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Abstract: The Dahab watershed comprises three aquifers; the alluvial Quaternary, the Early
Cambrian sandstone, and the fractured Pre-Cambrian basement aquifers. The Dahab watershed
is located in the southeastern part of the arid Sinai Peninsula, where low precipitation and
groundwater over-exploitation deteriorate the groundwater quality in the alluvial coastal plain
aquifer located downstream. Multi-isotopes including δ18O and δ2H, 87Sr/86Sr, δ81Br and δ11B
coupled with groundwater geochemistry were utilized to assess the recharge source(s), water-rock
interaction, and seawater mixing to aid sustainable groundwater management strategies. Br and Cl
concentrations, used to measure groundwater salinity, were low in the upstream groundwater, while
higher concentrations were observed in the deep drilled wells located downstream, in the main well
field. The δ18O and δ2H isotopes were depleted in the upstream aquifers, but enriched in the shallow
coastal aquifer, indicating slight evaporation and seawater intrusion. Higher mean values of 87Sr/86Sr
and δ81Br were observed in the fresh groundwater from high in the watershed (87Sr/86Sr = 0.707716
and δ81Br = +2.05h), while lower mean values were observed in the saline groundwater located
downstream in the main well field (87Sr/86Sr = 0.706631 and δ81Br = +0.11h). The cumulative mass
balance mixing curves and the geochemical NETPATH model confirm the change of groundwater
quality from the upper to lower watershed caused by the leaching and evaporation processes,
as well as mixing with seawater. The corrected 14C age dating and stable isotopes show that
the Quaternary and Pre-Cambrian basement aquifers contain modern groundwater, while the
Early Cambrian aquifer holds paleo-groundwater, which has received considerable recharge from
recent precipitation. The mixing ratiosin the Quaternary coastal aquifer range between 5% and
13% seawater to 95% and 87% fresh groundwater, respectively. These results indicate that future
groundwater withdrawal must be well managed in order to limit further salinization. Groundwater
withdrawal from the Quaternary coastal aquifer must be below the natural average recharge in order
to be sustainable.

Keywords: multi-isotope tracers; seawater intrusion; geochemical model; sustainable groundwater
management

1. Introduction

The Dahab watershed is located in the Southeastern Sinai Peninsula, part of an arid coastal zone
where scarce rainfall and high summer temperatures dominate the climate (Figure 1). The alluvial
coastal plain aquifer located at the base of the Dahab watershed is the main water source for
desalination plants in the Dahab capital city. The coastal plain aquifers are considered to be the main
source of freshwater. However, groundwater over-exploitation of semi-arid to arid coastal aquifers in
Southern Europe, Northern African, the Middle East, and Eastern China leads to inland encroachment
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and/or vertical upconing of the salt/fresh water interface, causing groundwater salinization [1–6].
A mixing with seawater by about 2–3% makes freshwater unsuitable for drinking and marginal for
agriculture and irrigation [7]. In the Dahab coastal aquifer, groundwater overexploitation began
in 1982 through eight production wells drilled by the Sinai Development Authority, in the main
well field [8]. In recent years, groundwater over-withdrawal in the South Sinai Peninsula and the
Dahab alluvial aquifers has resulted in seawater intrusion and severe groundwater salinization [9–12].
The groundwater processed in desalination plants is considered one of the main sources of fresh water
for Dahab city. The total withdrawal rate from coastal intake drilled wells used for feeding these
desalination plants exceeds 25,000 m3/day [13], which is considered substantial. Historical records
of groundwater salinity in the main well field low in the Dahab watershed show variations
from 1000–3000 mg/L in recent decades because of poorly managed groundwater withdrawal
(Figures 2 and 3).
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This research used multi-isotope tracers in conjunction with groundwater geochemistry to
determine sustainable recharge source(s) for different aquifers, and evaluate processes affecting
the quality of groundwater in the Dahab watershed. The distribution of fresh and saline groundwater
in coastal aquifers reflects previous hydrogeological environment, and long-term geological and
recent anthropogenic processes affecting groundwater quality [14–16]. Groundwater geochemistry
and stable isotopes (δ18O, δ2H, 87Sr/86Sr, 11B) have been used to determine groundwater recharge
and flow paths in assessing historic and current geochemical processes that deteriorate groundwater
quality in arid regions [12,17–21]. In addition, stable isotopes (δ18O and δ2H) are considered water
management tools [22–24], and are used to understand evaporation, precipitation, and mixing
processes [25,26]. Strontium isotopes (87Sr/86Sr) do not exhibit fractionation by common natural
processes, accordingly, they have been utilized to provide valuable insights of groundwater recharge
sources, mixing proportions, and degree of water–rock interaction [27–30]. Boron isotopes have been
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used for identification and migration of contaminants in groundwater [31,32]. Fresh groundwater
recharge from an area of different altitude in a watershed has different isotopic signatures than
seawater and other saline waters, thus the mixtures will have ratios intermediate to the two end
members [12,33]. Combining δ11Br and δ81Br isotopes can provide detailed information on the
processes affecting groundwater salinization in coastal aquifers a [34,35]. The approach used in this
study to aid groundwater resource sustainability in the Dahab watershed are applicable to similar
hydrogeological settings located in semi-arid and arid environments throughout the world.
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2. The Study Area, Geology, and Hydrogeology

The Dahab basin (Figure 1) drains east toward the Gulf of Aqaba and is considered to be one of
the most important watershed systems in the South Sinai Peninsula. It is a primary source of water for
Dahab City residents and tourists. The watershed covers an area of about 2100 m2 and is comprised
of five main sub-basins: Wadi Ghaib, Wadi Khshieb, Wadi Saal, Wadi Zaghraa, and Wadi EL Nasab
(Figure 1). The topography of the Dahab basin is characterized by steep gradients, increasing the
flooding probability in the lowlands [36].

The Dahab watershed is characterized by high rugged mountains built mainly of Precambrian
to Quaternary rocks [37]. The basement complex of the watershed is comprised of metamorphic and
igneous rocks (Figures 1 and 2). The metamorphic rocks outcrop upgradient in the Saal and Zaghraa
sub-basins and are differentiated into metasediment, metavolcanic, and metagabbroic intruded by not
metamorphic igneous rocks [38–40]. These igneous rocks are represented by felsic and mafic plutonites
of Precambrian age intruded by acidic post-granitic and Oligocene-Miocene basic dike swarms [41–43].
The granitic rocks are widespread in the Saal, Zaghraa, and EL Nasab sub-basins [44,45]. These are
divided into older and younger granitoids [46,47]. The mineral compositions of these granitic rocks are
mainly quartz, plagioclase, microcline, orthoclase, and biotite. The weathering and alteration of these
rocks show feldspars strongly argillized to clay minerals, biotite altered to chlorite, and sausurization
of plagioclase and orthoclase minerals (Figure 1, Table S1).

The sedimentary rock of Cambrian age locally outcrops at Hedek area in the main channel of
the Saghier basin located in the northern part of the Dahab watershed and include the Araba and
Naqous Formations [48–50]. The Araba Formation of Early Cambrian age is formed primarily of
thick-bedded medium to fine-grained sandstone with iron oxides and clay sheet intercalations [50].
The Naqous Formation (Late Cambrian) overlies the Araba Formation and is made up of friable
deposits of quartzitic fine-grained with clay intercalations [47,51,52].

The Quaternary deposits consist of erosional products of sedimentary and igneous rocks located
high in the Dahab watershed. These deposits cover the stream channels with variable thicknesses
ranging between a few meters up to 60 m in the delta area [47,53,54]. They are composed mainly of
boulders of carbonate and igneous rocks with fine to coarse sands embedded in a silty and clayey
matrix [8]. The sedimentary successions are distributed in the northern part of the Dahab and
El-Saghier watersheds (Figure 1). Dahab watershed contains three main aquifers: the Quaternary,
Early Cambrian, and Precambrian. They are recharged by flash floods when the area receives heavy
winter storms and through infiltration of precipitation high on the mountain block [55,56]. The Dahab
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catchment receives an average annual rainfall of about 76 mm/year [57], and the potential evaporation
exceeds 2400 mm/year [58].

3. Methodology

3.1. Field and Laboratory Work

Water samples were collected from 7 drilled wells and 25 hand-dug wells (Table S2) in
June 2014. Samples were filtered through a 0.45 µm filter and collected in glass bottles for both
geochemical and isotopic analyses. The pH and electrical conductivity (EC) were measured in the
field. Electrical conductivity was measured with AD-410 ADWA model; pH was measured with AD-11
ADWA model. Meters were calibrated twice daily during the field campaign.

The dissolved major-ion analyses, including anions (Cl and SO4) and cations (Ca, Mg,
Na, and K), were conducted at the Desert Research Center, Water Central Laboratory, Cairo,
Egypt, using ion chromatography (Dionex, ICS-1100). The carbonate and bicarbonate were
determined by the standard analytical methods [59,60]. For analytical quality control, each
sample was run in duplicate and standards were verified for each sample. The Error % =

[∑ Cations − ∑ Anions]/[∑ Cations + ∑ Anions] was less than 5%. Stable isotopic analyses for δ18O
and δ2H were analyzed in the Nevada Stable Isotope Laboratory, following the methods of [61] for
δ2H and [62] for δ18O. The δ18O and δ2H results were reported in per mil (h) according to the Vienna
Standard Mean Ocean Water VSMOW referenceand the uncertainty of δ2H was ±1h and ±0.1h for
δ18O (1 standard deviation). The 87Sr/86Sr analysis was conducted using thermal ionization mass
spectroscopy with an analytical precision value of (±0.0001) [63]. δ11B isotope values were determined
at the Texas A&M University. The dissolved inorganic carbon (DIC) stable isotopic ratio (13C/12C) was
determined using the Finnigan Mat, Delta Plus XL IRMS system, with a precision value of ±0.3h at
the IT2 Isotope Tracer Technologies located in Waterloo, Canada. The 14C analyses were conducted at
the University of Arizona, accelerator and mass spectrometry laboratory; the results were reported in
percent modern carbon (pmc) with an uncertainty of ±0.4 pmc. δ81Br was analyzed at Isotope Tracer
Technologies (IT2) (Table S2). The δ81Br isotope was determined using the method described in [64].
The analyses were performed on CH3Br with a precision of 0.1h for both isotopes. Mineralogy was
identified by examination of rock thin-sections using polarized light microscopy in the mineralogical
laboratory at the University of Nevada Reno.

3.2. Water–Rock Reaction Modeling

The NETPATH geochemical model has been widely used for understanding processes that
account for chemical and isotopic changes and groundwater flow paths [65]. The observed variations
in chemistry, along with the groundwater flow path between initial and final water, can be simulated
using the NETPATH inverse model. The model outcomes obtained for water–rock interactions, mixing,
and evaporation is limited by the available mineral, chemical, and the isotopic data of δ 13C and
14C [66,67]. The known mineral phases in the aquifer matrix of the study area and the major-ion
concentrations of the groundwater (Table 1) have been used for the NETPATH models. Halite, gypsum,
and silica are observed in the alluvial deposits, particularly the Sabkha deposits, so they were included
as phases in the model. The carbonate boulders are dominated in the Dahab delta aquifer, so calcite
and dolomite were included in the model phases [8]. Mineral phases for the igneous mafic and felsic
rocks were obtained from thin section investigations of rock samples collected from the basement
rocks of the watershed. Plagioclase, anorthite, chlorite, and microcline are dominant minerals in
the basement rock outcrops in the watershed and they are also embedded as boulders and cobbles
downstream in the alluvial deposits (Table S2). Clay sheets are present in the sediments, so the clay
minerals, including montmorillonite and illite, were also included as phases in the model. The cation
exchange of calcium with sodium in clay minerals has also been considered in the model simulation.
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Table 1. Constraints, phases, and parameters used in NETPATH models for the El-Dabaa Area.

Constraints Phases Processes

Calcium, Carbon, Magnesium,
Potassium, Sodium Sulfur, Chloride

(±) Calcite, (±) Dolomite, (±) Gypsum, (+) Halite
(NaCl), (−) Silica, (+) Plagioclase, (+) Microcline,
(+) Chlorite (−) Na-Montmorillonite, (−) illite,

(−) Mafic Montmorillonite, (±) Exchange

(Evaporation and/
or Mixing)

Note: (±) Dissolution and precipitation, (+) Dissolution only, (−) Precipitation only.

4. Results and Discussion

4.1. Groundwater Chemistry

The historical records of groundwater salinity in the main well field (sites D1, D2, D5, D6, and OW)
show extreme variations starting from 1982 to 2007 (Figures 1 and 2). The average groundwater
salinity for the deep drilled wells located in the main well field has increased from 2230 mg in 1986
to 3300 mg/L in 2007 [9,68] because of variations in annual precipitation and flooding, as well as
upwelling of deep saline groundwater caused by over-pumping [69]. The groundwater chemistry
data collected from 32 groundwater wells are shown in Table S1 and represented in Figures 2 and 4.
In 2007, the groundwater salinity ranged from 562 mg/L upstream (site 1) to 14,156 mg/L downstream
(site 31) (Table S1, Figure 1). Groundwater samples collected from the three different aquifers were
classified into four groups according to the groundwater salinity (A, B, C, and D). Group A had
groundwater salinity less than 1000 mg/L (sites 1, 2, 16, 17, 21, 22, 23, 25, 27, 28, 29, and 30). Group B
had groundwater salinity ranging from 1000 to 2000 mg/L (sites 6, 8, 14, 19, 20, 24, and 26). The samples
of Group A and Group B were mainly located high in the Dahab watershed. Group C had a salinity
range of 2000 to 5000 mg/L, and Group D had groundwater salinity more than 5000 mg/L. Most of the
groundwater samples representing Group C and D were located low in the basin at the delta (sites 3, 4,
5, 7, 9, 10, 11, 12, 13, 15, 31, and 32). The Br− and Cl− ions have been used as indicators to determine
salinization origin and mixing fractions with seawater [70–73].

Additionally, ionic relationships are commonly used to evaluate the recharge and salinization
sources in coastal aquifers [11,74]. Figure 4 shows the logarithmic plots of the total dissolved solids
(Figure 4a), concentrations of major ions (Figure 4b–e), and Sr (Figure 4f) versus Bromide. It is clear that
the groundwater of Group A and Group B have low major ion concentrations and groundwater salinity.
The data plot close to the rainwater sample, on the evolution groundwater trend line extended between
the rainwater sample and the high saline groundwater sample represented by site 13, indicating
replenishments and recharge from meteoric water from annual precipitation (Figure 4a). The slightly
elevated salinity, Sr, and other ions characterizing the Group B, were mainly attributed to evaporation
processes, as well as leaching and dissolution of clay sheets in the delta and silicate minerals from
the granitic rocks from the upstream of the watershed (Table S2). This indicates that the water/rock
interaction was the main factor controlling groundwater salinization of Group A and Group B.

Group C and Group D had relatively higher bromide, salinity, and major ion concentrations and
they plot closer to the seawater sample, indicating possible seawater intrusion. Two samples belonging
to Group D, which tap the granitic basement aquifer located downstream, had higher salinity and
lower bromide concentrations, which may indicate extensive evaporation.
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The major-ion chemistry of groundwater in the Dahab watershed is shown in the Piper trilinear
diagram in Figure 5 [75]. On the basis of the major-ions, the different groundwater samples
were classified into four chemical water types: Na–Cl, Ca–Na–HCO3, Ca–Mg–Cl, and Ca–Cl.
Twenty groundwater samples, most of them belonging to Group A and Group B groundwaters,
were classified in the sodium–chloride water (Na–Cl) type. Ten of these samples were tapped from
the downstream Quaternary aquifer, while the others were tapped from the granitic basement rocks
located upstream. The sodium–chloride water type resulted by leaching of granitic rocks rich in
sodium ions as a result of weathering processes in this arid region. One groundwater sample (site 22)
located in the upstream watershed of the Saal sub-basin fell into the sodium bicarbonate (Na–HCO3)
water type, indicating it was recently recharged from annual precipitation.
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Seven groundwater samples, most of them belonging to Group C and D, were represented in
the calcium–chloride (sites 3, 5, 31, and 32) and magnesium–chloride (sites 10, 11, and 15) water
types. Five groundwater samples tapped from the Quaternary aquifer near the Gulf of Aqaba shore
line indicate cation exchange processes, where Na ions are exchanged with Ca and Mg as a result of
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seawater intrusion. The other two groundwater samples (sites 31 and 32) tapped from the basement
aquifer in the El Nasab and Zaghra sub-basin indicated dissolution of basaltic dike, which act as a
barrier for groundwater entrapments.

4.2. Sources of Groundwater Recharge

Oxygen and hydrogen isotopes of the water molecule are ideal and widely used tracers to
understand the hydrogeological processes such as precipitation, groundwater recharge, and basin
hydrology. Importantly, they are not involved in geochemical reactions and are sensitive to physical
processes such as groundwater mixing and evaporation [25,76].

The isotopic composition of groundwater in the Dahab watershed shows great variations.
The δ18O in the groundwater samples ranged from −5.29h (site 17) to +1.55h (site 14), and the
δ2H ranged from −36.5h (site 17) to 9.4h (site 14). In general, the isotopically depleted groundwater
samples are from higher altitudes in the Dahab watershed, where elevation attains a maximum of
1250 m above mean sea level (Figure 6a).

The isotopic signatures of groundwater in the Early Cambrian sandstone aquifer in the El-Saghier
sub-basin and upstream in the Dahab watershed had the lowest δ2H and δ18O values. In Figure 6a,b,
these isotopic values are from the shallow and deep groundwater wells of the Early Cambrian
aquifer plot between recent precipitation and the paleo-groundwater of Sinai. The paleo-groundwater
aquifers in Sinai have lower δ2H and δ18O values, which is typical for Saharan groundwaters [77,78].
Paleo-aquifers in Sinai and the Northern Sahara were replenished with strongly convective rainfall
of humid episodes during the Holocene [79,80]. Globally, it has been observed that deep aquifers
dominated by fossil water may contain a detectable level of recent contaminants, which points to
recent meteoric recharge [81]. Similarly, groundwaters in the Early Cambrian aquifers seems to be a
mixture of the recent meteoric water and paleo-groundwaters.
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Figure 6. (a) δ18O versus δ2H for groundwater of the Dahab watershed. The rain isotopic value
is the amount of weighted mean average from [29,82]; and global meteoric water line after [83].
The paleo-groundwater isotopic data are from [78,79]. (b) δ18O versus bromide for groundwaters in
the Dahab watershed.

Specifically, the Early Cambrian aquifer receives recent recharge from the precipitation of
monsoonal air masses, originating from the Indian Ocean, which are isotopically depleted relative to
the weighted mean value of local precipitation in the Sinai [29,58,84,85].

Groundwater wells located upstream in the Precambrian granitic aquifer of the Saal (sites 21, 22,
24, and 25), Zaghra (site 27), and El Nasab (site 29) basins have lower δ18O and δ2H values, and plot
close to the global meteoric water line (GMWL) [83]. This groundwater has isotopic signatures that are
similar to the weighted mean average of local precipitation in the hyper-arid zone of Southeast and
Eastern Sinai [12,69,86,87], and they also had lower bromide concentrations (Figure 6a,b). These data
indicate that the main source of groundwater recharge for the Precambrian basement aquifers was
from recent precipitation. However, groundwater samples located downstream in the Dahab delta
have higher δ18O and δ2H values. The heavier isotopes isotopic composition measured at sites 8, 14,
15, and 22 indicate that this groundwater has experienced evaporation from shallow groundwater in
an arid climate, according to Rayleigh distillation [25]. However, the heavier isotopic composition
detected at sites 3, 4, 9, 11, 12, and 13 were mainly caused by mixing with seawater (δ18O = 1.64h),
as evidenced by these samples typically having relatively high bromide, chloride, and salinity.

4.3. The Genesis of Groundwater Salinization

The bromine isotope has been used to demonstrate the seawater intrusion in coastal
aquifers [12,88]. In this study, the δ81Br isotopic values in groundwater range between −0.24h (site 14)
and + 2.15h (site 25). The groundwater samples taken from upstream in the Dahab watershed had
enriched δ81Br isotopic signatures (sites 24, 25, 29, and 31) with a mean value of +2.05%. Meanwhile,
the groundwater samples taken downstream in the Dahab delta (sites 4, 8, 9, and 11–15 inclusive)
had depleted δ81Br isotopic signatures with a mean value of +0.11h. The mass balance mixing lines
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have been used previously to indicate the water–rock interactions and assess the mixing between
different end members [12,30,89]. Recharged water from upstream in the Dahab watershed was used
for representative end members in the solute-weighted mass balance equations. Bromide is considered
a good conservative tracer in groundwater that shows a progressive increase with groundwater salinity.
Therefore, it can be a good indicator for groundwater salinization. The average bromide concentrations
(mg/L) and δ81Br isotopic signatures (h) of sites 24, 25, and 29, which were estimated to represent the
recharge water (R), have been estimated to come from the upstream watershed of Dahab Basin (site R,
Figure 7).
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Figure 7. δ81Br plotted versus bromide concentrations values of the groundwater in the
Dahab watershed.

Most of the groundwater samples located downstream in the Dahab delta (except for
sites 14 and 31) plot on the mass balance mixing lines extended from the average recharge water
and seawater sample. This indicated that mixing with seawater is the main source of groundwater
salinization in the Dahab delta. Meanwhile, the groundwater sample sites 14 and 31 have low bromide
concentration and are depleted with the bromide isotopic signatures, which may be related to a third
end member characterized by a low δ81Br isotopic signatures. The δ11B isotope, in conjunction with
the groundwater salinity, was used to confirm the groundwater salinization source. Boron behaves as a
conservative tracer in groundwater [90] and the δ11B isotope has been used to determine the source of
groundwater salinization [28,34,91–93]. The δ11B isotope in Dahab basin groundwater ranged between
35.2h (site 14) and 76.1h (site 15). In Figure 8, the higher δ11B ratios are detected downstream in
Dahab delta, while lower isotopic signatures are mostly detected upstream (site 24) and in low saline
groundwater (site 14).
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Groundwater samples were located in the downstream plot near the modern seawater, which is
considered the main source for groundwater salinization in the Dahab delta. The higher δ11B
recorded at sites 4, 8, 9, 11, 12, and 15 can be explained by the open system equilibrium fractionation
process between seawater and high clay content that dominates the Dahab delta. In clay-rich coastal
aquifers, 10B is adsorbed to the clay minerals, and progressively becomes extremely enriched with the
δ11B [34,91,92,95,96].

4.4. 87Sr/86Sr as an Indicator for Water–Rock Interaction

The 87Sr/86Sr isotopic ratio has been used to determine water–rock interactions, groundwater
recharge sources, and mixing with seawater [97,98]. In groundwater samples of the Dahab catchment,
the 87Sr/86Sr isotopic ratio ranged from 0.70630 (site 31) to 0.70839 (site 24). The strontium isotopic ratio
in all groundwater samples falls into two distinct sets. The first set represents samples taken upstream,
tapped from the basement aquifers. These samples have an average strontium isotope ratio of 0.707716
(n = 5 samples). The groundwater located upstream had relatively high values of the 87Sr/86Sr isotopic
ratio, reflecting the water–rock interaction with the upper Cretaceous sandstone (87Sr/86Sr = 0.70835)
outcrops, which form the main catchment [12]. The second set represents groundwater samples
collected downstream from the Quaternary alluvial aquifer. These samples had an average 87Sr/86Sr
isotopic value of 0.706631. The relatively low 87Sr/86Sr isotopic ratios fell within the range of strontium
isotope in the older granitic rock (87Sr/86Sr = 0.70290) embedded in the clastic alluvial deposits and
the volcanic basaltic sheets (87Sr/86Sr = 0.70760) that intrude the alluvial aquifer deposits located
downstream (Figure 3b or Figure 9). In Figure 9, all groundwater samples were plotted between the
three end members: the average recharge water from high in the watershed (R), the older granitic
rocks, and seawater. Additionally, the groundwater samples plotted on the weighted mass balance
mixing line between the average recharge water (R) and site 13, which has higher groundwater salinity
as a result of seawater intrusion. Groundwater sample sites 8 and 31 deviate slightly from the mixing
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line trend between the recharge water and sample number 13, because of the great extent of water–rock
interaction with the older granitic rocks embedded in the aquifer matrix.
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Figure 9. 87Sr/86Sr versus bromide concentrations values of the groundwater in the Dahab watershed.

4.5. Inverse Geochemical and Mixing Model

Water chemistry and isotopic data and rock forming minerals of the aquifer matrix have been
used in the NETPATH model to account for the geochemical reactions and/or mixing with different
waters [25,65]. In the Dahab watershed, groundwater in the basement and Quaternary aquifers
flow from up-basin to down-basin [50,99], where stable isotopes δ18O and δ2H show that most
groundwater in the upstream watershed has not undergone evaporation and plots close to the meteoric
recharge water (Figure 6a,b). Therefore, the NETPATH model was run to simulate the mass-balance
transport only through the water–rock interaction processes without evaporation or mixing. For a
valid water–rock interaction model simulation, the precipitation or dissolution amount of any mineral
phase should not exceed 15 (mmol/L) along the proposed flow path. An exception was made in case of
modeling saline groundwater, where the differences of mineral constraint component concentrations
in initial and final waters exceeded the 15 mmol/L. The NETPATH results for the groundwater located
in the upper Dahab watershed suggest dissolution of calcite, gypsum, halite, plagioclase, anorthite,
and microcline as groundwater flows toward the down gradient of the Dahab watershed. Additionally,
calcite, dolomite, chalcedony, and illite are precipitated, with some cation exchange, where sodium in
the aquifer matrix exchanges with calcium in groundwater, and vice versa (Table 2).

The NETPATH model, running from site 21 to site 22, showed slight evaporation, which was
consistent with the stable isotope results shown in Figure 6. The obtained mineral saturation indices
(SI) values were consistent with the mineral phase changes calculated by NETPATH in Table S3.
Groundwater in the Quaternary aquifer of the delta at sites 8 and site 14 showed that evaporation
from the initial recharge water comes from the watershed represented by site 21. The NETPATH
results suggested the dissolution of halite, plagioclase, anorthite, and chlorite, while clay minerals
(montmorillonite and illite) and dolomite were dissolved with some cation exchange, where calcium
in groundwater replaces sodium in clay minerals in the aquifer matrix. The estimated evaporation
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factors (Ev) by the model were 3.8 at site 8 and 4.9 at site 14, and were consistent with the chloride
concentration ratios between initial and final water.

Table 2. Mineral Saturation indices for phases in NETPATH geochemical models. Positive values
indicate over saturation; negative values indicate under saturation.

No. Calcite Dolomite Gypsum Silica Calcedony PlgAn Mcln Mica Chlrt Mont Illite

3 0.07 −0.13 −1.64 −0.66 0.21 −3.38 0.21 6.77 1.96 0.27 1.39
4 −0.37 −0.38 −0.98 −0.71 0.15 −3.93 0.02 6.59 −2.23 1.69 1.24
8 0.06 −1.02 −1.59 −0.71 0.15 −3.76 0.00 5.86 −6.06 1.01 0.46
9 0.48 0.23 −0.94 −0.59 0.27 −3.16 0.44 6.67 −3.36 1.88 1.34

11 −0.44 −0.23 −1.39 −0.76 0.10 −4.14 −0.08 6.537 −1.71 1.53 1.16
12 0.06 0.48 −1.11 −0.65 0.21 −3.73 0.19 6.64 −1.23 1.79 1.38
13 0.41 0.412 −0.56 −0.97 −0.13 −3.96 −0.54 6.01 −4.32 0.81 0.38
14 0.04 −0.46 −1.36 −0.63 0.24 −3.72 0.56 7.02 −5.87 1.89 1.41
15 −0.14 0.52 −0.98 −0.83 0.03 −4.39 −0.21 6.02 −0.19 0.86 0.73
21 0.97 1.79 −1.41 −0.74 0.12 −4.15 −0.67 4.63 −0.55 2.30 −0.16
22 0.15 0.10 −1.35 −0.610 0.25 −0.84 0.97 6.5 −1.58 0.98 1.16
24 0.48 0.76 −1.14 −0.89 −0.03 −4.39 0.38 6.00 −2.34 0.06 0.40
25 0.31 0.41 −1.40 −0.64 0.23 −3.98 1.15 6.65 −1.59 0.87 1.21
27 0.16 −0.02 −1.36 −0.70 0.17 −4.01 0.56 7.06 −5.42 1.43 1.26
28 −0.03 −0.46 −1.26 −0.75 0.11 −4.13 −0.95 5.11 −4.73 0.99 0.04
29 0.25 0.20 −1.21 −0.61 0.26 −3.75 1.09 7.51 −4.93 1.93 1.79
30 0.38 0.50 −1.41 −0.70 0.16 −4.03 0.97 6.54 −1.89 0.71 1.04
31 0.15 −0.58 −0.40 −0.66 0.20 −2.91 0.59 7.20 −3.81 2.05 1.60

Rain −3.72 −8.27 −3.47 −1.39 −0.52 −9.62 – – −32.02 −1.47 –
Sea −0.25 0.42 −0.55 −1.27 −0.41 −4.80 −0.28 6.55 −0.95 −0.95 0.46

The NETPATH model accounted for the mass balance transfer through water–rock interaction and
estimated the seawater mixing ratios at the coast in six wells, as previously indicated by stable isotopes,
δ81Br, and δ11B isotopes. The model results showed the dissolution of gypsum, microcline, and chlorite,
and the precipitation of calcite, dolomite, and clay minerals with cation exchange. NETPATH also
showed mixing of dilute groundwater from well 21, located in the upper Dahab watershed, with 5% to
11% of seawater.

4.6. Corrected Age Dating 14C Model

NETPATH has also been used to correct age dating of groundwater [29,65,66]. δ13C and 14C were
analyzed in four groundwater samples for the purpose of correcting age in the different aquifers of the
Dahab basin: one sample from the upper watershed (site 21), representing the Precambrian aquifer;
one sample from the Dahab delta (site 4), representing the Quaternary aquifer; and two samples
(sites 16 and 19) from the Saghier sub-basin, representing the Early Cambrian aquifer. Well site 21,
located highest in the Dahab catchment, had low groundwater salinity, the most negative δ13C values,
and the highest 14C pmc (Table S1 and Table 3). Therefore, site 21 was used as the initial source in the
model for estimating groundwater ages. The NETPATH corrected age dating model was calibrated
by changing the value of the isotopic exchange of dissolution of calcite minerals until the modeled
(computed) δ13C (pmc) matched the observed value in each sample. The calibrated NETPATH model
results showed that groundwater in the Quaternary and Precambrian aquifers have a corrected 14C age
that is modern, so they contain recent meteoric recharge received from the mountains of the watershed.
Groundwater from the Cambrian aquifers had a 14C corrected age of 2723 years (Table 3). It is important
to note that the average groundwater ages determined by geochemical tracers may be vulnerable to an
error when mixing of younger and old water occurs. Therefore, older groundwater in the Cambrian
aquifer may be influenced by paleo-groundwater mixed with a recent groundwater recharge.
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Table 3. NETPATH modeling results (mmol/L) for the El-Dabaa Area. Positive values mean the phase is going into solution, while negative values mean the phase is
being removed from the solution.

Basin Aquifer Initial (Site1) Final Water
Carbon Isotopic

Exchange (mmol/L)

13C 14C Age (year)

Computed
(h)

Observed
(h)

Computed
(pmc)

Observed
(pmc)

UpstreamDahab Watershed Quaternary 21 4 4.3 −5.93 6.0 26.6 37 Moden Water

DownstreamDahabDelta Early Cambrian 21 19 5.4 −5.35 −5.40 30.6 42 Moden Water
21 16 1.8 −8.36 −8.40 51.43 37.0 2723
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5. Conclusions

This study examined the chemistry and the stable isotopic composition of groundwater in
the Dahab watershed of the Southern Sinai Peninsula. Groundwater salinity, hydro-geochemistry,
and stable isotopes exhibit regular variation from the upper basin down to the coast.
Groundwater samples located in the upper portion of the Dahab watershed contained fresh to brackish
water and had Cl–Na and HCO3–Na water types, while groundwater located low in the basin was
mainly brackish to saline waters and had Cl–Ca and Cl–Mg water types. The groundwater high in the
watershed had a lower salinity and depleted isotopic signatures of δ18O and δ2H that are similar to
rainwater. Groundwater in the Dahab delta was primarily derived from the upgradient and evolved
from water–rock interactions and considerable percentage mixing with seawater. The stable isotopes
δ18O and δ2H indicate that recent precipitation is the main source of groundwater recharge for the
Quaternary and Precambrian aquifers, and mixing with seawater and water–rock interaction are
considered the main salinization source for coastal groundwater. The groundwater in the Cambrian
aquifer is a mixture of paleo-water and recent precipitation. Groundwater from the upper watershed
was mainly enriched with the Sr and Br isotopes, whereas the down-gradient groundwater was mainly
depleted because of mixing with seawater and various geochemical processes, including water–rock
interaction, that may cause significant isotopic fractionation. The geochemistry and multi-isotope
results suggest that the primary source of recharge to the Dahab delta is the subsurface inflow from
the upstream mountains of the watershed study area. The 14C age dating indicates the groundwater
in the Cambrian aquifer may be influenced by paleo-groundwater mixed with a recent groundwater
recharge. The groundwater currently pumped from the Dahab watershed is being replenished by
recent recharge. This resource can be managed in a more sustainable way by pumping less than what
is recharged on an average annual basis.

Supplementary Materials: The Tables S1–S3 are available online at http://www.mdpi.com/2306-5338/5/3/41/s1.
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