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Abstract: Reflectivity factor bias caused by radar calibration errors would influence the accuracy
of Quantitative Precipitation Estimations (QPE), and further result in spatial discontinuity in
Multiple Ground Radars QPE (MGR-QPE) products. Due to sampling differences and random
errors, the associated discontinuity cannot be thoroughly solved by the single-radar calibration
method. Thus, a multiple-radar synchronous calibration approach was proposed to mitigate the
spatial discontinuity of MGR-QPE. Firstly, spatial discontinuity was solved by the intercalibration
of adjacent ground radars, and then calibration errors were reduced by referring to the Ku-Band
Precipitation Radar (KuPR) carried by the Global Precipitation Measurement (GPM) Core Observatory
as a standard reference. Finally, Mosaic Reflectivity and MGR-QPE products with spatial continuity
were obtained. Using three S-band operational radars covering the lower reaches of the Yangtze
River in China, this method was evaluated under four representative precipitation events. The result
showed that: (1) the spatial continuity of reflectivity factor and precipitation estimation fields was
significantly improved after bias correction, and the reflectivity differences between adjacent radars
were reduced by 78% and 82%, respectively; (2) the MGR-QPE data were closer to gauge observations
with the normalized absolute error reducing by 0.05 to 0.12.

Keywords: quantitative precipitation estimation; QPE spatial discontinuity; GPM/KuPR; quality
control; reflectivity correction; radar calibration error

1. Introduction

Weather radar is able to retrieve rainfall based on the statistical relationship between the reflectivity
factor (Z) and rain rate (R), namely the Z–R relation [1]. Quantitative Precipitation Estimation (QPE) is
affected by many factors, e.g., precipitation Drop Size Distribution (DSD), ground clutter contamination,
sampling error and beam overshooting [2,3], where radar calibration error is an essential factor [4],
and it covers miscalibrations of transmission power, waveguide loss, antenna gain and receiver
gain. Radar equation suggests that calibration error would result in a reflectivity factor bias that
changes the intrinsic precipitation estimation relation. Rosenfeld and Ulbrich [5] showed more than
200 Z–R relationships to be reported, which were too many to be totally explained by DSD variability,
maybe owing to calibration errors [4].

Given the limited coverage of single ground radar, Multiple Ground Radars QPE (MGR-QPE)
is more feasible for large-scale precipitation product. However, Seo et al. [6] noted for the first time
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that calibration error would result in the spatial discontinuity of MGR-QPE, especially in overlapping
areas of ground radars, which severely reduce the QPE accuracy and also affect hydrological
predictions. Brandes et al. [7] compared the precipitation estimations between two collocated radars
in the United States and found the precipitation data recorded by NCAR S-Pol (National Center for
Atmospheric Research’s S-band, dual-polarization radar) were smaller than that recorded by WSR-88D
(Weather Surveillance Radar, 1988, Doppler) and by rain gauges. Smith et al. [8] found the QPE data
in radar overlapping areas were significantly different between two neighboring radars, Tulsa and
Twin Lakes, in the United States due to the interference of calibration errors, and the mean rainfall
of Tulsa was 30% higher than that of Twin Lakes. Gourley et al. [9] indicated that a discrepancy of
2–3 dB between reflectivities measured by adjacent WSR-88D radars was quite common, and that
the inconsistency between radars would lead to spatial discontinuity for MGR-QPE. You et al. [10]
analyzed several ground radars in South Korea and found the largest difference of reflectivity was up
to 12 dB. Xiao and Liu [11] reported that the difference of S-band operational radars in South China
was around 3 dB.

Although there are many radar calibration methods, calibration errors can be hardly reduced
within 1 dB [12]. Hardware calibration with instruments is difficult to obtain full-path errors including
receiver, transmitter, antenna and waveguides. Standard floating metal ball approach is not easy to
operate and cannot be used frequently [13]. The methods referring to rain gauges or disdrometers are
more feasible for qualitative assessment, but are not acceptable for quantitative calibration, due to
spatiotemporal variability and different observations [14]. Although intercalibration between adjacent
ground radars is reliable, it is difficult to decide which radar is more accurate. More recently,
the wide-covering and well-calibrated Tropical Rainfall Measuring Mission/Precipitation Radar
(TRMM/PR) became more popular to the public [15–17] and was used as a reference to estimate
the calibration errors of ground radars [18–20]. Anagnostou et al. [21] showed that the calibration
errors of WSR-88D radars were +2 to −7 dB compared with the PR data. Wang and Wolff [22]
statistically analyzed the calibration errors of four primary TRMM ground validation radars.

Reducing calibration errors and mitigating spatial discontinuity are equally important for
MGR-QPE. The TRMM/PR-based single ground radar (GR) calibration method is able to reduce
the calibration errors. However, it is difficult to address the spatial discontinuity of multiple radars
products because of the differences in hardware parameters, sampling volumes and random errors
between GR and TRMM/PR. As each of the GR is calibrated separately, spatial discontinuity may still
exist. Although intercalibration of GRs is reliable to solve the spatial discontinuity, it is difficult to
determine which GR is more accurate and further eliminate absolute calibration errors. Therefore, in
this study, these two ideas were naturally combined, and a new approach is proposed with the
involvement of the Global Precipitation Measurement/Ku-Band Precipitation Radar (GPM/KuPR) to
obtain the MGR-QPE products with spatial continuity and higher accuracy.

This paper is organized as follows. Section 2 introduces the data of GRs, KuPR, rain gauges,
and a disdrometer. Section 3 presents the hypothesis conditions and the proposed approach.
In Section 4, the new method is evaluated using four representative precipitation events.
Finally, the advantages and limitations of the proposed method are summarized and discussed
in Section 5.

2. Data Sources

The downstream of the Yangtze River is a major residential and economic region of China,
but is frequently influenced by severe weather, such as mei-yu heavy rain, typhoons and local strong
convective storms. Thus, MGR-QPE is an important radar product for flood prediction and disaster
weather nowcasting in this region.
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2.1. Ground Radar Data

Three S-band single polarization GRs covering the lower reaches of the Yangtze River were
selected—GRHF (Ground Radar at Hefei, Anhui Province), GRNJ (Ground Radar at Nanjing, Jiangsu
Province) and GRCZ (Ground Radar at Changzhou, Jiangsu Province). The locations and 100 km
radius coverages of the three radars are shown in Figure 1. These radars were all CINRAD-SA
(China New-generation Weather Radar S-band A-type), similar to previous single polarization
WSR-88D in the United States (wavelength: 10 cm; elliptic paraboloid antenna diameter: 8.5 m;
resolution: 1◦ by 1 km). All GRs operated volume scans of nine elevation angles from 0.5◦ to 19.5◦,
and the scan time was 5–6 min [23]. The surveillance radius was 460 km, and the effective radius
in precipitation estimation was 100 km (green circle in Figure 1). The GR volume scan raw data,
consisting of nine elevation angles, were used in this study. The GR data were processed by quality
control using the operational Severe Weather Nowcast System (SWAN) [24] developed by the China
Meteorological Administration, including noise filtering and ground clutter suppression. The ground
clutter blockage was marked by manual recognition and modification.
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Figure 1. The locations and 100 km radius coverages of three ground radars, locations of operational
rain gauges and a disdrometer, schematic coverage of GPM/KuPR.

2.2. Rain Measurement Data

There was one OTT Parsivel2 disdrometer (blue rectangle in Figure 1) and 56 national operational
rain gauges in the coverages of the three GRs. The OTT Parsivel2 disdrometer was a modification
of OTT Parsivel [25] and could measure rain DSD and fall velocities for particle sizes from 0.3 to
20 mm. On the conditions that precipitation rate > 0.1 mm/h and the total number of particles > 10,
the noisy light rain data were removed from 1-min DSD. The selected DSD data were used to evaluate
the reflectivities of KuPR and calculate the difference in scattering between the Ku-band and S-band
(Section 3). The data from the operational rain gauges were used to evaluate MGR-QPE (Section 4).
The measured rain data were processed by quality control, including: (1) national climatological
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threshold value check; (2) regional climatological threshold value check; (3) temporal consistency
check; and (4) spatial consistency check [26].

2.3. GPM/KuPR Data

The GPM Core Observatory was launched on 28 February 2014 to take over TRMM as the core
satellite for global precipitation measurement, and was jointly maintained by NASA (the National
Aeronautics and Space Administration, Washington, DC, USA) of the United States and JAXA
(The Japan Aerospace Exploration Agency, Tokyo, Japan) of Japan. At a flying height of 407 km
GPM carried a dual-frequency PR with phase array antenna, namely the 13.6 GHz KuPR and the
35.5 GHz KaPR (Ka-Band Precipitation Radar). Compared with the single-frequency precipitation
radar of TRMM, GPM/DPR had stronger weak-precipitation detecting ability, finer vertical resolution
and broader spatial coverage (68◦ N/S) [27]. The swath of KuPR was 245 km, the horizontal resolution
was 5 km, vertical resolution was 125 m (resampled) and the detectable minimum was ~18 dBZ.
The GPM/KuPR Level-2 data provided by the Precipitation Processing System of Goddard Space Flight
Center (https://pps.gsfc.nasa.gov/) were used to calibrate three S-Band GRs in this research (Sections 3
and 4), including the 3D corrected reflectivities, precipitation types and bright band information.

3. Methodology

The single-GR calibration method based on satellite-borne precipitation radar can only calibrate
one GR at a time, and does not consider the spatial continuity of multiple radars products, such as
the Available Best Comparable Dataset method (ABCD) [18]. For this reason, a GPM/KuPR-based
multiple-GR calibration method was put forward and named M-ABCD.

3.1. Hypotheses of M-ABCD

Similar to single-GR’s ABCD method, the M-ABCD method also has two main assumptions.
The first assumption is that the corrected reflectivity factor of KuPR in GPM Level-2 product is
relatively accurate, or the calibration errors of KuPR are far smaller than those of GRs. One task of
GPM is to provide a standard reference for global precipitation estimation, so as to improve the effect
of such estimation [27]. Both KuPR and TRMM/PR have undergone scientific internal and external
calibrations, and thus as expected had very small calibration errors. Additionally, the Level-2 data
performed several kinds of quality control, including beamfilling corrections, clutter rejection near
the surface, and attenuation correction. In particular, since the attenuation of KuPR was corrected
using double-frequency algorithms [28,29], KuPR outperformed the hybrid of a Hitschfeld–Bordan
and a Surface Reference Technique of TRMM [30]. Iguchi et al. [31] found the corrected data of KuPR
were accurate, and the precipitation estimations of KuPR were closer to measurements of rain gauges
than TRMM/PR.

To deeply understand the accuracy of KuPR in China, we adopted the DSD spectral measurements
of the disdrometer (Figure 1) to simply evaluate the reflectivity factor of KuPR. Firstly, the KuPR and
disdrometer were matched in space and time to find the available precipitation events. Due to the
complex temporal and spatial changes of convective precipitation, here we only select stratiform data
for analysis. Specifically, the selected precipitation data met the standard deviation of the DSD rainfall
rate <1.5 mm/h in 10 min [32] and stratiform type in GPM precipitation classification. Afterwards,
the DSD data with simple quality control (introduced in Section 2) were accumulated to 10 min by
summing the number of particles in each bin and fitted by gamma distribution to form the three fitting
parameters (µ, Λ, N0) [33]. The 10-min accumulation and gamma fitting were aimed to reduce the
random observational errors of DSD, especially for the data from the first two low signal-to-noise
ratio channels. From the DSD measured between April and October 2016, we found 17 qualified
stratiform precipitation events paired with KuPR, and used T-Matrix [34,35] to simulate the horizontal
reflectivity factor Z of 13.6 GHz, and compared with the average Z values of KuPR at heights of
0.5–1.5 km (this height avoided contamination from ground clutters and bright band). In the T-Matrix

https://pps.gsfc.nasa.gov/
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simulation, the raindrop shape was described using the Beard and Chuang [36] relation, the zenith
angle of the incident beam was 0◦ and the temperature was set at 10 ◦C. It was also assumed that
the drops are canted with the mean canting angle equal to zero and 10◦ standard deviation of the
Gaussian distribution of the canting angle. More details about DSD parameterization, raindrop shape,
and T-Matrix simulation can be found in Kalogiros et al. [37]. In Figure 2a, the KuPR observations
and the DSD simulation are very consistent, with correlation coefficient > 0.93, and the mean values
are all very close. It can be generally expected that the observed data of GPM/KuPR meet the first
hypothesis. The high correlation coefficient in Figure 2a was attributed to the following two reasons:
(1) the accumulation of DSD in time (10 min) and average of KuPR in space (horizontal 5 km, vertical 1
km, 9 points) were able to reduce observational errors; (2) stable stratiform rainfall was more favorable
for decreasing the sampling volumes and time–space differences between DSD and KuPR. However,
some inconsistency still exists. When KuPR is less than 22 dBZ, KuPR reflectivity is slightly greater
than DSD simulation, which may be related to the low signal-to-noise ratio of KuPR or simulated
errors of the T-Matrix (Figure 2b).
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Figure 2. Simulated reflectivities from DSD spectra measurements versus observed reflectivities from
KuPR. Scatter plot (a) and frequency distribution (b).

The second assumption of M-ABCD was that GR and GPM/KuPR were comparable. On one hand,
GR and KuPR had the same observational principles. Many studies suggested GR and TRMM/PR
were comparable (Section 1). As the successor of TRMM/PR, GPM/KuPR had all the same parameters
as TRMM/PR, except for the visiting frequency and vertical resolution [38]. Thus, it can be anticipated
that GR and KuPR are also comparable. On the other hand however, the scan modes and parameters
were largely different between GR and KuPR, indicating the second hypothesis is not fully met.
Therefore, the KuPR data should be corrected and filtered prior to comparison with GR.

GR and KuPR were mainly different in two aspects: Firstly, the scattering difference between the
S-band and Ku-band was also the difference between the Mie scattering and Rayleigh scattering. In the
previous TRMM/PR-based single-GR correction method, the relation from Liao and Meneghini [39]
was used to correct the scattering difference. This relation was derived from the Marshall–Palmer rain
DSD and Gunn–Marshall snow-size distribution according to the frequency of TRMM/PR, as shown
by the Liao(Rain) and Liao(Snow) in Figure 3. Since the frequencies of KuPR (13.6 GHz) and PR
(13.8 GHz) were slightly different, the radar frequency correction relation should also be adjusted
slightly. The rain DSD data in 04–10, 2016 were used here, and T-Matrix was used to calculate the
reflectivity at 13.6 and 3.0 GHz, as shown on the DSD (Rain) curve in Figure 3. The DSD data and
the T-Matrix parameters were the same as in Section 3.1. The DSD(Rain) curve in Figure 3 shows
that the Ku-band reflectivity was gradually larger than the S-band reflectivity, which was due to
the Mie scattering in Ku-band. Moreover, the DSD simulated reflectivity was concentrated near the
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fitting curve, indicating that the scattering at Ku-band was definitely correlated with that at S-band.
Therefore, the Ku-band data could be corrected using the DSD(Rain) curve for direct comparison with
the S-band.Hydrology 2018, 5, x FOR PEER REVIEW  6 of 20 
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Figure 3. Reflectivity relations between Ku and S band. Liao(Rain) and Liao(Snow) curves are from
Liao and Meneghini [39]. DSD(Rain) curve is from DSD calculation.

Another difference was the sampling volumes between KuPR and GR. The sampling volume
of GR was 1 km × 1◦ × 1◦ and changed with distance, while the sampling volume of KuPR was
5 × 5 × 0.125 km3. KuPR and GR, when observing the uniform stratiform precipitation, would return
consistent values. However, the differences would be incremented when they observed convective
precipitation. The radar equation suggested that the calibration error ∆Z was independent of the
precipitation type. Thus, ∆Z could be estimated by only using stratiform precipitation to reduce
uncertainty. GPM used the measured dual-frequency ratio method to divide echoes into stratiform,
convective and other type precipitation [38], which showed this classification was reasonable [40].
Thus, the stratiform data could be selected according to the GPM precipitation classification to reduce
the difference of sampling volumes.

3.2. Details of M-ABCD Method

The flowchart of the proposed method is shown in Figure 4. M-ABCD consisted of eight steps,
and its input data were the volume scan raw data of GRs and the Level-2 product of GPM/KuPR,
and its output data were the corrected Mosaic Reflectivity. Logically, M-ABCD can be regarded to
consist of two parts: relative calibration (STEP1) and absolute calibration (STEP2–STEP8). Each step
will subsequently be elaborated.
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Figure 4. Flow chart of the proposed M-ABCD method. Ellipses indicate radar data or match-up
datasets, and rectangles indicate processing steps. STEP1 is correction for spatial discontinuity,
and STEP2–STEP8 are correction for calibration errors.

STEP1 (Figure 4) was relative calibration that corrects the spatial discontinuity of GRs. Firstly, a GR
was randomly selected as GR0 and make the observed data of other GRs consistent with GR0,
namely had the same Z bias as GR0. Generally, the radar centered in the study area was regarded
as GR0, which avoided the intercalibration error propagation. For instance, we selected the GRNJ
centered in Figure 1 as GR0. If GRCZ was selected as GR0, we should use GRCZ to correct GRNJ
and then use GRNJ to correct GRHF, which may lead to error propagation. The intercalibration
adopted Equidistance Line Method that compared the mean reflectivities along the line that was
equidistant between two adjacent GRs. On the equidistance line, the sampling volumes of two
radars were the same, which may minimize the errors of comparison. To avoid effects from ground
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clutter and low signal-to-noise ratio, we only compared the reflectivities at more than 20 dBZ and
vertical height >1.0 km. More details and discussion about relative calibration can be found in
Seo et al. [41]. After that, the reflectivities of all GRs were mapped to 3D meshes of 1 × 1 × 0.5 km3

to form Mosaic Reflectivity. In this study, the nearest-neighbor interpolation approach was used to
process the overlapping areas, which highlighted the spatial discontinuity. Common interpolation
methods, such as Cressman’s method [42], would smooth out the discontinuity and made discontinuity
artificially disappear. After STEP1, the Mosaic Reflectivity was spatially continuous, but had
a calibration error ∆Z (reflectivity bias), which was equal to the calibration error of GR0.

STEP2–STEP8 in Figure 4 was absolute calibration that ∆Z of Mosaic Reflectivity was found
using GPM/KuPR as the standard reference. Since comparison between GR and KuPR was somewhat
uncertain (discussed in Section 3.1), here a stepwise selection method was developed, and the optimal
match-up dataset was extracted from the Mosaic Reflectivity and KuPR. In STEP2, Spatial Matching,
the commonly-used methods to match satellite and GR data include Sampling-Volume-Matching
methods [43,44] and Grid-Matching methods [19,21,45]. Sampling-Volume-Matching aims to
average the data according to the sampling volumes of GR and KuPR, forming match-up data.
Grid-Matching aims to interpolate the GR and KuPR data into the same grid, forming match-up
data. Sampling-Volume-Matching considers the differences in sampling volumes, but the number of
samples acquired is relatively small. Grid-Matching does not consider the differences in sampling
volumes, but returns more samples. Since M-ABCD requires a large size of paired samples for
selecting, we adopted Grid-Matching method. The observed data of KuPR were mapped to the 3D
Mosaic Reflectivity meshes, forming the original match-up dataset of Mosaic Reflectivity and KuPR.
The matched Mosaic Reflectivity and KuPR were temporally close (≤3 min) and overlapped spatially
(>1000 km2). STEP3 (radar frequency correction) of M-ABCD was to transform the rain reflectivity
of KuPR to the S-band based on the DSD (Rain) relation shown in Figure 3. The reflectivity of KuPR
(Ku Band) was adjusted to the frequency of GR (S Band), which reduced the observational difference
due to different frequencies. In STEP4, Selection by GR Range, the paired data at a distance of
30–100 km from radar were extracted, and other data were excluded, so as to reduce the impacts of the
ground clutters close to GRs and of the distant beam broadening. In STEP5, Selection by Bright Band,
we selected the below-bright-band paired data and excluded the in-bright-band and above-bright-band
data, according to the height and thickness of bright band provided by the GPM Level-2 products.
The below-bright-band liquid raindrop data were selected because GR was highly correlated with
the attenuation-corrected KuPR observed data and were far better than the in-bright-band or
above-bright-band data [18,46]. In STEP6, Selection by Echo Type, according to the rain types provided
by GPM Level-2 products, the data of convective precipitation (including other types of precipitation)
were removed, and only stratiform precipitation was reserved. The stratiform precipitation and
convective precipitation have the same ∆Z because the calibration error is independent of precipitation
type. The exclusion of convective data can result in more reliable ∆Z. After that, the resulting dataset
was exactly the optimal match-up dataset in M-ABCD. In STEP7, Statistics of Calibration Error, the
difference between the optimal matched Mosaic Reflectivity and KuPR, X = {xi|xi = ZMRi − ZKuPRi},
was used as a random variable, which obeyed Gaussian distribution, and the probability density
function was f(X); then the expected value of X was the calibration error ∆Z of Mosaic Reflectivity:

∆Z = E(X) =
∫

xif(xi) (1)

Relations among the corrected reflectivity factor Zc (dBZ), measured value Zm (dBZ) and
calibration error ∆Z (dB) are shown as follows:

Zc= Zm + ∆Z (2)
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The relationship between the corrected precipitation rate Rc (mm · h−1) and the estimated
precipitation rate Rm (mm · h−1) from measured reflectivity can be expressed as follows:

Rc = Rm × 10
∆Z
10b (3)

where b was the Z–R coefficient. Finally, in STEP8, Zm was corrected to Zc using Equation (2) and
Rm was adjusted to RC using Equation (3). There were two practical ways to correct MGR-QPE.
The first way was to apply the Z–R relationship to the raw Mosaic Reflectivity (outputted from
STEP1) to obtain raw MGR-QPE, and then to correct MGR-QPE using Equation (3). The second way
was to correct Mosaic Reflectivity using Equation (2) and then to retrieve precipitation using the
Z–R relationship.

Essentially, M-ABCD includes two parts: relative correction of GRs (STEP1 in Figure 4) and
absolute correction based on KuPR (STEP2–STEP8 in Figure 4). To respond the hypothesis in Section 3.1,
we designed STEP3–STEP6 in M-ABCD for stepwise selection and correction, which eliminated the
observational differences between GR and KuPR. STEP3 was able to correct the scattering differences
at different frequencies. In STEP4, the GR data at 30–100 km were selected, which avoided the effects
from ground clutters close to GR and from distant beam broadening. In STEP5, the liquid raindrop data
below the bright band were selected. In STEP6, the stratiform data were selected, and the convective
data with complex DSDs and difficulty in Ku-band attenuation correction were excluded, which
reduced the uncertainty due to the differences in sampling volumes between KuPR and GR. It should
be noted that STEP4–STEP6 of M-ABCD were three selection processes and their sequence could be
changed. Moreover, the optimal match-up dataset from STEP6 was not really “optimal”, but was only
relative to the original match-up dataset from STEP2 and its uncertainty was smaller.

4. Results

In order to investigate the performance of the M-ABCD approach, four typical precipitation
events in the year of 2016 were selected: a light rainfall event on 9 May 2016, the Mei-yu rainband on
2 July 2016, the Typhoon Meranti rainband on 15 September 2016 and the frontal heavy rain event on
29 September 2016. For these events, rainfall areas were very large, and KuPR overlapped with the
three GRs in Figure 1, which are favorable for the assessment below.

4.1. Effectiveness of STEP3–STEP6

In Figure 4, STEP1 and STEP2 of M-ABCD were very mature radar data processing techniques,
and STEP7 and STEP8 were also very normal statistical and correction methods, which were all
not discussed here. STEP3–STEP6 (Figure 4) were the key steps and decided the reliability of the
results. To check the effectiveness of STEP3–STEP6, we selected the data on 29 September 2016
and analyzed the changes of the matched dataset after each step by using the correlation coefficient
ρGK between Mosaic Reflectivity and KuPR, the standard deviation σGK of reflectivity factor difference.
Larger values of ρGK or σGK indicate that the dataset was better, and smaller values indicate that
the dataset was worse. In Figure 5, from the original matched data (STEP2) to the optimal matched
data (STEP6), ρGK gradually increased from 0.82 to 0.89, whereas σGK gradually decreased by 37.5%.
These changes in STEP3–STEP6 were effective, and after each selection step the match-up dataset
gradually became better. Figure 6a,b show the original match-up dataset from STEP2 and the optimal
match-up dataset from STEP6, respectively. Significantly, the points in Figure 6a were very scattered,
indicating the presence of abundant abnormal data. After STEP3–STEP6, the points in Figure 6b
became very concentrated, and the abnormal data were largely eliminated, so as to clearly show
the linear relation between Mosaic Reflectivity and KuPR. The intercept of the blue fitted line was
calibration error ∆Z.
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match-up dataset from STEP2. (b) Optimal match-up dataset from STEP6.

4.2. Corrected Reflectivity Distribution

In M-ABCD, the bias-correction method was used to adjust reflectivity (Equation 2). To clarify the
difference between the raw and corrected reflectivities, we statistically analyzed the relative frequency
of KuPR (after Radar Frequency Correction from Ku-Band to S-Band), raw GR and corrected GR
reflectivity at the interval of 1 dB (Figure 7). When the calibration error ∆Z was smaller/larger than 0,
the Probability Mass Function (PMF) of single-GR corrected reflectivity would preserve the original
shape, and then shifted leftwards/rightwards as a whole to the PMF of KuPR. Since the ∆Z of GRHF
(Figure 7a) and GRNJ (Figure 7b) were both smaller than 0, the PMFs of the corrected GRHF and GRNJ
right-shifted to approach KuPR, indicating that the corrected GRs and KuPR were more consistent.
The ∆Z of GRCZ (Figure 7c) was slightly larger than 0, so the PMF of the corrected GR slightly
right-shifted. Since the ∆Z varied among GRs, the PMF of multi-GR corrected Mosaic Reflectivity
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would change its original shape to match PMF of KuPR. As shown in Figure 7d, the ∆Z values of
GRHF, GRNJ and GRCZ were −2.35, −1.08 and 0.24 dB, respectively. After the correction, the PMF of
Mosaic Reflectivity inclined to the left side, and became closer to KuPR.
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(a) GRHF. (b) GRNJ. (c) GRCZ. (d) Mosaic Reflectivity. KuPR(S) indicates KuPR reflectivities which
were adjusted to S-Band by Radar Frequency Corrections.

4.3. Spatial Continuity of Reflectivity Factor

The consistency in the reflectivity factor in the overlapping area between two adjacent radars is
the premise to ensure the spatial continuity of MGR-QPE. The three radars had totally two overlapping
areas of GRHF-GRNJ and GRCZ-GRNJ, respectively (Figure 1). The reflectivity differences were
analyzed at the interval of 6 min (Figure 8, Table 1). From 00:00 to 24:00 on 29 September 2016,
the Z values of any two adjacent radars nearly changed similarly with time, but were different in values
(Figure 8a,c), indicating the presence of obvious reflectivity differences among the three radars and the
Z values were spatially discontinuous. After correction by M-ABCD, the outlines in the reflectivity
factors of adjacent radars were gradually superposed and the differences significantly decreased
(Figure 8b,d), indicating the Z values of multiple radars became more continuous. Quantitative
analysis in Table 1 showed that differences in reflectivity factors in GRHF-GRNJ and GRCZ-GRNJ
significantly decreased, especially for the case 05-09 in GRHF-GRNJ. The mean difference in the
overlapping areas of the four precipitation events after correction decreased by 78% from 1.62 to
0.36 dB.



Hydrology 2018, 5, 48 12 of 19
Hydrology 2018, 5, x FOR PEER REVIEW  12 of 20 

 

 

Figure 8. Raw reflectivity profile (a, c) and corrected reflectivity profile (b, d) for 2016-09-29 

precipitation event. (a)(b) Average reflectivity in GRHF and GRNJ overlapping area. (c)(d) Average 

reflectivity in GRNJ and GRCZ overlapping area. 

Table 1. Reflectivity differences in overlapping areas of adjacent GRs. 

Date/No. Rain Type 
 Z Difference (dB) 

|GRHF-GRNJ| |GRCZ-GRNJ| 

05-09 Light Rain 
RAW 3.29 2.69 

COR 0.26 0.25 

07-02 Mei-yu 
RAW 1.40 0.40 

COR 0.42 0.40 

09-15 Typhoon 
RAW 1.84 0.73 

COR 0.34 0.47 

09-29 Frontal Heavy Rain 
RAW 1.33 1.25 

COR 0.25 0.46 

Average  
RAW 1.62 

COR 0.36 

4.4. Spatial Continuity of MGR-QPE 

The formula of 
( ) 1.6=200Z R  [47] was used to get the rain rate R  (mm/h) of Mosaic 

Reflectivity of the three GRs, and R  was accumulated daily rainfall for 24 h. 
( )Z  is the 

reflectivity factor in linear unit and its relation with the reflectivity factor in logarithmic unit is 

( )

10
10 log ( )Z Z . 

( ) 1.6=200Z R  is the stratiform estimation relation of Chinese operational 

radars. Stricter methods should use different estimation relations for stratiform and convective 

precipitations [48]. However, in this study, the four events were mainly stratiform precipitation 

without much convective precipitation embedded, and thus here only a single relation 
( ) 1.6=200Z R  was used. The accumulated 24 h precipitation on 29 September 2016 observed by 

MGR-QPE is shown in Figure 9. Clearly, at the equidistance line between two adjacent radars, the 

original MGR-QPE showed evident leap (discontinuity) (Figure 9a). Precipitation estimations from 

different radars ranked in the order of GRHF > GRNJ > GRCZ, indicating the same precipitation area 

and the same estimated precipitation relation, but due to differences in calibration errors, the QPE 

differed. The QPE from M-ABCD was more continuous spatially, and the estimated precipitation at 

(a) Raw (b) Cor 

(c) Raw 

 

(d) Cor 

Figure 8. Raw reflectivity profile (a,c) and corrected reflectivity profile (b,d) for 2016-09-29 precipitation
event. (a,b) Average reflectivity in GRHF and GRNJ overlapping area. (c,d) Average reflectivity in
GRNJ and GRCZ overlapping area.

Table 1. Reflectivity differences in overlapping areas of adjacent GRs.

Date/No. Rain Type Z Difference (dB)

|GRHF-GRNJ| |GRCZ-GRNJ|

05-09 Light Rain RAW 3.29 2.69
COR 0.26 0.25

07-02 Mei-yu RAW 1.40 0.40
COR 0.42 0.40

09-15 Typhoon RAW 1.84 0.73
COR 0.34 0.47

09-29
Frontal

Heavy Rain
RAW 1.33 1.25
COR 0.25 0.46

Average RAW 1.62
COR 0.36

4.4. Spatial Continuity of MGR-QPE

The formula of Z(`) = 200R1.6 [47] was used to get the rain rate R (mm/h) of Mosaic Reflectivity
of the three GRs, and R was accumulated daily rainfall for 24 h. Z(`) is the reflectivity factor in linear
unit and its relation with the reflectivity factor in logarithmic unit is Z = 10 log10(Z(`)). Z(`) = 200R1.6

is the stratiform estimation relation of Chinese operational radars. Stricter methods should use
different estimation relations for stratiform and convective precipitations [48]. However, in this study,
the four events were mainly stratiform precipitation without much convective precipitation embedded,
and thus here only a single relation Z(`) = 200R1.6 was used. The accumulated 24 h precipitation
on 29 September 2016 observed by MGR-QPE is shown in Figure 9. Clearly, at the equidistance line
between two adjacent radars, the original MGR-QPE showed evident leap (discontinuity) (Figure 9a).
Precipitation estimations from different radars ranked in the order of GRHF > GRNJ > GRCZ, indicating
the same precipitation area and the same estimated precipitation relation, but due to differences in
calibration errors, the QPE differed. The QPE from M-ABCD was more continuous spatially, and the
estimated precipitation at the equidistance line between radars was more similar. Compared with
the gauge-based data (Figure 9c), the original QPE estimated from GRHF and GRNJ were obviously
larger. The QPE of GRHF contained about a 1/3 zone with precipitation >100mm and maximum
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>130 mm, but the measured data were mostly between 50 and 80 mm, with the maximum being
92.7 mm. Similarly, the QPE were also overestimated by GRNJ. The QPE from GRCZ were not largely
different from the rain gauges. After correction, QPE in Figure 9b were more reasonable.
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Figure 9. Raw (a), corrected (b), measured (c) 24 h accumulated rainfall for 29 September 2016
precipitation event.

Along the line A-B-C-D-E in Figure 9a, the MGR-QPE horizontal profiles of the four cases were
plotted (Figure 10). B is the midpoint between GRHF and GRNJ, D is the midpoint between GRNJ and
GRCZ, and the original profiles marked by blue arrows are spatially discontinuous. On the original



Hydrology 2018, 5, 48 14 of 19

QPE in Figure 10, spatial discontinuity appeared at B and D (except D in case 07-02), where the
precipitation profiles were fractured. Such discontinuity disappeared on the corrected profiles,
which became more natural and continuous. The statistics of QPE differences in the overlapping areas
between adjacent radars are listed in Table 2. Using the M-ABCD, the differences of QPE at the two
overlapping areas GRHF-GRNJ and GRCZ-GRNJ were both significantly reduced, especially in the
case 09-29 in GRHF-GRNJ where the differences decreased from 19.9 to 2.2 mm. The mean differences
of QPE in the four precipitation events decreased by about 82% from 10.0 to 1.8 mm, indicating the
bias-corrected MGR-QPE was significantly more spatially coherent.
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Figure 10. Raw and corrected QPE profile along the A-B-C-D-E line of Figure 9a. B is the midpoint of
GRHF and GRNJ, D is the midpoint of GRNJ and GRCZ. Blue arrows indicate spatial discontinuity.
(a–d) indicate 05-09, 07-02, 09-15 and 09-29 precipitation events, respectively.

Table 2. Differences of 24h accumulated QPE in overlapping areas of adjacent GRs.

Date/No. Data Type 24h QPE Difference (mm)

|GRHF-GRNJ| |GRCZ-GRNJ|

05-09
RAW 6.7 3.9
COR 2.4 0.9

07-02
RAW 6.9 0.1
COR 1.3 0.1

09-15
RAW 13.9 12.2
COR 1.3 5.7

09-29
RAW 19.9 16.4
COR 2.2 0.1

Average RAW 10.0
COR 1.8
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4.5. Accuracy of MGR-QPE

Based on the data measured by the 56 operational rain gauges (Figure 1), the MGR-QPE errors
before and after correction were systematically evaluated (Figure 11, Table 3). Clearly, the scattered
points after correction are closer to the diagonal line (best fit line) and were more consistent with the
gauge-observed data (Figure 11). The two precipitation events on 09-15 and 09-29 were significantly
improved, and the two ones on 05-09 and 07-02 were slightly improved. Precipitation estimations
on 07-02 were still large after the correction, which might be attributed to the estimation model
errors of Z–R relation. The statistics of MGR-QPE and measured rainfall were listed in Table 3.
The difference in calibration errors among radars before correction led to different biases in precipitation
estimations, and thus, the correlation coefficient between MGR-QPE and rain gauges was not
the optimal. Since the calibration errors and space discontinuity were addressed, the correlation
coefficient after bias-correction increased by 0.01 (case 07-02) and 0.08 (case 09-29), respectively.
Similarly, the Normalized Absolute Error (NE) and Root Mean-Square Error (RMSE) were both
significantly reduced after the correction, as NE declined by 0.05 mm (case 09-15) to 0.12 mm
(case 09-29), while RMSE decreased by 1.6 mm (case 05-09) to 8.0 mm (case 09-29). The above results
suggest that the M-ABCD method significantly eliminates the spatial discontinuity of MGR-QPE,
and also improves the associated data accuracy.
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Table 3. Error statistics of 24 h accumulated MGR-QPE.

Date/No. Data Type <Rain Gauge>
(mm)

<QPE>
(mm)

Correlation
Coefficient NE RMSE

(mm)

05-09
RAW

13.3
18.7 0.85 0.47 7.8

COR 18.2 0.91 0.41 6.2

07-02
RAW

53.4
74.3 0.95 0.40 26.8

COR 70.0 0.96 0.32 22.1

09-15
RAW

69.5
67.1 0.94 0.16 13.1

COR 68.9 0.96 0.11 9.9

09-29
RAW

65.5
75.8 0.86 0.30 23.6

COR 67.7 0.94 0.18 15.6

Note: <X> represents the average of X; NE = <|QPE − Gauge|>/<Gauge>; RMSE = <Bias2>0.5.

5. Summary and Discussion

Spatial discontinuity of QPE due to radar calibration errors is a concern on MGR-QPE [49].
The precipitation estimation model of single polarization radar is expressed as Z = 10 log10 a + 10b log10 R,
(Z in dBZ, R in mm · h−1). When the model errors are ignored, the equation is differentiated to
∆Z = 10b

ln 10
∆R
R . ∆Z is the calibration error in dB. The relative error ∆R

R of precipitation estimation
is linearly related with the calibration error ∆Z. If b is limited to 1.2–1.6, when ∆Z is 3.0 dB,
∆R
R will be up to 40%~60%. Similarly, we have ∂a

∂Z = a ln 10
10 > 0.2a. Generally, the precipitation

estimation relations set a ≥ 200, and then ∂a
∂Z > 40; thus, the calibration error ∆Z would largely

affect coefficient a. Conversely, since ∂b
∂Z = 1

10 log10(R) , then when R ≥ 2.5mm · h−1, we have ∂b
∂Z < 0.3,

indicating the ∆Z only slightly affects b. Taken together, the calibration error mainly affects the relative
errors ∆R

R of precipitation estimation or the coefficient a of precipitation estimation relation. When
single GR was used in precipitation estimation, the impact of calibration errors could be reduced by
adjusting a. For MGR-QPE, it was difficult to determine and use different coefficients to different
radars, and usually the same precipitation estimation model with the same coefficients was adopted.
However, the calibration errors vary among radars, which led to different relative errors in the various
rainfall zones. This results in spatial discontinuity of MGR-QPE and lower quality of QPE.

A new M-ABCD method was proposed in this study, where and the calibration errors of several
GRs were synchronously corrected with GPM/KuPR as the standard reference, so as to generate Mosaic
Reflectivity and MGR-QPE products with spatial continuity. Four typical precipitation events in the
year 2016 in the downstream of the Yangtze River were selected to evaluate the spatial continuity and
associated QPE accuracy with regard to three operational radars. (1) the three radars, despite periodic
maintenance and hardware calibration, suffered from severe calibration errors. The MGR-QPE products
were obviously discontinuous in space before adjustment; (2) the differences of Z and QPE in the
overlapping areas between adjacent radars were reduced by 78% and 82% after correction, respectively;
(3) the MGR-QPE data show more consistent gauge observations after correction, with regard to the
correlation coefficient increased by 0.01–0.08, the normalized absolute error decreased by 0.05–0.12,
and the RMSE declined by 1.6–8.0 mm.

Compared with the TRMM/PR-based single-GR correction method (e.g., ABCD), M-ABCD has
three advantages: (1) ABCD belongs to single-GR correction and could reduce calibration errors,
but not able to ensure spatial continuity, while M-ABCD is a multiple-GR correction method that can
simultaneously reduce calibration errors and spatial discontinuity; (2) ABCD is based on TRMM/PR,
but since TRMM stopped service, only historical data before 2015 were available. On the contrary,
M-ABCD based on GPM/KuPR is feasible for the new GR data after 2015; (3) ABCD requires
TRMM/PR and single-GR have some overlapping areas, and thus, there are few matched events.
On the contrary, M-ABCD requires KuPR have some overlapping zones with any of multiple GRs,
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and thus, there are more matched events. Compared with inter-calibration of adjacent GRs methods,
such as Radar Reflectivity Comparison Tool (http://rrct.nwc.ou.edu/) or the method of Seo et al. [41],
the relative correction of M-ABCD is similar to that of Seo et al. [41], but the absolute correction is
different. Seo et al. [41] suggested the usage of rain gauges as a reference for absolute correction,
since the reflectivity factor and precipitation rate are not the same observations, their relationship is
based on statistics, which account for the very large difficulty and uncertainty. M-ABCD compares the
reflectivities of KuPR and GR, which is more direct and reliable.

M-ABCD also has some limitations: (1) Although M-ABCD has more available events than single
GR, there are still insufficient to correct GRs in real time. Thus, we could only use the result of one
time to represent the average value in a period, and its feasibility needs more discussion. Ryzhkov
et al. [50] noted the calibration errors of operational radars were stable within long time, but may
also change sometimes. Seo et al. [41] also found the abrupt changes in the two years of WSR-88D
calibration errors. If the calibration errors changed suddenly, the representativeness was weakened,
and the corrected results would be very wrong; (2) If the matchup events of KuPR and GRs are
convective precipitation, the M-ABCD method is not reliable because STEP6 (Figure 4) will exclude all
convective data. An alternative approach is to identify a matchup stratiform event at the nearest time,
and use its ∆Z from M-ABCD to calibrate this convective precipitation. If there are no abrupt changes
for calibration errors in the interval between the two matchup events, M-ABCD would improve the
convective precipitation. 3) This approach was proposed with the S-band GR data, which might not be
feasible for the C-band or X-band GRs. As the calibration errors and attenuation coexist, it is difficult
to calibrate either of them. Thus, the M-ABCD method is further updated with the consideration of the
attenuation correction algorithm [51].
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