow Index
(NDSI) [53,55,57,71,72]. NDSI is an effective method for mapping both seasonal [43,73] and
perennial [57,58] snow and ice. NDSI is a numerical indicator that highlights snow cover over
land and uses the difference of the green and short wave infrared spectral bands divided by the sum of
the same band. Snow and clouds reflect most of the incident radiation in the visible band, but snow
absorbs most incident short wave radiation and clouds do not, distinguishing snow from clouds.

NDSI =
[Green Spectral Band − Short Wave Infrared Spectral Band]
[Green Spectral Band + Short Wave Infrared Spectral Band]

(1)

Glaciers, perennial snowfields, and seasonal snow are all important hydrological components of
the quickly shifting cryospheric landscape. Perennial snowfields, in particular, are the main component
of the cryosphere in GAAR. Remote sensing of these frozen features is important for monitoring their
present conditions, as well as for modeling both past and future changes. Therefore, the purpose of this
research is to quantify changes in perennial snowfield extents, by studying Landsat satellite imagery of
GAAR in the central Brooks Range in Alaska. To quantify snowfield changes, four objectives were
addressed in this study: (1) identify and map perennial snowfield minimum extents by applying
NDSI to Landsat imagery across GAAR during the available period of record (1985–2017); (2) apply
supervised classification to those snowfields to derive time series maps of two sub-classes of perennial
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snowfields, including equilibrium areas (brightly colored areas that indicate snowfields are maintaining
or increasing area) and ablation areas (darker regions that indicate snowfields are shrinking); (3)
quantify perennial snowfield areas, including calculations of total, equilibrium, and ablation areas, and
testing for statistical significance (trends) in area changes; and (4) quantify changes in point elevations
(PEs) of the perennial snowfields. We determined PEs by placing a 2 × 2 km grid across the study area
of GAAR and derived the lowest elevation point in each grid cell for snowfields that were persistent
for at least four years during pre-determined quartile time periods, using a digital elevation model
(DEM). The 2-km2 grid was used because it was the finest resolution that could be overlain onto a land
area as vast as GAAR and still be a reasonably efficient computational task for our computing methods.

2. Study Area

This study focuses on perennial snowfields in Gates of the Arctic National Park and Preserve
(GAAR), which is a United States (US) federally managed land unit in northern Alaska (Figure 1).
GAAR is the northernmost, and second largest, national park in the US, with its entirety lying north of
the Arctic Circle and covering an area of about 34,287 km2. It is located in the central portion of the
Brooks Range Mountains and was chosen as the focus area of this study, rather than the entire Brooks
Range, because, as a national park, it is managed differently than other areas of this mountain range.
In addition, the Brooks Range covers a vast area where the climate varies from region to region [74].
These differences can affect the behavior and persistence of perennial snowfields.
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Figure 1. Study area map of Gates of the Arctic National Park and Preserve (GAAR) in the central
Brooks Range in Alaska. Top left shows location of GAAR relative to state of Alaska, USA. Bottom
shows a detailed close-up of GAAR, including the 5m Digital Elevation Model (DEM) used in the study.
Also seen are the three localized areas that were evaluated in more detail; including Nanushuk River,
Mount Igikpak, and Kurupa River.

Additionally, three detailed local study areas were used to represent changes in perennial snowfield
extents at scales finer than can effectively be seen across such a large study area as GAAR. The local areas
were chosen based on the most concentrated clusters of perennial snowfields and included the Nanushuk
River, Mount Igikpak, and Kurupa River study areas (Figure 1). The mean elevations of the Nanushuk
River, Mount Igikpak, and Kurupa River study areas are, respectively, 1511, 1271, and 1473 m. Their mean
slope angles are 28◦, 29◦, and 26◦, respectively, and their mean aspects are SE, SW, and S, respectively.
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GAAR was created in 1980 as part of the Alaska National Interest Lands Conservation Act
(ANILCA), which has had a major impact on subsistence caribou hunting for rural Native Alaskan
communities. The ability of very remote communities to secure food sources through local hunting
has serious consequences for their socio-economic and cultural sustainability. This includes caribou
hunters in the remote Native Alaskan village of Anaktuvuk Pass, which is located inside of GAAR,
as well as caribou hunters across the North Slope of Alaska. Land management decisions influence
local rural peoples’ ability to hunt, and climate change affects perennial snow and ice, which in turn,
may affect wildlife populations, such as the caribou that these communities depend on for subsistence.
In this way, both changes in perennial snowfields and in land management decisions have an impact
on local people living in this area.

A portion of the eastern boundary of the park is located about 8 km from the Dalton Highway
(Alaska State Highway 11), with the westernmost part of the Arctic National Wildlife Refuge (ANWR)
located about 16 km further east. The Middle Fork of the Koyukuk River is located between GAAR
and the Dalton Highway, with the Trans-Alaska Pipeline running parallel to the Dalton. Anaktuvuk
Pass is located on a Native land withholding inside GAAR (Elevation: 683 m; Coordinates: 68.1433◦N,
151.7358◦W). Access to the park by non-residents is limited by the terrain and lack of roads. Extreme
inter-seasonal temperature range and low annual precipitation characterize the climate of GAAR.
Up until the 1990s, temperatures could drop as low as −38 ◦C in the winter, but they could also reach
as high as 22 ◦C [74] for a short time in summer, due in part to nearly continuous daylight during
the mid-summer. Over the 33-year period of this study, however, the weather stations in and around
GAAR recorded minimum temperatures as low as −30 ◦C and maximum temperatures as high as
16 ◦C, with annual mean temperatures around −14 and −5.5 ◦C, respectively (ncdc.noaa.gov).

GAAR has very few large glaciers remaining [18], especially in comparison to other regions of
Alaska, but has many rivers that are fed by a combination of ground water sources and seasonal and
perennial snow and ice melt. The majority of perennial ice and snow cover in GAAR consists of either
the many small perennial snowfields that are sparsely distributed across mid-to-high elevation valleys
and north-facing aspects of the Brooks Range, or of perennial aufeis. Aufeis is ice that accumulates
during the winter over rivers and lakes, formed by upwelling of water behind ice dams, or by ground
water discharge. The perennial portion of aufeis persists in low lying valleys year round where there is
less exposure to solar radiation.

3. Data Sources and Methods

3.1. Data and Imagery Used

NASA Landsat imagery was accessed and analyzed using Google Earth Engine (GEE),
a cloud-computing-based platform for planetary scale geospatial analysis [75]. GEE integrates a super
computer, satellite and reanalysis data, and a Javascript coding environment. GEE contains the full Landsat
archive, with pixel-scale co-registration of all scenes. The data used are from the Landsat Tier 1 (T1) top of
atmosphere (TOA) reflectance collections for missions 4, 5, 7, and 8, which include a period of study from
1985 through 2017 (Figure 2). GEE’s T1 TOA product is pre-calculated and includes calibration of TOA
reflectance. Calibration coefficients are extracted from the image metadata [76].

Acquisition and dissemination of Landsat data is currently a joint effort between NASA and
the United States Geological Survey (USGS), with the first Landsat satellite being launched in
1972. Replacement satellites have been launched throughout the decades, with each containing new
technology, allowing for additional spectral bands [77]. The evolution of Landsat sensors includes the
Thematic Mapper (TM), the Enhanced Thematic Mapper (ETM+), the Operational Land Imager (OLI),
and the Thermal Infrared Sensor (TIRS) technologies [77]. Some years of Landsat 4 and 5 data were
not of useable quality because there were missing tiles within the study area of GAAR, including all
years before 1985. Multiple spatial scales, spectral bands, and temporal scales of the imagery were
analyzed in this study (Figure 2).
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Also used in this study was a 5-m resolution digital elevation model (DEM). It was important
to obtain an accurate DEM for calculation of point elevations (PEs) and for other topographic
corrections associated with shadowing from mountainous terrain. Our DEM is primarily based
on ArcticDEM, released in 2016 from the University of Minnesota’s Polar Geospatial Center
(pgc.umn.edu/data/arcticdem). In 2017, Candela et al. [78] performed an accuracy study on this
DEM, wherein it was registered to seasonally subsetted ICESat elevations (Ice, Cloud, and Land
Elevation Satellite). The vertical accuracy of ArcticDEM was obtained from the statistics of the fit to
ICESat and averaged −0.01 ± 0.07 m. ArcticDEM has very good spatial coverage for GAAR, but is
missing some data. Our DEM is a combination of ArcticDEM and the University of Alaska Fairbanks’
Geographic Information Network of Alaska’s (GINA’s) IfSAR (interferometric synthetic aperture radar)
dataset, which was also obtained in 2016, via aircraft mounted radar detection. The IfSAR data were
used to fill in missing data from ArcticDEM. IfSAR has a vertical accuracy of 3 m and a horizontal
accuracy of 12.2 m (ifsar.gina.alaska.edu).
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3.2. Data Preprocessing

The methods described below are also depicted schematically in the flow chart in Figure 3. Two
primary datasets, containing annual cloud-free mosaics, were generated from: (1) Landsat 4 and 5 (L4/L5),
and (2) Landsat 7 and 8 (L7/L8). Landsat tiles located entirely or partially within GAAR during a 6-week
summer season of interest (1 July to 15 August) were included. This summer season is defined here as the
time of snowfield minimum extent (late summer) when perennial layers are revealed beneath the seasonal
snow cover. The Landsat 4 and 5 (L4/L5) dataset was temporally discontinuous, as some years of data
were missing for the study area, including 1993, 1994, 1996, 1997, 1998, and 2000–2004. The data were first
cloud-masked using a simple and standardized approach to arrive at a cloud score per pixel [79]. In order to
verify that clouds were not actually snow, the cloud score also included a calculation of the NDSI for each
pixel [43]. The cloud-masking algorithm then created a derived image of cloud scores corresponding to each
pixel, to screen out excessively cloudy pixels. We also used the quality band (QA) available for L7/L8 to
exclude pixels designated as “cirrus” or “cloud”.
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Figure 3. Schematic Flow chart of methodology used in the study. 1a) Pre-processed Landsat data
from missions 4, 5, 7, and 8, for summer (1 July to 15 August) in GAAR were acquired from GEE.
1b) 5 m DEM was constructed from ArcticDEM and IfSAR data. 2a) Landsat imagery was cloud
masked and mosaicked to obtain one imager per summer. 2b) Mosaicked Landsat 7 and 8 datasets
were pan-sharpened to 15 m scale with pan-chromatic band and HSV technique. 3a) Non-snow land
cover types were masked out, including surface water using NDWI, 3b) elevations below 900 m to
eliminate aufeis, and 3c) very steep terrain that cannot hold snow with slope angles over 55 degrees.
3d) Remaining image evaluated using NDSI and 25% darkest pixels (shadows) removed using a
percentile function. 4a) NDSI areas sub-classified into ablation and equilibrium areas using supervised
classification and 4b) error analysis. 5) Snowfield areas calculated annually for total, equilibrium,
and ablation areas, across GAAR and in three local study areas. 6) Lowest Point Elevations (PEs)
calculated using DEM and 2 km2 grid for each snowfield area remaining stable for at least four years.

There are striping gaps in Landsat 7 [80–82]. We corrected them using a striping mask by detecting
pixels with reflectance values at or near zero, and mosaicking those pixels with others georeferenced
from the same tile, but imaged during a different pass of the satellite. Our annual mosaic for each
dataset was created by calculating the median TOA reflectance value from all non-cloud-covered pixels
available per summer for each pixel. This technique also mitigated the darkening effects of mountain
shadows and cloud shadows. We pan-sharpened the L7/L8 data with the pan-chromatic 15-m scale
band using the Hue-Saturation-Value (HSV) approach [83,84].

The final preprocessing step was to mask out areas of the images that would never contain snow
in the summer. The two land cover types removed included (1) areas of liquid water and (2) areas with
elevations and slope angles unlikely to retain snow during the summer. Liquid water was determined
using the Normalized Difference Water Index (NDWI) with a threshold value of 0.3, as well by using
the Global Surface Water Recurrence dataset [85].

NDWI =
[Green Spectral Band − Near Infrared Spectral Band]
[Green Spectral Band + Near Infrared Spectral Band]

(2)



Hydrology 2019, 6, 53 7 of 24

GEE has a 32-day NDWI composite made from Tier 1 orthorectified scenes, using the computed
TOA reflectance [86]; however, we used our own calculations of NDWI per annual summer mosaic for
the masking process, as our study time period was different than the 32-day composite. For the areas
unlikely to retain summer snow, we included low elevation valleys below the perennial snow line,
as well as extremely steep terrain with slope angles over 55 degrees, which were determined using the
5-m DEM created for GAAR. Aufeis has a similar spectral signature as perennial snowfields, and so,
it was also necessary to mask out aufeis as part of the pre-processing. This was achieved when the low
elevation valleys were removed, since aufeis typically occurs as part of rivers located in the valleys.

3.3. Imagery Analysis

To find the snow that remained stable throughout the entire study period, areas designated as
snow by NDSI were used to calculate a forward gradient (NDSIn–NDSIn+1) and a reverse gradient
(NDSIn+1–NDSIn) for each dataset (L4/L5 and L7/L8). These values were used to compute the minimum
gradient between successive images. We calculated NDSI for our specific mosaics used in this study,
rather than using an existing Landsat snow cover product, since our 15-m pan-sharpened L7/L8 data
would have been difficult to compare with existing snow cover data at the 30-m scale, such as the Tier
3 Fractional Snow Cover (FSC) product [87].

A percentile function was applied where the darkest 25% of each pixel in the snowfield was
removed from the bottom 75th percentile (darkest 75% of each pixel). This helped mitigate the effects
of mountain shadows and cloud shadows. Also, since GAAR is so far north, the sun remains high
for most of the day in the summer. The sun’s incident angle is quite small, and shadows have less
influence on the brightness of images here. Areas of perennial snow were derived for quartiles within
the period of record for each of the two datasets, with L4/L5 quartiles consisting of L45_Q1 from 1985
to 1988, L45_Q2 from 1989 to 1992, L45_Q3 from 2005 to 2007, and L45_Q4 from 2008 to 2011. The
L7/L8 quartiles included L78_Q1 from 1999 to 2003, L78_Q2 from 2004 to 2008, L78_Q3 from 2009 to
2013, and L78_Q4 from 2014 to 2017. Due to the temporally discontinuous nature of the L4/L5 data,
1995 and 1999 were excluded from the quartiles. This was the basis for defining “perennial” in our
study. There are few other studies that have attempted to define the minimum age of a snowfield that
could be considered perennial. For those studies that have broached this topic, the minimum number
of years needed to define a snowfield as perennial range from two [8,88] to 20 [89]. For our study,
we considered snowfields as perennial if they persisted year-round for at least four years.

To determine equilibrium and ablation areas of the perennial snowfields, we used supervised
classification on those areas designated as snow by NDSI, which involved the use of training and testing
pixels [67,90]. This sub-classification routine involved two classes: equilibrium areas with high NDSI values,
and ablation areas with low NDSI values. This was done as an additional metric to the overall net changes
in the perennial snowfield extents in order to investigate the effects of seasonal variability, and to quantify
snowfield areas that may have remained stable, but have transitioned from viable snow (equilibrium) to
vulnerable or thinner snow (ablation). Thirty percent of the pixels per class were used for testing and error
assessment, while 70% were used for training. Equilibrium and ablation area training and testing pixels
were randomly derived, using high NDSI values (0.8 to 1.0) and low NDSI (0.4 to 0.5), respectively. These
values were designated using an iterative process, rather than by simply applying a threshold value, to
allow for the machine learning process to expedite the classification of areas with NDSI values between 0.5
and 0.8 and to pinpoint areas misclassified as snow.

Extent changes across GAAR were then calculated for total, equilibrium, and ablation areas annually.
The nonparametric Mann-Kendall statistic for testing of a trend was calculated for the annual changes in the
three localized study areas, for both L4/L5 and L7/L8, and Theil–Sen trend lines were applied. We assessed
the accuracy of the classification procedure by quantifying the errors of commission (EC) and the errors
of omission (EO) associated with classifying the land cover types as Not Snow, Equilibrium Areas, or
Ablation Areas. Accuracy percentage and the kappa index (K) were found in GEE using error algorithms.
K, a common statistic in remote sensing, measures agreement for qualitative (categorical) items and takes
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into account the possibility of the agreement occurring by chance [91–94]. Error matrices were created and
testing pixels were used to generate a confusion matrix for each year, including overall accuracy percentage,
K, EC, and EO (Table 1a,b). Finally, we quantified changes in point elevations (PEs) using a 2-km2 grid for
snowfields that were persistent for at least four years (quartiles). PEs of quartile perennial snowfields for
equilibrium and ablation areas in L4/L5 and L7/L8 were derived. Coordinates of the lowest elevations in
each cell for each class were obtained from the DEM.

Table 1. Supervised sub-classification error assessment results.

(a) Supervised sub-classification error assessment results for L4/L5

Landsat 4/5 - 30m Pixel Scale

Not Snow Equilibrium Areas Ablation Areas Overall
Accuracy (%)

Kappa
IndexYear EC EO EC EO EC EO

1985 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00
1986 0.00 0.00 1.00 0.83 0.95 1.00 96 0.88
1987 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00
1988 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00
1989 0.00 0.00 1.00 0.50 0.88 1.00 89 0.61
1990 0.00 0.00 0.00 0.00 1.00 1.00 100 N/A
1991 0.00 0.00 1.00 0.89 0.97 1.00 98 0.93
1992 0.00 0.00 0.00 0.00 0.98 0.98 96 N/A

1993–1994 No Data
1995 0.00 0.00 0.80 1.00 1.00 0.97 97 0.87

1996–1998 No Data
1999 0.00 0.00 1.00 0.50 0.86 1.00 86 0.60

2000–2004 No Data
2005 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00
2006 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00
2007 0.00 0.00 1.00 0.50 0.97 1.00 97 0.65
2008 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00
2009 0.00 0.00 1.00 0.50 0.98 1.00 98 0.66
2010 0.00 0.00 0.00 0.00 1.00 1.00 100 N/A
2011 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00

(b) Supervised sub-classification error assessment results for L7/L8

Landsat 7/8 - 15m Pixel Scale

Not Snow Equilibrium Areas Ablation Areas Overall
Accuracy (%)

Kappa
IndexYear EC EO EC EO EC EO

1999 0.00 0.00 0.00 0.00 1.00 0.91 91 0.00
2000 0.00 0.00 1.00 0.60 0.93 1.00 94 0.72
2001 0.00 0.00 0.67 1.00 1.00 0.98 99 0.79
2002 0.00 0.00 0.88 0.88 0.86 0.86 87 0.73
2003 0.00 0.00 1.00 0.96 0.95 1.00 98 0.96
2004 0.00 0.00 0.60 1.00 1.00 0.88 90 0.69
2005 0.00 0.00 0.86 1.00 1.00 0.92 95 0.88
2006 0.00 0.00 1.00 0.75 0.94 1.00 95 0.83
2007 0.00 0.00 0.00 0.00 0.86 0.86 75 0.14
2008 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00
2009 0.00 0.00 0.00 0.00 1.00 0.91 92 0.00
2010 0.00 0.00 0.80 0.80 0.95 0.95 92 0.75
2011 0.00 0.00 0.98 0.96 0.97 0.98 97 0.95
2012 0.00 0.00 1.00 0.83 0.97 1.00 97 0.89
2013 0.00 0.00 0.00 0.00 0.78 0.88 70 0.15
2014 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00
2015 0.00 0.00 0.50 1.00 1.00 0.67 75 0.50
2016 0.00 0.00 0.33 1.00 1.00 0.67 71 0.36
2017 0.00 0.00 1.00 1.00 1.00 1.00 100 1.00
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4. Results

The overall accuracy assessment of the equilibrium and ablation area sub-classification (Table 1a,b)
indicates relatively high accuracy. Accuracy percentages range from 100% to 70%, although the majority
of 19 years analyzed in the procedure fall within the 100–90% range. Six out of the 19 years, or about
30%, had overall accuracies below 90%. The results of the kappa index (K) analysis were more variable
than overall accuracy, with a majority of K values ranging from 1.00 to 0.60. Six out of the 19 years,
or about 30%, had K values below 0.60, with all of those years being in the L7/L8 dataset. Extent
changes across GAAR were calculated for total, equilibrium, and ablation areas annually. A summary
of these results, comparing the first year of the study period (1985: L4/L5 30-m data) to the last year
(2017: L7/L8 15-m data), including coverage change percentages within each cell of a 1-km2 grid for
1985 and 2017 is provided in Figure 4.
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Figure 4. Annual summer season (1 July–15 Aug) perennial snowfield areal extent changes from
the beginning of the study time period (1985, derived from the 30 m scale Landsat 4 and 5 imagery)
to the end of the study time period (2017, derived from the 15 m scale Landsat 7 and 8 imagery).
The top panel shows net changes in the total area between 1985 and 2017, including changes in the
sub-classified equilibrium (bright) areas and ablation (dark) areas of the snowfields. The bottom panel
shows changes in percent cover between 1985 and 2017 per 1 km2 grid cell across the entire area of
GAAR for equilibrium, ablation, and total areas.

Annual snowfield extent changes across all of GAAR show an overall decrease in snowfield area
of 13 km2 between 1985 and 2017, although larger seasonal variations existed within that time period
(Figure 4). While net total area between 1985 and 2017 decreased only slightly, the composition of the
perennial snowfields shifted notably towards more ablation areas and less equilibrium areas. There was
a larger 48 km2 decrease in viable equilibrium areas, indicating that the composition of the snowfields
shifted largely towards more ablation areas, which increased by 35 km2. Percentage changes in all
of the coverage maps indicate substantial decreases within the 1-km2 grid for equilibrium, ablation,
and total areas across GAAR (Figure 4). Snowfield area extent changes in GAAR can be seen in the
annual summer season (1 July–15 August) perennial snowfield minimum extent areas and in the
Mann-Kendall Theil–Sen trend lines, within the three detailed study areas for Nanushuk River, Mount
Igikpak, and Kurupa River (Figure 5: 30-m L4/L5; Figure 6: 15-m L7/L8).
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Figure 5. Annual summer season (1 July–15 Aug) perennial snowfield minimum extent time series maps derived from the 30 m scale Landsat 4 and 5 imagery 
(L4/L5), showing several example years in the three localized study areas of Nanushuk River, Mount Igikpak, and Kurupa River. The maps depict changes in overall 
snowfield coverage, as well as changes in equilibrium areas (light blue) and in ablation areas (dark blue). The accompanying graphs show the extent changes in the 
three study areas quantitatively, including calculated areas for each summer from observed extent changes, as well as trends in the area changes. The trend lines 
are derived from the nonparametric Mann-Kendall Theil Sen’s statistical approach, for total extent changes, as well as for equilibrium and ablation area changes. 
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the nonparametric Mann-Kendall Theil Sen’s statistical approach, for total extent changes, as well as for equilibrium and ablation area changes.
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Figure 6. Annual summer season (1 July–15 Aug) perennial snowfield minimum extent time series maps derived from the 15 m scale Landsat 7 and 8 imagery (L7/L8),
showing several example years in the three localized study areas of Nanushuk River, Mount Igikpak, and Kurupa River. The maps depict changes in overall snowfield
coverage, as well as changes in equilibrium areas (light blue) and in ablation areas (dark blue). The accompanying graphs show the extent changes in the three study
areas quantitatively, including calculated areas for each summer from observed extent changes, as well as trends in the area changes. The trend lines are derived from
the nonparametric Mann-Kendall Theil Sen’s statistical approach, for total extent changes, as well as for equilibrium and ablation area changes.
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Both area-trend line graphs, as well as mapped extent changes, are provided as sets of time
series for all three study areas (Figure 5). Example years shown for L4/L5 include 1985, 1995, 2005,
and 2009, with equilibrium areas mapped in light blue and ablation areas in dark blue, overlain onto
the DEM. Most of the trend lines indicate that snowfield extents decreased over the L4/L5 time period,
except in Mount Igikpak, where the equilibrium areas remained relatively constant, while ablation
areas slightly increased, resulting in a slight increase in overall snowfield extent. In the Nanushuk
River area, trends indicate that snow-covered areas here slightly decreased over the summer seasons
within the discontinuous time period of 1985–2011. Calculated areas in Nanushuk River for the L4/L5
data indicate that both equilibrium and ablation areas decreased slightly, resulting in an overall total
area decrease. This is in contrast to the Mount Igikpak study area where snow-covered areas slightly
increased over the summer seasons within L4/L5. Calculated areas in Mount Igikpak indicate that both
equilibrium and ablation areas increased slightly, resulting in an overall total area increase. Like the
Nanushuk River area, the Kurupa River snow-covered areas remained stable or slightly decreased
over this time period. Areas for L4/L5 in Kurupa River indicate that equilibrium areas remained stable,
while ablation areas slightly decreased, resulting in an overall decrease.

L7/L8 is presented in a manner similar to L4/L5 (Figure 6). Example years shown for L7/L8
include 2002, 2007, 2014, and 2016. Most of the trend lines indicate that snowfield extents decreased
over the L7/L8 time period, except in Mount Igikpak, where trends (and snowfield areas) remained
nearly constant. In the Nanushuk River, trends indicate that snow-covered areas decreased over the
summers of 1999–2017 (Figure 6). Calculated areas in Nanushuk River for L7/L8 indicate that both
equilibrium and ablation areas decreased, with a more noticeable decrease in equilibrium and a very
slight decrease in ablation. This resulted in an overall total area decrease for L7/L8 in the Nanushuk
River area. In Mount Igikpak, trends indicate that snow-covered areas essentially remained stable.
The trend in Kurupa River shows that snow-covered areas remained close to stable or very slightly
decreased, including a very slight decrease in ablation areas, while equilibrium areas remained stable.
It is important to note that annual minimum snowfield extent changes across GAAR, as well as in the
three local study areas, may include variability from both seasonal snow pack and perennial snowfields
(Figures 4–6).

Lastly, scatterplots of point elevations (PEs) of perennial snowfields persistent over the four year
quartile periods, including equilibrium and ablation areas, are provided (Figure 7). These include
the first four-year quartile period of L4/L5 (1985–1988) and the last four years of L7/L8 (2014–2017).
When PEs are grouped by latitude, Cluster A includes the Kurupa and Nanushuk rivers, and Cluster
B includes Mount Igikpak. When they are grouped by longitude, Cluster C includes Kurupa River
and Mount Igikpak, and Cluster D represents Nanushuk River. Elevation changes versus latitude
and longitude over time show that the lowest elevations in all clusters of points in the scatterplots
consistently shifted upwards between the 1985–1988 and 2014–2017 quartiles.
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Figure 7. Observed changes in PEs of perennial snowfields’ equilibrium and ablation areas for
snowfields persistent over first four years (top panel) and last four years (bottom panel) of the study
period. PEs were determined by placing a 2 km2 grid across GAAR and finding lowest elevation points
in each cell for equilibrium and ablation areas. The top panel shows snowfields persisting from at
least 1985 to 1988 (30 m L4/L5) and the bottom panel shows those persisting from at least 2014 to 2017
(15 m L7/L8). PE changes in latitude are on the left and changes in longitude are on the right. The
encircled clusters of PEs indicate the most concentrated areas of snowfields, which correspond to the
three localized areas. Cluster A is Kurupa and Nanushuk Rivers; B represents Mount Igikpak; C is
Kurupa River and Mount Igikpak; D is Nanushuk River.

5. Discussion

This study quantified changes in perennial snowfield extents in GAAR in the central
Brooks Range of Alaska using the Google Earth Engine (GEE) cloud-computing-based platform.
Mapping snow- and ice-covered areas with GEE [95–99] has a much greater speed, efficiency,
and accuracy than other older remote sensing software packages because GEE consists of a
multi-petabyte analysis-ready data catalog co-located with a high-performance, intrinsically parallel
computation service. It enables users to compute petabytes of data through an internet-accessible
application programming interface (API) without having to navigate the complexities of cloud-based
parallelization [75]. The assessment of our supervised classification routine performed in GEE
indicates good accuracy, with the procedure being slightly more accurate in L4/L5 than in L7/L8
(Table 1a,b). By using GEE, these robust methods for detecting changes in the perennial snowfields
in GAAR are open-source, with publicly available code and transparent methodologies that are
repeatable. Since we performed the bulk of these analyses in GEE, the code and methods are
easily shared and re-usable, as the environment in GAAR continues to change (our L4/L5 GEE
code: https://code.earthengine.google.com/db00680d06e75d0a763aee62a9d6a759; our L7/L8 GEE
code: https://code.earthengine.google.com/e05be7ba8f99505af418021fa715cdc2). The cloud-computing
format also means this code can be run by those with limited computing resources.

5.1. Mapped and Quantified Perennial Snowfield Areas

Perennial snowfields are highly susceptible to climate change [89] and are sensitive indicators of
such change. This is because snowfields are much smaller than glaciers, yet they persist longer than
seasonal snow [66]. They can be quickly altered by shifts in temperature and precipitation patterns at

https://code.earthengine.google.com/db00680d06e75d0a763aee62a9d6a759
https://code.earthengine.google.com/e05be7ba8f99505af418021fa715cdc2
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both local and regional scales [10]. Perennial snowfields in GAAR may be particularly vulnerable to
these shifts, due to the accelerated rate of climate change in the Arctic [3,4,100,101]. Snowfields are
strongly influenced by many factors, including topography, wind, and exposure to solar radiation.
These factors can change snowfield shape, extent, and distribution [8].

Perennial snowfields are ephemeral and susceptible to changes in weather [66] and climate [102].
It is important to consider changes in perennial snowfield extents in the context of climate, weather,
and topography interactions [12]. These considerations could aid in an overall understanding of
perennial snowfield behavior in response to climate change, including any feedback cycles between
climate and an array of other factors such as size, exposure to sunlight, slope angle, and color or
brightness. When we mapped the perennial snowfields across the extent of GAAR for both the L4/L5
and L7/L8 datasets, we saw the influence of several of these topographic factors, including the effects
of cirque backwall sheltering and limited exposure to sunlight in narrow deep valleys. These features,
typical of alpine terrain, provided shading from summer ablation. As our time series progressed,
however, warming temperatures or lack of snow appeared to become controlling factors in the slow
decrease in overall extents of perennial snowfields in GAAR.

Biologists and subsistence hunters are eager to understand why changes in populations of caribou
herds occur. These changes are most likely the result of multiple environmental and biological factors,
including the locations of concentrated areas of perennial snowfields in regions that caribou herds
frequent [21–26]. The initial NDSI processing (Objective (1)) yielded similar geographical results in
both the L4/L5 and L7/L8 imagery for the two time periods (1985–2011 and 1999–2017) (Figures 4–7).
The two datasets show the perennial snowfields to be similar in terms of spatial coverage and locations
of the most concentrated clusters. The majority of the snowfields are located in extremely mountainous
areas in the Northeast (NE), Southwest (SW), and Northwest (NW) corners of GAAR. This is why these
locations were chosen for more detailed inspection as the localized areas of Nanushuk River (NE),
Mount Igikpak (SW), and Kurupa River (NW) (Figure 1).

The Nanushuk River valley runs down the middle of the study area and Northwest-facing
snowfields to both the East and West of the valley appear to lose equilibrium areas. This is especially
true for the more rounded snowfields to the East. A similar glacier and perennial snowfield mapping
project in 1998 in Glacier National Park also used visual comparison of co-registered satellite images
to assess variations in firn lines, annual boundaries between ice and snow facies, and changes in
the shape of glaciers and snowfields [66]. Like that study, the results of this research, including
information regarding extent and shape changes of the snowfields, can be determined by investigating
the individual clusters of perennial snowfields that are seen in more detail in the three local study
areas. The time series maps summarize annual behavior and changes in extents for equilibrium and
ablation areas (Figures 5 and 6). In Nanushuk River, there may be some seasonal variations mixed in
with perennial areas; ablation areas vary greatly and equilibrium areas decrease.

For the Mount Igikpak study area (Figure 5), the time series also indicates some seasonal variations
of snow cover remaining throughout the summer, mixed in with the perennial areas. The seasonality
of the ablation areas is very apparent in Mount Igikpak, indicating that some of the areas classified as
perennially ablating coverage could be short-term persistent seasonal snow cover. There is a dramatic
decrease in equilibrium areas in Mount Igikpak for the L4/L5 data (Figure 5), moving across the
example years from 1985 to 2009. The Kurupa River area encompasses a much larger area than what is
seen in Nanushuk River and Mount Igikpak. Overall, total snowfield extents decreased in Kurupa
River, as was the case in Nanushuk. This can be seen in the time series for Kurupa River for the L4/L5
data, with practically zero coverage of equilibrium areas by the end of 2009.

The results of this study also have implications for archeologists working in these areas to find
artifacts [28–30], as they may not find well-preserved specimens if in fact the snowfields are only
persistent for several years at a time. The equilibrium areas were almost completely gone by the
latter part of this time series, leaving mostly darker-colored ablation areas (Figure 5). This may mean
that there were longer-term perennial areas in the 1980s, but that they completely disappeared by
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the 2000s, leaving snowfields that persisted somewhat randomly for only a summer or two. In the
Nanushuk River study area (Figure 6), the time series indicates a substantial amount of equilibrium
areas, which steadily decreased throughout the years, along with decreases in the ablation area extents.
The Nanushuk River snowfields in 2016 show some small amounts of coverage of equilibrium areas,
but the graphical results indicate almost zero coverage by 2017.

In a 1998 study in Glacier National Park by Allen, potential effects of cirque backwall sheltering
of perennial snow and ice were found to provide shading from summer ablation [66] and therefore
create an ideal topography. Despite this, warming temperatures (or lack of snow) appear to have
eventually won out over the influences of the cirque basin in the Mount Igikpak study area. For Mount
Igikpak (Figure 6), areal extents of the snowfields appear to remain annually steady across the L7/L8
time period, which can also be seen in the area calculations. There appears to have been a substantial
decrease in 2010 (not shown), followed by a rebound in the latter years of this time series. This may
also be an indication of high levels of seasonality in Mount Igikpak for L7/L8. In the earlier images of
the L4/L5 Mount Igikpak time series, there is a substantial ablation area in a Northeastern cirque basin;
however, by the end of the L4/L5, and throughout the L7/L8, this ablating snowfield all but disappears.

Some of our results also indicate that perhaps the Northwest corner of GAAR is changing more
rapidly than other areas of the park. There may be a more influential and warmer climate here,
as a result of documented changes in climate on Alaska’s North Slope and from changes in Arctic
Ocean cycles [103,104]. In the Kurupa River area in the Northwest (our largest study area) there is
substantially less areal coverage of total snowfield extent for the L7/L8 data than what was seen in the
L4/L5 data (Figure 6). A quantitative correlation is not feasible between the datasets in Kurupa River,
since results of the classification process are from two disparate spatial scales. However, it appears that
snowfield extents substantially decreased from 1985 to 2017 in this study area, taking into account both
datasets at their differing resolutions.

There are an array of stakeholders and scientists, including hydrologists, geologists, biologists,
and archaeologists, who need to understand the behavior of perennial snowfields and how they
are changing because of climate warming [1]. Wildlife biologists are investigating how perennial
snowfields provide important habit to all sorts of different species [16]. Perennial snowfields provide
a source of water for downslope vegetation, including lichen in the Brooks Range [13], which is
primary forage for caribou [24–26]. Upon comparison of overall snowfield extent changes during
the study period in GAAR, there was only a small total decrease in snowfield area between 1985
and 2017. However, there was a much larger decrease in the viable equilibrium areas, indicating
that the composition of the snowfields shifted notably towards more ablation areas, which increased
substantially (Figure 4). The overall percentage change in coverage also showed substantial decreases
for equilibrium, ablation, and total areas (Figure 4). Both hydrologists and ecologists use quantifiable
results from cryospheric research such as this in order to plan for ecological shifts, for changes in water
supplies for northern communities, and for climate change adaptation [105,106].

Calculating gross snowfield extent changes for the entire park may be a useful approach for
multiple natural science disciplines. However, utilizing our local detailed study areas to inspect extent
changes and test for significance in those area changes could be the ideal method for other types of
scientists and stakeholders. For example, archeologists and paleo-ecologists around the world are
looking for cultural artifacts and paleo-ecological specimens that have remained well preserved in
snow and ice for centuries or millennia [32]. Once snow and ice melt, it is critical for these scientists
to retrieve such items before exposure to the elements starts to degrade artifacts [31,33]. Knowing
where perennial snowfield perimeters have most recently changed at a relatively finer scale, through
quantitative analyses, could help them target areas of priority for their cultural resource surveys. These
types of quantifiable changes in snowfields, measured annually, could give archaeologists important
information about the places they look for artifacts.
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5.2. Trends in Perennial Snowfield Area Changes

It is important to note that when supervised classification was applied to annual extent changes
in the snowfields, there was a probability that some of these areas were actually part of the seasonal
snowpack and not necessarily perennial. Even within the designated summer season of 1 July–15 August
in the Brooks Range, seasonal snowfall is possible, as well as non-typical late melt or early season
re-accumulation of snow cover [74]. Keeping in mind this mixing of seasonal and perennial snow
coverage signals in the annual data, Sen trend lines were calculated and applied to the results, which
summarize summer snow coverage in the localized study areas. Objective (3) was to quantify perennial
snowfield areas, as measured from the time series maps, and to test for statistical significance in area
changes using a Mann-Kendall Theil–Sen nonparametric technique. In the Nanushuk River area, there
is an overall decrease in total snowfield extents, with both equilibrium and ablation areas decreasing
(Figure 5). In the Mount Igikpak study area, there was an overall slight increase in total snowfield extent
for L4/L5. The equilibrium areas remained nearly constant; therefore, the increase in this study area is
attributed completely to the increase in ablation areas. For the Kurupa River study area (Figure 5),
overall total snowfield extents decreased, as was the case in Nanushuk River. Kurupa River, a much
larger study area than the other two, had equilibrium areas that nearly disappeared by 2011.

The L7/L8 analysis for the Nanushuk River study area indicated an overall slight decrease in total
snowfield extent from 1999 to 2017 (Figure 6). Equilibrium areas decreased to nearly zero by 2017,
with a very slight decrease (or nearly constant coverage) in ablation areas. In Mount Igikpak (Figure 6),
areas of perennial snowfields remained steady across the L7/L8 time period. There appears to have
been a substantial decrease in 2010, followed by a rebound in the latter years of the time series. This
may also be an indication of high levels of seasonality in Mount Igikpak, and perhaps 2010 represents
the actual perennial coverage. For L7/L8, there is substantially less coverage by snowfields in Kurupa
River (Figure 6) than was seen in the L4/L5 data. This could mean that the snowfield extents were
gaining each winter season, but only in short-term coverage, around the perimeters of the snowfields.
While the perennial snowfields were growing, the total growth could be attributed to ephemeral areas
that were also ablating.

Inspecting snowfield changes is also important for permafrost research. Perennial snowfields
provide insulation for permafrost-dominated landscapes [15] in many regions of the Arctic cryosphere.
As permafrost thaws and permanently frozen land becomes unfrozen for the first time in human
history [107,108], a quantitative understanding of how snowfield retreat in high latitude and high
elevation regions is contributing to the loss of permafrost could be critical to monitoring such changes.
Trends in perennial snowfield coverage could have implications for permafrost in GAAR. For both
L4/L5 and L7/L8 in the Nanushuk area, snowfield coverage continued to slowly decrease over the
entire 1985–2017 time period. This could signal an eventual thaw for permafrost in this part of GAAR,
as the snowfields slowly lose their ability to insulate permafrost from the summer heat [109,110].
The permafrost in the Mount Igikpak area might have been less vulnerable during the study period,
as snowfield coverage remained relatively stable in both L4/L5 and L7/L8, providing consistent
insulation [111,112]. Permafrost may have changed most recently in the Kurupa River area, as the
perennial snowfield coverage increased in L4/L5, but then decreased in L7/L8.

The more recent and finer-scale data show larger decreases in extents with very little re-growth
of the snowfields for both the annual and quartile results. It is possible that these more substantial
decreases in snowfield extents are an outcome of a warming Arctic [4], as the L7/L8 data represents
latter years in the study area of GAAR. However, it is also important to mention that the disparate
scales may be contributing to the differences in trends between the older 30-m and newer 15-m data.
This is a very important potential error, and in some cases might impact the sign of the trend. The 15-m
data may be a more accurate representation of the behavior of the snowfields, as these bodies of snow
and ice are quite ephemeral and vulnerable to small changes due to their smaller sizes [89]. If scaling
issues are the controlling factor in the results [113–115], the 15-m data would likely do a better job of
representing changes.
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5.3. Perennial Snowfield PE Changes

Deriving changes in elevations for both perennial snowfields and glaciers has been shown to be
one of several effective ways for monitoring responses to climate change [116]. There are a variety
of ways to measure these elevation changes for snowfields and glaciers, including the equilibrium
line altitude (ELA) approach, as well as by tracking changes in the elevation of specific points.
An increase in measured elevation over time generally indicates a reduction in area of the snowfield or
glacier [40,59,60,66,117]. This is another important indicator of the impacts of a changing climate on
the cryosphere. Elevation changes could affect the nature of the relationship that caribou and other
wildlife have to these frozen features as habitable ecosystems [21,22]. This may include the ability
of wildlife to physically access the terrain where snowfields remain steady throughout the summer
seasons [25]. Therefore, the final objective of this study, Objective (4), is to quantify changes in point
elevations (PEs) of the perennial snowfields.

The ELA approach is a classic method for tracking elevation changes of glaciers and
snowfields [39,41,89]. This technique involves measuring the elevation at which mass balance
is equal—where accumulation of snow is exactly balanced by ablation over a period of a year [118].
The ELA technique can be used on individual glaciers and snowfields, or it can be applied to many
bodies of snow and ice to calculate changes across a broad landscape. Because GAAR is so large and
contains many small perennial snowfields with geometries that change rapidly from year to year, using
the ELA technique within the GEE environment proved cumbersome. Therefore, we used another
method for measuring changes in elevation that could be applied uniformly across the study area. Our
method involved deriving point elevations (PEs) within a grid for equilibrium and ablation areas of
the snowfields.

We determined PEs by placing a 2-km2 grid across the study area of GAAR and deriving the
lowest elevation point in each grid cell for snowfields that were persistent for at least four years during
pre-determined quartile time periods, using the 5-m digital elevation model (DEM). Two-km2 grid cells
were used in our study because this was the finest resolution that could be overlain onto a study area as
large as GAAR and still be a time efficient computational task for the cloud-computing abilities of GEE.
Few other studies have employed the exact method that we used, possibly because cloud computing is
a newer approach to studying perennial snow and ice. However, several other glacier studies have
used the approach of measuring elevation changes with discrete points both in the field [119,120],
as well as with satellite and aerial photography [121–123].

Example scatterplots of PEs of perennial snowfields persistent over the four year quartile periods,
including equilibrium and ablation areas, are provided in Figure 7. These include the first four-year
period of L4/L5 (1985–1988) and the last four years of L7/L8 (2014–2017). Elevation changes versus
latitude/longitude over time are shown. The various encircled clusters of PEs indicate the most
concentrated areas of perennial snowfields, which correspond to the three localized study areas. While
this method of clustering is somewhat up to interpretation, it appears that the lowest elevations in all
clusters consistently shifted upwards between the 1985–1988 and 2014–2017 quartiles. Clusters A, B, C,
and D shifted upwards about 100, 125, 150, and 50 m, respectively. Trends of upward movements in
elevation indicate that the perennial snowfields are shrinking, as the highest elevations of masses of
snow and ice last the longest. This could be the result of an observed increase in annual air temperatures
in the Arctic, with higher rates of increase seen at higher Arctic latitudes [3,4,100,101].

6. Conclusions

The purpose of this research was to quantify changes in perennial snowfield extents in GAAR
through four objectives: (1) identifying and mapping perennial snowfield minimum extents using NDSI
and Landsat imagery; (2) using supervised classification to find two sub-classes of perennial snowfields,
including equilibrium and ablation areas; (3) calculating perennial snowfield areas and testing for
statistical significance in the changing trends; and (4) finding changes in PEs of the snowfields. The
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accuracy assessment of the equilibrium and ablation area sub-classification procedure indicated good
accuracy, with slightly more accuracy in L4/L5 than in L7/L8.

By deriving time series maps using NDSI (Objective (1)) and supervised classification (Objective (2)),
we were able to calculate changes in the total, equilibrium, and ablation areas of the snowfields. For the
study period of 1985–2017, we found that the perennial snowfields in GAAR Verify tense change,
though most of the notable changes in extent were in the latter half of the study period. Changes in
viable equilibrium areas, or bright areas, of the perennial snowfields are shrinking much faster than
total areas, and dark ablation areas are growing. Ablation areas are the most likely to melt out first,
as they absorb more solar radiation. Some of these changes are the result of seasonal, inter-annual,
and annual variability.

We used a Mann-Kendall Theil–Sen nonparametric statistical approach to determine the trends in
extent changes of the perennial snowfields in GAAR (Objective (3)). In the Nanushuk River local study
area, there was an overall decrease in total snowfield extents, with ablation areas decreasing slightly,
and equilibrium areas decreasing to nearly zero by 2017. In the Mount Igikpak area, there was an
overall slight increase in total snowfield extent for the L4/L5 time period, while areas remained steady
during the L7/L8 period, which may be an indication of high seasonality in Mount Igikpak. In the
Kurupa River area—a much larger study area than the other two—total snowfield extents decreased,
with equilibrium areas nearly disappearing by 2011. For the L7/L8 time period in Kurupa River, there
was substantially less coverage by snowfields than the earlier L4/L5 period.

By evaluating changes in the point elevations (PEs) of the perennial snowfields that remained
stable for at least four years (Objective (4)), we were able to characterize changes in elevations of
the perennial snowfields. By inspecting changes in elevation versus longitude, as well as changes in
elevation versus latitude, we found that the snowfields occur at higher and higher elevations over
time. Increases in PE are an additional indicator that shows that the GAAR perennial snowfields
are slowly decreasing in areal extent. Further research is needed to investigate changes in perennial
snowfield extent in the central Brooks Range, including the classification and evaluation of different
types of satellite imagery. Since changes in snowfields are of significance to multiple stakeholders,
including scientists and subsistence hunters, it is plausible that the code generated in this study could
be used again in the future to continue to track changes in snowfields, yielding meaningful results for
those interested in changes in GAAR. The cloud-computing format also means this code can be run by
those with limited computing resources, perhaps in rural areas of Alaska. Using an interdisciplinary
approach, we believe that a detailed understanding of changes in perennial snowfields will continue
to evolve.

Author Contributions: Conceptualization, M.E.T., E.D.T., and S.R.F.; Data curation, M.E.T.; Formal analysis,
M.E.T. and E.D.T.; Funding acquisition, M.E.T.; Investigation, M.E.T.; Methodology, M.E.T., E.D.T., and G.J.W.;
Project administration, S.R.F.; Supervision, S.R.F.; Validation, M.E.T.; Visualization, M.E.T.; Writing – original draft,
M.E.T.; Writing – review & editing, E.D.T., S.R.F., and G.J.W.

Funding: This research was funded by a National Aeronautics and Space Administration (NASA) Graduate
Student Earth and Space Science Fellowship (NESSF), as well as by a US National Park Service (NPS) Future Park
Leaders of Emerging Change (FPL) Graduate Student Fellowship, an Arctic Institute of North America (AINA)
Grant-in-Aid Scholarship, an Alaska Space Grant Graduate Research Fellowship (ASGP), a National Science
Foundation (NSF) Established Program to Stimulate Competitive Research (EPSCoR) Enhancing Alaska Native
Engagement Grant (AKNEG), a National Science Foundation (NSF) Established Program to Stimulate Competitive
Research (EPSCoR) Resilience and Adaptation Program (RAP) Graduate Student Fellowship, the Kathryn E and
John P Doyle Scholarship Fund of the Alaska Community Foundation (ACF), and American Water Resources
Association (AWRA) National and Alaska State Chapter Graduate Student Scholarships.

Acknowledgments: The authors would like to thank Heather Craig of the International Arctic Research Center
(IARC) at the University of Alaska Fairbanks for her invaluable contributions to reviewing, editing, and improving
the figures in this manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.



Hydrology 2019, 6, 53 19 of 24

References

1. Oechel, W.C.; Vourlitis, G.L.; Hastings, S.J.; Zulueta, R.C.; Hinzman, L.; Kane, D. Acclimation of ecosystem
CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 2000, 406, 978–981.
[CrossRef] [PubMed]

2. Johannessen, O.M.; Bengtsson, L.; Miles, M.W.; Kuzmina, S.I.; Semenov, V.A.; Alekseev, G.V.; Cattle, H.P. Arctic
climate change: Observed and modelled temperature and sea-ice variability. Tellus A Dyn. Meteorol. Oceanogr.
2004, 56, 328–341. [CrossRef]

3. Chapin, F.S.; Sturm, M.; Serreze, M.C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; Welker, J.M. Role of land-surface
changes in Arctic summer warming. Science 2005, 310, 657–660. [CrossRef] [PubMed]

4. Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Yoshikawa, K. Evidence
and implications of recent climate change in northern Alaska and other arctic regions. Clim. Chang. 2005, 72,
251–298. [CrossRef]

5. Derksen, C.; Brown, R. Spring snow cover extent reductions in the 2008-2012 period exceeding climate model
projections. Geophys Res Lett. 2012, 39, 1–6. [CrossRef]

6. Wolken, G.J. High-resolution multispectral techniques for mapping former Little Ice Age terrestrial ice cover
in the Canadian High Arctic. Remote Sens. Environ. 2006, 101, 104–114. [CrossRef]

7. Hoffman, M.J.; Fountain, A.G.; Achuff, J.M. 20th-century variations in area of cirque glaciers and glacierets,
Rocky Mountain National Park, Rocky Mountains, Colorado, USA. Ann. Glaciol. 2007, 46, 349–354. [CrossRef]

8. Higuchi, K.; Iozawa, T.; Fujii, Y.; Kodama, H. Inventory of perennial snow patches in Central Japan. GeoJournal
1980, 4, 303–311. [CrossRef]

9. Kuhn, M. The mass balance of very small glaciers. Z. Gletscherkd. Glazialgeol. 1995, 31, 171–179.
10. Kuhn, M. Redistribution of snow and glacier mass balance from a hydrometeorological model. J. Hydrol.

2003, 282, 95–103. [CrossRef]
11. Lehning, M.; Löwe, H.; Ryser, M.; Raderschall, N. Inhomogeneous precipitation distribution and snow

transport in steep terrain. Water Resour. Res. 2008, 44. [CrossRef]
12. Dadic, R.; Mott, R.; Lehning, M.; Burlando, P. Wind influence on snow depth distribution and accumulation

over glaciers. J. Geophys. Res. Earth Surf. 2010, 115. [CrossRef]
13. Lewkowicz, A.G.; Young, K.L. Hydrology of a perennial snowbank in the continuous permafrost zone,

Melville Island, Canada. Geogr. Annaler. Ser. Aphysical Geography. 1990, 72, 13–21. [CrossRef]
14. Berrisford, M.S. Evidence for enhanced mechanical weathering associated with seasonally late-lying and

perennial snow patches, Jotunheimen, Norway. Permafr. Periglac Process. 1991, 2, 331–340. [CrossRef]
15. Luetschg, M.; Stoeckli, V.; Lehning, M.; Haeberli, W.; Ammann, W. Temperatures in two boreholes at Flüela

Pass, Eastern Swiss Alps: The effect of snow redistribution on permafrost distribution patterns in high
mountain areas. Permafr. Periglac Process. 2004, 15, 283–297. [CrossRef]

16. Rosvold, J. Perennial ice and snow-covered land as important ecosystems for birds and mammals. J. Biogeogr.
2016, 43, 3–12. [CrossRef]

17. Barclay, D.J.; Wiles, G.C.; Calkin, P.E. Holocene glacier fluctuations in Alaska. Quat. Sci. Rev. 2009, 28,
2034–2048. [CrossRef]

18. Evison, L.H.; Calkin, P.E.; Ellis, J.M. Late-Holocene glaciation and twentieth-century retreat, northeastern
Brooks Range, Alaska. Holocene 1996, 6, 17–24. [CrossRef]

19. Ion, P.G.; Kershaw, G.P. The selection of snow patches as relief habitat by woodland caribou (Rangifer
tarandus caribou), Macmillan Pass, Selwyn/Mackenzie Mountains, NWT, Canada. Arct. Alp. Res. 1989,
203–211. [CrossRef]

20. Saperstein, L.B. Winter forage selection by barren-ground caribou: Effects of fire and snow. Rangifer 1996, 16,
237–238. [CrossRef]

21. Toupin, B.; Huot, J.; Manseau, M. Effect of insect harassment on the behaviour of the Riviere George caribou.
Arctic 1996, 49, 375–382. [CrossRef]

22. Anderson, J.R.; Nilssen, A.C. Do reindeer aggregate on snow patches to reduce harassment by parasitic flies
or to thermoregulate? Rangifer 1998, 18, 3–17. [CrossRef]

23. Rattenbury, K.; Kielland, K.; Finstad, G.; Schneider, W. A reindeer herder’s perspective on caribou, weather
and socio-economic change on the Seward Peninsula, Alaska. Polar Res. 2009, 28, 71–88. [CrossRef]

http://dx.doi.org/10.1038/35023137
http://www.ncbi.nlm.nih.gov/pubmed/10984048
http://dx.doi.org/10.1111/j.1600-0870.2004.00060.x
http://dx.doi.org/10.1126/science.1117368
http://www.ncbi.nlm.nih.gov/pubmed/16179434
http://dx.doi.org/10.1007/s10584-005-5352-2
http://dx.doi.org/10.1029/2012GL053387
http://dx.doi.org/10.1016/j.rse.2005.12.009
http://dx.doi.org/10.3189/172756407782871233
http://dx.doi.org/10.1007/BF00219577
http://dx.doi.org/10.1016/S0022-1694(03)00256-7
http://dx.doi.org/10.1029/2007WR006545
http://dx.doi.org/10.1029/2009JF001261
http://dx.doi.org/10.1080/04353676.1990.11880297
http://dx.doi.org/10.1002/ppp.3430020408
http://dx.doi.org/10.1002/ppp.500
http://dx.doi.org/10.1111/jbi.12609
http://dx.doi.org/10.1016/j.quascirev.2009.01.016
http://dx.doi.org/10.1177/095968369600600103
http://dx.doi.org/10.2307/1551633
http://dx.doi.org/10.7557/2.16.4.1248
http://dx.doi.org/10.14430/arctic1213
http://dx.doi.org/10.7557/2.18.1.1369
http://dx.doi.org/10.1111/j.1751-8369.2009.00102.x


Hydrology 2019, 6, 53 20 of 24

24. Joly, K. Modeling influences on winter distribution of caribou in northwestern Alaska through use of satellite
telemetry. Rangifer 2011, 31, 75–85. [CrossRef]

25. Joly, K.; Klein, D.R. Complexity of caribou population dynamics in a changing climate. Alsk. Park Sci. 2011,
10, 26–31.

26. Joly, K.; Klein, D.R.; Verbyla, D.L.; Rupp, T.S.; Chapin, F.S. Linkages between large-scale climate patterns and
the dynamics of Arctic caribou populations. Ecography 2011, 34, 345–352. [CrossRef]

27. Braem, N.M. Subsistence Wildlife Harvests in Ambler, Buckland, Kiana, Kobuk Shaktoolik and Shishmaref, Alaska,
2009–2010; Alaska Department of Fish and Game Division of Subsistence: Fairbanks, AK, USA, 2012; Special
Publication No. SP2012-003.

28. Dixon, E.J.; Manley, W.F.; Lee, C.M. The emerging archaeology of glaciers and ice patches: Examples from
Alaska’s Wrangell-St. Elias National Park and Preserve. Am. Antiq. 2005, 70, 129–143. [CrossRef]

29. Alix, C.; Hare, P.G.; Andrews, T.D.; MacKay, G. A thousand years of lost hunting arrows: Wood analysis of
ice patch remains in northwestern Canada. Arctic 2012, 65, 95–117. [CrossRef]

30. Andrews, T.D.; MacKAY, G.; Andrew, L. Archaeological investigations of alpine ice patches in the Selwyn
Mountains, Northwest Territories, Canada. Arctic 2012, 65, 1–21. [CrossRef]

31. Hare, P.G.; Thomas, C.D.; Topper, T.N.; Gotthardt, R.M. The archaeology of Yukon ice patches: New artifacts,
observations, and insights. Arctic 2012, 65, 118–135. [CrossRef]

32. Meulendyk, T.; Moorman, B.J.; Andrews, T.D.; MacKAY, G. Morphology and development of ice patches in
Northwest Territories, Canada. Arctic 2012, 65, 43–58. [CrossRef]

33. VanderHoek, R.; Dixon, E.J.; Jarman, N.L.; Tedor, R.M. Ice patch arch in Alaska: 2000–10. Arctic 2012, 65,
153–164. [CrossRef]

34. Tedesche, M.E. Snow Patches in the Brooks Range; United States National Park Service Science: Fairbanks, AK,
USA, 2015.

35. Tedesche, M.E.; Rasic, J. Perennial Snowfields of the Central Brooks Range: Valuable Park Resources.
Alaska Park Sci. 2017, 16, 50–53.

36. Armstrong, R.L.; Brodzik, M.J. Recent Northern Hemisphere snow extent: A comparison of data derived
from visible and microwave satellite sensors. Geophys. Res. Lett. 2001, 28, 3673–3676. [CrossRef]

37. Kääb, A.; Paul, F.; Maisch, M.; Hoelzle, M.; Haeberli, W. The new remote-sensing-derived Swiss glacier
inventory: II. First results. Ann. Glaciol. 2002, 34, 362–366. [CrossRef]

38. Fountain, A.G. Digital outlines and topography of the glaciers of the American West. Available online:
http://pubs.usgs.gov/of/2006/1340/ (accessed on 17 June 2019).

39. Wolken, G.J.; Sharp, M.J.; England, J.H. Changes in late-Neoglacial climate inferred from former
equilibrium-line altitudes in the Queen Elizabeth Islands, Arctic Canada. Holocene 2008, 18, 629–641.
[CrossRef]

40. Paul, F.; Barry, R.G.; Cogley, J.G.; Frey, H.; Haeberli, W.; Ohmura, A.; Zemp, M. Recommendations for the
compilation of glacier inventory data from digital sources. Ann. Glaciol. 2009, 50, 119–126. [CrossRef]

41. Wolken, G.J.; England, J.H.; Dyke, A.S. Changes in late-Neoglacial perennial snow/ice extent and
equilibrium-line altitudes in the Queen Elizabeth Islands, Arctic Canada. Holocene 2008, 18, 615–627.
[CrossRef]

42. Swanson, D.K. Trends in Greenness and Snow Cover in Alaska’s Arctic National Parks, 2000–2016. Remote Sens.
2017, 9, 514. [CrossRef]

43. Macander, M.J.; Swingley, C.S.; Joly, K.; Raynolds, M.K. Landsat-based snow persistence map for northwest
Alaska. Remote Sens. Environ. 2015, 163, 23–31. [CrossRef]

44. Nolin, A.W.; Dozier, J. A Hyperspectral Method for Remotely Sensing the Grain Size of Snow.
Remote Sens. Environ. 2000, 74, 207–216. [CrossRef]

45. Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products.
Remote Sens. Environ. 2002, 83, 181–194. [CrossRef]

46. Molotch, N.P.; Fassnacht, S.R.; Bales, R.C.; Helfrich, S.R. Estimating the distribution of snow water equivalent
and snow extent beneath cloud cover in the Salt-Verde River basin, Arizona. Hydrol. Process. 2004, 18,
1595–1611. [CrossRef]

47. McFadden, E.M.; Ramage, J.; Rodbell, D.T. Landsat TM and ETM+ derived snowline altitudes in the
Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. Cryosphere 2011, 5, 419–430. [CrossRef]

http://dx.doi.org/10.7557/2.31.2.1992
http://dx.doi.org/10.1111/j.1600-0587.2010.06377.x
http://dx.doi.org/10.2307/40035272
http://dx.doi.org/10.14430/arctic4187
http://dx.doi.org/10.14430/arctic4182
http://dx.doi.org/10.14430/arctic4188
http://dx.doi.org/10.14430/arctic4184
http://dx.doi.org/10.14430/arctic4190
http://dx.doi.org/10.1029/2000GL012556
http://dx.doi.org/10.3189/172756402781817473
http://pubs.usgs.gov/of/2006/1340/
http://dx.doi.org/10.1177/0959683608089216
http://dx.doi.org/10.3189/172756410790595778
http://dx.doi.org/10.1177/0959683608089215
http://dx.doi.org/10.3390/rs9060514
http://dx.doi.org/10.1016/j.rse.2015.02.028
http://dx.doi.org/10.1016/S0034-4257(00)00111-5
http://dx.doi.org/10.1016/S0034-4257(02)00095-0
http://dx.doi.org/10.1002/hyp.1408
http://dx.doi.org/10.5194/tc-5-419-2011


Hydrology 2019, 6, 53 21 of 24

48. Rundquist, D.C.; Collins, S.C.; Barnes, R.B.; Bussom, D.E.; Samson, S.A.; Peake, J.S. The use of Landsat digital
information for assessing glacier inventory parameters. Int. Assoc. Hydrol. Sciences. 1980, 126, 321–331.

49. Dozier, J. Snow reflectance from Landsat-4 thematic mapper. IEEE Trans. Geosci. Remote Sens. 1984, 3,
323–328. [CrossRef]

50. Dozier, J. Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper. Remote Sens. Environ.
1989, 28, 9–22. [CrossRef]

51. Dozier, J. Estimation of properties of alpine snow from Landsat thematic mapper. Adv. Space Res. 1989, 9,
207–215. [CrossRef]

52. Jacobs, J.D.; Simms, É.L.; Simms, A. Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada,
between 1961 and 1993, determined from digital mapping of Landsat TM. J. Glaciol. 1997, 43, 98–102.
[CrossRef]

53. Hall, D.K.; Ormsby, J.P.; Bindschadler, R.A.; Siddalingaiah, H. Characterization of Snow and Ice Reflectance
Zones on Glaciers Using Landsat Thematic Mapper Data. Ann. Glaciol. 1987, 9, 104–108. [CrossRef]

54. Hall, D.K.; Chang, A.T.C.; Siddalingaiah, H. Reflectances of Glaciers as Calculated Using Landsat-5 Thematic
Mapper Data. Remote Sens. Environ. 1988, 25, 311–321. [CrossRef]

55. Hall, D.K.; Chang, A.T.C.; Foster, J.L.; Benson, C.S.; Kovalick, W.M. Comparison of In Situ and Landsat
Derived Reflectance of Alaskan Glaciers. Remote Sens. Environ. 1989, 28, 23–31. [CrossRef]

56. Painter, T.H.; Brodzik, M.J.; Racoviteanu, A.; Armstrong, R. Automated mapping of Earth’s annual minimum
exposed snow and ice with MODIS. Geophys. Res. Lett. 2012, 39, 1–6. [CrossRef]

57. Selkowitz, D.J.; Forster, R.R. An Automated Approach for Mapping Persistent Ice and Snow Cover over
High Latitude Regions. Remote Sens. 2015, 8, 21. [CrossRef]

58. Selkowitz, D.J.; Forster, R.R. Automated mapping of persistent ice and snow cover across the western U.S.
with Landsat. ISPRS J. Photogramm. Remote Sens. 2016, 117, 126–140. [CrossRef]

59. Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote-sensing-derived Swiss glacier
inventory: I. Methods. Ann. Glaciol. 2002, 34, 355–361. [CrossRef]

60. Paul, F.; Kääb, A. Perspectives on the production of a glacier inventory from multispectral satellite data in
Arctic Canada: Cumberland Peninsula, Baffin Island. Ann. Glaciol. 2005, 42, 59–66. [CrossRef]

61. Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005.
Remote Sens. Environ. 2010, 114, 127–137. [CrossRef]

62. Rastner, P.; Bolch, T.; Mölg, N.; Machguth, H.; Le Bris, R.; Paul, F. The first complete inventory of the local
glaciers and ice caps on Greenland. Cryosphere 2012, 6, 1483–1495. [CrossRef]

63. Rosenthal, W.; Dozier, J. Automated mapping of montane snow cover at subpixel resolution from the Landsat
Thematic Mapper. Water Resour. Res. 1996, 32, 115–130. [CrossRef]

64. Crawford, C.J.; Manson, S.M.; Bauer, M.E.; Hall, D.K. Multi-temporal snow cover mapping in mountainous
terrain for Landsat climate data record development. Remote Sens. Environ. 2013, 135, 224–233. [CrossRef]

65. Bishop, M.P.; Olsenholler, J.A.; Shroder, J.F.; Barry, R.G.; Raup, B.H.; Bush, A.B.; Copland, L.; Dwyer, J.L.;
Fountain, A.G.; Haeberli, W.; et al. Global Land Ice Measurements from Space (GLIMS): Remote sensing and
GIS investigations of the Earth’s Cryosphere. Geocarto. Int. 2004, 19, 57–84. [CrossRef]

66. Allen, T.R. Topographic context of glaciers and perennial snowfields, Glacier National Park, Montana.
Geomorphology. 1998, 21, 207–216. [CrossRef]

67. Langer, M.; Damm, B. CRYOSNOW: An approach for mapping and simulation of mountain permafrost
distribution based on the spatial analyses of perennial snow patches. Geophys. Res. Abstr. 2008, 10,
EGU2008-A-11263.

68. Aniya, M.; Sato, H.; Naruse, R.; Skvarca, P.; Casassa, G. The Use of Satellite and Airborne Imagery to
Inventory Outlet Glaciers of the Southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sens.
1996, 62, 1361–1369.

69. Gratton, D.J.; Howarth, P.J.; Marceau, D.J. Using Landsat-5 Thematic Mapper and Digital Elevation Data to
Determine the Net Radiation Field of a Mountain Glacier. Remote Sens. Environ. 1993, 43, 315–331. [CrossRef]

70. Paul, F.; Huggel, C.; Kääb, A. Combining satellite multispectral image data and a digital elevation model for
mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [CrossRef]

71. Raup, B.; Kääb, A.; Kargel, J.S.; Bishop, M.P.; Hamilton, G.; Lee, E.; Paul, F.; Rau, F.; Soltesz, D.; Khalsa, S.J.S.;
et al. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project.
Comput. Geosci. 2007, 33, 104–125. [CrossRef]

http://dx.doi.org/10.1109/TGRS.1984.350628
http://dx.doi.org/10.1016/0034-4257(89)90101-6
http://dx.doi.org/10.1016/0273-1177(89)90487-0
http://dx.doi.org/10.1017/S0022143000002859
http://dx.doi.org/10.3189/S0260305500000471
http://dx.doi.org/10.1016/0034-4257(88)90107-1
http://dx.doi.org/10.1016/0034-4257(89)90102-8
http://dx.doi.org/10.1029/2012GL053340
http://dx.doi.org/10.3390/rs8010016
http://dx.doi.org/10.1016/j.isprsjprs.2016.04.001
http://dx.doi.org/10.3189/172756402781817941
http://dx.doi.org/10.3189/172756405781813087
http://dx.doi.org/10.1016/j.rse.2009.08.015
http://dx.doi.org/10.5194/tc-6-1483-2012
http://dx.doi.org/10.1029/95WR02718
http://dx.doi.org/10.1016/j.rse.2013.04.004
http://dx.doi.org/10.1080/10106040408542307
http://dx.doi.org/10.1016/S0169-555X(97)00059-7
http://dx.doi.org/10.1016/0034-4257(93)90073-7
http://dx.doi.org/10.1016/j.rse.2003.11.007
http://dx.doi.org/10.1016/j.cageo.2006.05.015


Hydrology 2019, 6, 53 22 of 24

72. Burns, P.; Nolin, A. Using atmospherically-corrected Landsat imagery to measure glacier area change in the
Cordillera Blanca, Peru from 1987 to 2010. Remote Sens. Environ. 2014, 140, 165–178. [CrossRef]

73. Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference
snow index. Remote Sens. Env. 2004, 89, 351–360. [CrossRef]

74. Davey, C.A.; Redmond, K.T.; Simeral, D.B. Weather and Climate Inventory, National Park Service, ARCN. In
Natural Resource Technical Report NPS/ARCN/NRTR-2007/005; CreateSpace: Fort Collins, CO, USA, 2007.

75. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

76. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat
MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [CrossRef]

77. Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat Sensor Performance: History and Current
Status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [CrossRef]

78. Candela, S.G.; Howat, I.; Noh, M.J.; Porter, C.C.; Morin, P.J. ArcticDEM Validation and Accuracy Assessment.
In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, December 2017.

79. Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated
cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [CrossRef]

80. Howard, S.M.; Lacasse, J.M. An evaluation of gap-filled Landsat SLC-off imagery for wildland fire burn
severity mapping. Photogramm. Eng. Remote Sens. 2004, 70, 877–880.

81. Maxwell, S.K.; Schmidt, G.L.; Storey, J.C. A multi-scale segmentation approach to filling gaps in Landsat
ETM+ SLC-off images. Int. J. Remote Sens. 2007, 28, 5339–5356. [CrossRef]

82. Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat
ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [CrossRef]

83. Amro, I.; Mateos, J.; Vega, M.; Molina, R.; Katsaggelos, A.K. A survey of classical methods and new trends in
pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011, 2011, 79. [CrossRef]

84. Johnson, B. Effects of pansharpening on vegetation indices. ISPRS Int. J. Geo-Inform 2014, 3, 507–522.
[CrossRef]

85. Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its
long-term changes. Nature 2016, 540, 418. [CrossRef] [PubMed]

86. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]

87. Selkowitz, D.J.; Painter, T.H.; Rittger, K.E.; Schmidt, G.; Forster, R. The USGS Landsat Snow Covered Area
Products: Methods and Preliminary Validation. In Automated Approaches for Snow and Ice Cover Monitoring
Using Optical Remote Sensing; University of Utah: Salt Lake City, UT, USA, 2017; pp. 76–119.

88. Muller, F. Inventory of glaciers in the Mount Everest region. In Perennial Ice and Snow Masses: A guide for
Compilation and Assemblage of Data for a World Inventory; United Nations Educational, Scientific and Cultural
Organization: Paris, France, 1970; pp. 47–53.

89. DeVisser, M.H.; Fountain, A.G. A century of glacier change in the Wind River Range, WY. Geomorphology
2015, 232, 103–116. [CrossRef]

90. Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training
data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [CrossRef]

91. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
92. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data.

Remote Sens. Environ. 1991, 37, 35–46. [CrossRef]
93. Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely

sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]
94. Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active learning methods for remote sensing image

classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218. [CrossRef]
95. Li, X.; Coll, J.M. Building a Cloud-based Global Snow Observatory. In AGU Fall Meeting Abstracts; American

Geophysical Union: San Francisco, CA, USA, December 2016.
96. Zeltner, N. Using the Google Earth Engine for Global Glacier Change Assessment. Master’s Thesis, University

of Zürich, Zürich, Switzerland, 2016.
97. Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5

degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260.

http://dx.doi.org/10.1016/j.rse.2013.08.026
http://dx.doi.org/10.1016/j.rse.2003.10.016
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1109/TGRS.2004.840720
http://dx.doi.org/10.14358/PERS.72.10.1179
http://dx.doi.org/10.1080/01431160601034902
http://dx.doi.org/10.1016/j.rse.2010.12.010
http://dx.doi.org/10.1186/1687-6180-2011-79
http://dx.doi.org/10.3390/ijgi3020507
http://dx.doi.org/10.1038/nature20584
http://www.ncbi.nlm.nih.gov/pubmed/27926733
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1016/j.geomorph.2014.10.017
http://dx.doi.org/10.1016/j.rse.2004.06.017
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1016/0034-4257(91)90048-B
http://dx.doi.org/10.1080/01431160600589179
http://dx.doi.org/10.1109/TGRS.2008.2010404


Hydrology 2019, 6, 53 23 of 24

98. Alifu, H.; Hirabayashi, Y.; Johnson, B.; Vuillaume, J.F.; Kondoh, A.; Urai, M. Inventory of Glaciers in the
Shaksgam Valley of the Chinese Karakoram Mountains, 1970–2014. Remote Sens. 2018, 10, 1166. [CrossRef]

99. Zhang, M.M.; Chen, F.; Tian, B.S. An automated method for glacial lake mapping in High Mountain Asia
using Landsat 8 imagery. J. Mt. Sci. 2018, 15, 13–24. [CrossRef]

100. Pachauri, R.K.; Meyer, L.A. IPCC, 2014: Climate Change 2014: Synthesis Report. In Contribution of Working
Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva,
Switzerland, 2014.

101. Reidmiller, D.R.; Avery, C.W.; Easterling, D.R.; Kunkel, K.E.; Lewis, K.L.M.; Maycock, T.K.; Stewart, B.C.
USGCRP, 2018. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; U.S.
Global Change Research Program: Washington, DC, USA, 2017; Volume II.

102. Fountain, A.G.; Glenn, B.; Basagic IV, H.J. The geography of glaciers and perennial snowfields in the American
West. Arct. Antarct. Alp. Res. 2017, 49, 391–410. [CrossRef]

103. Polyakov, I.V.; Alekseev, G.V.; Bekryaev, R.V.; Bhatt, U.; Colony, R.L.; Johnson, M.A.; Yulin, A.V.
Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 2002, 29,
25-1–25-4. [CrossRef]

104. Jefferies, M.O.; Richter-Menge, J. The Arctic [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc. 2015,
95, S127–S148.

105. Berkes, F.; Jolly, D. Adapting to climate change: Social-ecological resilience in a Canadian western Arctic
community. Conserv. Ecol. 2002, 5. [CrossRef]

106. Larsen, P.H.; Goldsmith, S.; Smith, O.; Wilson, M.L.; Strzepek, K.; Chinowsky, P.; Saylor, B. Estimating future
costs for Alaska public infrastructure at risk from climate change. Glob. Environ. Chang. 2008, 18, 442–457.
[CrossRef]

107. Osterkamp, T.E.; Romanovsky, V.E. Evidence for warming and thawing of discontinuous permafrost in
Alaska. Permafr. Periglac. Process. 1999, 10, 17–37. [CrossRef]

108. Jorgenson, M.T.; Romanovsky, V.; Harden, J.; Shur, Y.; O’Donnell, J.; Schuur, E.A.; Marchenko, S. Resilience
and vulnerability of permafrost to climate change. Can. J. For. Res. 2010, 40, 1219–1236. [CrossRef]

109. Young, K.L.; Lewkowicz, A.G. Surface energy balance of a perennial snowbank, Melville Island, Northwest
Territories, Canada. Arct. Alp. Res. 1990, 22, 290–301. [CrossRef]

110. Kenner, R.; Phillips, M.; Hauck, C.; Hilbich, C.; Mulsow, C.; Bühler, Y.; Buchroithner, M. New insights on
permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland.
Geomorphology 2017, 290, 101–113. [CrossRef]

111. King, L. Zonation and ecology of high mountain permafrost in Scandinavia. Geogr. Ann. Ser. Aphysical Geogr.
1986, 68, 131–139. [CrossRef]

112. Etzelmüller, B.; Farbrot, H.; Guðmundsson, Á.; Humlum, O.; Tveito, O.E.; Björnsson, H. The regional
distribution of mountain permafrost in Iceland. Permafr. Periglac. Process. 2007, 18, 185–199. [CrossRef]

113. Cline, D.W.; Bales, R.C.; Dozier, J. Estimating the spatial distribution of snow in mountain basins using
remote sensing and energy balance modeling. Water Resour. Res. 1998, 34, 1275–1285. [CrossRef]

114. Blöschl, G. Scaling issues in snow hydrology. Hydrol. Process. 1999, 13, 2149–2175. [CrossRef]
115. Fassnacht, S.R.; Dressler, K.A.; Bales, R.C. Snow water equivalent interpolation for the Colorado River Basin

from snow telemetry (SNOTEL) data. Water Resour. Res. 2003, 39. [CrossRef]
116. Benn, D.I.; Lehmkuhl, F. Mass balance and equilibrium-line altitudes of glaciers in high-mountain

environments. Quat. Int. 2000, 65, 15–29. [CrossRef]
117. Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Le

Bris, R.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54,
171–182. [CrossRef]

118. Braithwaite, R.J.; Raper, S.C.B. Estimating equilibrium-line altitude (ELA) from glacier inventory data.
Ann. Glaciol. 2009, 50, 127–132. [CrossRef]

119. Sapiano, J.J.; Harrison, W.T.; Echelmeyer, K.A. Elevation, volume and terminus changes of nine glaciers in
North America. J. Glaciol. 1998, 44, 119–135. [CrossRef]

120. Vincent, C.; Wagnon, P.; Shea, J.; Immerzeel, W.; Kraaijenbrink, P.; Shrestha, D.; Soruco, A.; Arnaud, Y.;
Brun, F.; Berthier, E.; et al. Reduced melt on debris-covered glaciers: Investigations from Changri Nup
Glacier, Nepal. Cryosphere 2016, 10, 1845–1858. [CrossRef]

http://dx.doi.org/10.3390/rs10081166
http://dx.doi.org/10.1007/s11629-017-4518-5
http://dx.doi.org/10.1657/AAAR0017-003
http://dx.doi.org/10.1029/2001GL011111
http://dx.doi.org/10.5751/ES-00342-050218
http://dx.doi.org/10.1016/j.gloenvcha.2008.03.005
http://dx.doi.org/10.1002/(SICI)1099-1530(199901/03)10:1&lt;17::AID-PPP303&gt;3.0.CO;2-4
http://dx.doi.org/10.1139/X10-060
http://dx.doi.org/10.2307/1551592
http://dx.doi.org/10.1016/j.geomorph.2017.04.011
http://dx.doi.org/10.1080/04353676.1986.11880166
http://dx.doi.org/10.1002/ppp.583
http://dx.doi.org/10.1029/97WR03755
http://dx.doi.org/10.1002/(SICI)1099-1085(199910)13:14/15&lt;2149::AID-HYP847&gt;3.0.CO;2-8
http://dx.doi.org/10.1029/2002WR001512
http://dx.doi.org/10.1016/S1040-6182(99)00034-8
http://dx.doi.org/10.3189/2013AoG63A296
http://dx.doi.org/10.3189/172756410790595930
http://dx.doi.org/10.1017/S0022143000002410
http://dx.doi.org/10.5194/tc-10-1845-2016


Hydrology 2019, 6, 53 24 of 24

121. Sidjak, R.W. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and
digital elevation data. Int. J. Remote Sens. 1999, 20, 273–284. [CrossRef]

122. Nuth, C.; Kohler, J.; Aas, H.F.; Brandt, O.; Hagen, J.O. Glacier geometry and elevation changes on Svalbard
(1936–90): A baseline dataset. Ann. Glaciol. 2007, 46, 106–116. [CrossRef]

123. Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.;
et al. Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity
products derived from satellite data in the Glaciers_cci project. Remote Sens. Environ. 2017, 203, 256–275.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/014311699213442
http://dx.doi.org/10.3189/172756407782871440
http://dx.doi.org/10.1016/j.rse.2017.08.038
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area 
	Data Sources and Methods 
	Data and Imagery Used 
	Data Preprocessing 
	Imagery Analysis 

	Results 
	Discussion 
	Mapped and Quantified Perennial Snowfield Areas 
	Trends in Perennial Snowfield Area Changes 
	Perennial Snowfield PE Changes 

	Conclusions 
	References

