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Abstract: Flood modelling and mapping typically entail flood frequency estimation, hydrodynamic 

modelling and inundation mapping, which require specific datasets that are often unavailable in 

developing regions due to financial, logistical, technical and organizational challenges. This review 

discusses fluvial (river) flood modelling and mapping processes and outlines the data requirements 

of these techniques. This paper explores how open-access remotely sensed and other geospatial 

datasets can supplement ground-based data and high-resolution commercial satellite imagery in 

data sparse regions of developing countries. The merits, demerits and uncertainties associated with 

the application of these datasets, including radar altimetry, digital elevation models, optical and 

radar images, are discussed. Nigeria, located within the Niger river basin of West Africa is a typical 

data-sparse country, and it is used as a case study in this review to evaluate the significance of open-

access datasets for local and transboundary flood analysis. Hence, this review highlights the vital 

contribution that open access remotely sensed data can make to flood modelling and mapping and 

to support flood management strategies in developing regions. 

Keywords: open-access remotely sensed data; flood mapping and modelling; altimetry; synthetic 

aperture radar; optical satellite; Digital Elevation Model (DEM); and transboundary floods 

 

1. Introduction to Flood Modelling and Mapping 

Managing floods effectively requires a good understanding of historical flood trends, future 

expectations, and identification of locations likely to be impacted by flooding. Flood mapping 

provides the baseline for acquiring such information, to ensure preparedness, response and recovery 

efficiently undertaken to mitigate the impact of flooding [1]. Flood mapping is a process that 

describes the expected extent of water inundation into dryland as a result of intense precipitation or 

river water level rise driven by natural or anthropogenic factors [2]. Flood mapping processes differ 

considerably from project to project, and/or country to country, depending on specific project 

requirements and country-specific guidelines. In addition, the scale of flood mapping is influenced 

by available data, resources, technical know-how and delivery timeline, and this can determine the 

approach deployed [3–6]. Nevertheless, the sequence of activities that lead to the final flood hazard 

map outcome is fundamentally the same, and involves (i) flood frequency estimation: the probability 

of occurrence of a flood of specific magnitude over a certain period; (ii) hydrodynamic modelling: 

routing of expected or known river discharge or catchment runoff over a landscape to determine 

water depth, velocity and inundation extent; (iii) risk mapping: determining through overlay 

analysis, the landscape properties (land use/cover, infrastructures, population density, 

socioeconomic activities, etc.) to be impacted within flooded regions [7–11]. 
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Typical flood mapping processes are presented in Table 1, including the basic data requirements, 

expected outcomes and some reference case studies. These processes, if executed with reasonable 

accuracy, can provide the necessary information to underpin effective flood management decisions 

such as floodplain planning, design of flood defence structures, and implementation of disaster 

response and recovery measures to mitigate flood impact. 

Table 1. Flood mapping process and fundamental data requirements, outcomes and case studies. 

Process Data Outcomes 
Reference 

Case Studies 

Flood frequency 

estimation 

Historical data: River discharge, water 

levels and rating curves/equations. 

Flood magnitude at 

specific return periods 

(Direct and regional). 

[12–15] 

Hydrodynamic 

modelling 

Flood frequency outcome River 

discharge Digital elevation model Land 

use and cover map Historical flood 

extent, and marks. 

Inundation Extent 

Water depth Flood 

velocity and travel time 

[16–19] 

Flood risk and 

vulnerability 

assessment 

Hydrodynamic model outcomes, 

demographic, socio-economic and 

infrastructure data. 

Exposure maps 

Vulnerability maps 

Evacuation plan 

[19–21]  

Going forward, this review highlights that the data required for flood modelling and mapping 

is scarce in many developing regions (Table 1), and details how open-access remotely sensed data 

can compensate for ground monitoring deficiencies in local and transboundary river basins. The 

applications of remotely sensed data sets such as altimetry, digital elevation models, radar and optical 

images in each flood mapping process are discussed. To further demonstrate the usefulness of open-

access remotely sensed data in developing regions, Nigeria is used as the case study for this review, 

which is a typical data-sparse country that has experienced severe flooding in recent years, the 

prospects for the use of remotely sensed data are discussed. 

2. Data Limitations, Prediction of Ungauged Basins and Remote Sensing Advancements 

In recent decades, floods have been perceived to be increasingly frequent, widespread and more 

devastating. As such, existing spatial networks of hydrological gauging stations have become 

inadequate for optimal data collection [22]. In some case, obsolete equipment, financial and technical 

challenges hamper sufficient data collection for flood modelling and mapping [23–25]. Due to 

increasing global data deficiency and the uncertainty associated with sparse data for hydrological 

and hydrodynamic modelling, the International Association of Hydrological Sciences (IAHS) 

launched the Prediction of Ungauged Basins (PUB) initiative to explore alternative data and 

techniques for improved ungauged basin modelling [26]. One of the core objectives of the PUB is to 

“Advance the technological capability around the world to make predictions in ungauged basins 

firmly based on local knowledge of the climatic and landscape that controls hydrological processes, 

along with access to the latest data sources, and through these means constrain the uncertainty in 

hydrological predictions” [27]. This objective aligns seamlessly with remote sensing (RS), considering 

that it provides an alternative data source to improve our understanding of local hydrology and 

associated uncertainties in flood mapping for data-sparse regions [28]. 

RS has advanced enormously in recent decades, and this has led to the availability of free 

datasets in many parts of the world, thereby enabling developing countries to explore its potential at 

little to no data acquisition cost [29]. This review focuses on the integration of open-access (freely 

available) satellite data into fluvial (river) flood mapping processes to compensate for data sparsity 

faced in developing regions, then uses a Nigerian case study to assess the possibility of leveraging on 

global geospatial technology for local and transboundary flood management. Inferences are drawn 

from previous reviews on low-cost Geographic Information System (GIS) and RS applications in 

hydrology, hydrodynamic modelling and flood mapping [30–32]. However, a wider range of freely 
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available datasets and sources needed for every flood-mapping step listed in Table 1 are explored in 

this review. 

3. Open-Access Remotely Sensed Data Sources for Flood Modelling and Management 

3.1. Radar Altimetry for Water Level and Elevation Measurements 

River water levels are an essential data input (initial and boundary conditions) for hydrology 

and hydrodynamic modelling [33], and advances in RS have improved the way changes in water 

surface elevation and slope can be measured since the early 90’s [34]. Radar altimetry missions 

originally developed for ocean water level measurements now routinely measure freshwater surface 

elevation of large rivers [35,36]. Radar altimetry data is acquired via a process that measures the 

distance between the orbiting satellite and water surface in relation to a reference datum, by 

estimating the time it takes a sensor emitted echo pulse to be reflected by a water surface and return 

to satellite [37,38], using Equations (1) and (2), and the schematic of this methodology is presented in 

Figure 1. Altimetry water levels are usually measured at virtual stations located intermittently where 

altimetry satellite tracks cross path with rivers [39,40], see Figure 2. When altimetry tracks pass over 

dry land, the elevation of the surface intersected is measured; this is elaborated later in Section 3.1.2. 

A sample of altimetry time series extracted from the surface monitoring by satellite altimetry 

database [41] for the Niger River in Nigeria is presented in Figure 3.  

 

Figure 1. Graphic illustration of satellite altimetry height measurement principle (adapted from [40]). 
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Figure 2. Illustration of a virtual station, where altimetry satellite tracks intersect the river Niger. 

 

Figure 3. Typical water level time-series extracted from an altimetry virtual station along the river 

Niger (error bars indicate standard deviation from water level height (m), and are low during peak 

flooding, as altimetry measurement accuracy is improved during this season [42]. 

The water level at a river of interest with reference to a predefined datum (such as Earth 

Gravitational Model (EGM 2008)), is expressed as: 

ℎ = 𝐻 − 𝑅𝐶𝑜𝑟 (1) 

𝑅𝐶𝑜𝑟 = 𝑅 − (𝑐
∆𝑡

2
) −  ∑𝐶𝑜𝑟 (2) 

where, h = water surface elevation in relation to the reference ellipsoid, H = altitude of the satellite 

(from satellite orbit to reference ellipsoid), R = range (distance between satellite and open surface 
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water body), RCor = corrected range, c = speed of light, 
∆𝑡

2
 = the dual direction travel time of radar 

signal, and ∑𝐶𝑜𝑟 = the sum of ionospheric, tidal, wet and dry tropospheric corrections. 

The vertical accuracy of altimetry water levels contributes to hydrologic and hydraulic 

modelling outcome uncertainties [43]. In comparison to ground (in-situ) measurements, altimetry 

water level vertical accuracy ranges from approximately 0.01 to 0.05 metres, and Root Mean Squared 

Error (RMSE) from 0.003 to 0.004 metres for watershed areas up to 100 km2 [36,44–46]. In some cases, 

the difference between altimetry and in situ water levels can be as high as 2 metres [47]. Accuracies 

of altimetry water level are presented in Table 2 and these variations in accuracies are attributed to 

the different sensor types, the distance between in situ and virtual station, and location of altimetry 

track intersection with the river [29]. Other factors that affect altimetry accuracy include ionosphere, 

troposphere, instrument noise, geoid, tidal and water surface variations [38,48,49], as well as local 

topography and heterogeneity of reflecting land surfaces [50]. The river width at the location of the 

virtual station overpass if lower than the altimetry satellite track footprint and the presence of a 

tributary or distributary between in situ and virtual station have also been identified as the external 

factors that can contribute to altimetry water level discordancy from ground level measurements 

[37,51]. Despite these limitations, altimetry has been widely applied in hydrology and the four key 

areas of deployment, particularly in the context of hydrodynamic modelling in data-sparse regions, 

are discussed in the following sub-sections. 

Table 2. Altimetry characteristics adapted from [43]. 

S/N Mission 
Ground 

Footprint (m) 

Revisit Time 

(days) 

Operation 

Timeline 

Accuracy 

(m) 
References 

1 TOPEX/Poseidon ~600 9.9 1993–2003 0.35 [46] 

2 ERS-1 ~5000 35 1991–2000 N/A [36] 

3 ERS-2 ~400 35 1995–2003 0.55 [46] 

4 ENVISAT ~400 35 2002–2012 0.28 [46] 

5 Jason-1 ~300 10 2002–2009 1.07 [52] 

6 ICE Sat/GLAS ~70 - 2003–2009 0.10 [53] 

7 Cyrosat-2 ~300 369 2010 * <SRTM (30) [54] 

8 Jason-2 ~300 10 2008 * 0.28 [52] 

9 SARAL/Altika ~173 35 2013 * 0.11 [55] 

10 Sentinel 3 SRAL ~300 27 2016 * 0.03 [36] 

11 Jason-3 ~300 10 2016 * 0.03 [56] 

12 SWOT ~10–70 21 2020 + 0.10 [57] 

S/N = Sequential Number; Current = *, Future = +, SRTM = Shuttle Radar Topography Mission 

3.1.1. Altimetry for Discharge Estimation 

River discharge and water level often used as initial/boundary conditions for hydrodynamic and 

hydrological models are rarely available at most remote locations of many developing regions due to 

factors previously highlighted in Section 2 [23,39]. Radar altimetry has been explored in several 

studies to curb data limitation challenges and reduce the uncertainty associated with modelling 

ungauged rivers.  

Papa et al. [58] utilised TOPEX/Poseidon, ERS-2, ENVISAT and Jason 2 altimetry water levels in 

combination with in situ rating curves to estimate discharge along the Ganga and Brahmaputra rivers 

from 1993–2011. Accuracy levels of 0.17 (mean error) and 0.28 (standard error) metres in comparison 

to in situ discharge at gauging stations were achieved. River discharge along the Godavari river from 

2001 to 2014 was derived by combining ENVISAT (2002–2010), Jason-2 (2008–2014) and 

SARAL/Altika (2013–2014) radar altimeter water levels with in-situ rating curves at nearby gauging 

stations. When validated against a hydrodynamic model a correlation coefficient (R2) of 0.9 and a 

standard error varying from 0.15 to 0.40 metres were achieved [59]. In an Amazon River basin study, 

Getirana and Peters-Lidard [60] explored the potential of estimating discharge using altimetry data 

from ENVISAT (2002–2005). Using the relationship between in situ water level and discharge, 

Getirana and Peters-Lidard, [60] successfully estimated discharge at 90 virtual stations with mean 
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relative errors varying from 15 to 84% for small and large and river basins respectively. Discharge 

was estimated at transboundary rivers including the Danube (Austria, Romania, Bulgaria, Slovakia, 

Hungary, Ukraine, Croatia, Germany, Serbia, and Moldova), Mekong (Thailand, Cambodia, Laos, 

China, Myanmar (Burma and Vietnam), Amazon (Ecuador, Colombia, Peru, and Brazil), 

Brahmaputra (India), Amur (China and Russia), Ob (Russia), Vistula (Poland) and Niger (Nigeria, 

Mali, Niger, Benin, and Guinea), using a quantile function algorithm that exploits ENVISAT altimetry 

data [61]. This approach resulted in discharge outcomes similar to those derived from a conventional 

Forecast Rating Curve (FRC) approach.  

The studies presented above indicate that river discharge estimation from altimetry water levels 

typically depends on the rating curve or river geometry data availability [62]. However, several 

studies have been able to demonstrate direct river discharge estimation from altimetry water levels 

in the absence of in situ measurements, using supplemental remotely sensed data or models. 

ENVISAT altimetry data from six virtual stations along the Brahmaputra river from 2008 to 2010 were 

assimilated into a Muskingum routing model driven by outputs of a calibrated Budyko type rainfall-

runoff model derived from Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation 

Analysis (TMPA) 3B42RT real-time products. This integrated approach improved the model’s 

discharge predictive accuracy (Nash-Sutcliffe (NS) efficiency) from 0.78 to 0.84. Additionally, 

Tarpanelli et al. [63] combined Moderate-resolution Imaging Spectroradiometer (MODIS) Terra and 

Aqua satellite images with ENVISAT altimetry using a pixel to water level detection approach to 

estimate discharge with a correlation coefficient of 0.96 and NS efficiency of 0.91 when compared to 

in situ discharge along the Niger and Benue rivers. Similarly, Sichangi et al. [64] integrated MODIS 

satellite-derived river width and altimetry water levels into Manning’s equation to estimate 

discharge at a continental scale. The derived discharge NS efficiency varied from 0.60 to 0.97. 

Although the discharge estimates derived from radar altimetry as presented above are perceived 

to be within acceptable levels of uncertainty, factors such as the distance between virtual and ground 

stations, contributing tributaries and the width of the river affect the accuracy of such estimates [51]. 

The studies discussed above also reveal that the availability of supplementary remotely sensed data 

and hydrodynamic models can enable improved discharge estimation in ungauged river basins. 

3.1.2. Altimetry for Digital Elevation Model Accuracy Assessment 

Once the discharge and/or flood magnitude is estimated, it is propagated longitudinally along 

river channels and laterally across floodplains using hydrodynamic models governed by continuity 

and momentum equations [65]. The accuracy of the DEM that defines the river channel and 

floodplain terrain upon which flow is propagated influences model outcome accuracy [66]. Therefore, 

in several flood modelling studies the accuracy of the primary DEM is assessed prior to usage against 

a higher accuracy DEM such a Light Detection and Ranging (LiDAR) or Differential Global 

Positioning System (GPS) elevation points [67–70]. Acquiring such detailed topography datasets for 

[2complexity and weather conditions that hinder logistics and field operations [71,72].  

Data acquired by the National Aeronautics and Space Administration (NASA) between 12 

January 2003 and 11 October 2009 using the Geoscience Laser Altimeter System (GLAS) onboard the 

Ice Cloud and Land Elevation Satellite (ICE Sat) provides a worthy alternative to ground elevation 

data due to its high accuracy in comparison to Kinematic GPS measurements [73]. The absolute 

accuracy of ICE Sat has been shown to range from 0.002 to 0.005 m in Bolivia [74] and French Lake 

[75], respectively, and depends on the slope of the terrain under scrutiny [76]. Over the years ICE 

Sat/GLAS has been applied in assessing various DEM accuracies including SRTM [77–79], ASTER 

GDEM [76,80], GPS elevation [81], Carto DEM [82], Canadian DEM [83], InSAR DEM [84], TanDEM 

[85] and modified/corrected DEMs [52,86,87]. The 70-m ground footprint of ICE Sat [73] coupled with 

its ability to penetrate gaps in vegetation canopy to capture underlying bare earth elevation [88] 

makes it a useful alternative to ground survey for DEM accuracy assessment.  
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3.1.3. Altimetry for Bathymetry Delineation 

Accurate digital elevation models combined with detailed river bathymetry delineation 

provides the most accurate terrain data for flood routing [65,89]. Nevertheless, acquiring such data 

for remote locations is usually difficult as discussed earlier (Section 3.1.2). Hence, flood modellers 

have resorted to exploring alternative options to compensate for such deficiencies. In the Amazon 

and Napo Rivers in Peru, Chávarri et al. [90], examined the applicability of altimetry (ENVISAT) in 

constraining river cross-sections of a one-dimensional hydraulic model. The results showed reduced 

model uncertainty, mostly for rivers with widths less than or equal to 2.5 km. The relationship 

between river width and depths established using ENVISAT altimetry was combined with SRTM, 

Landsat, MODIS and satellite rainfall data to derive an updated river network and adjusted bed 

profile used in the development of Ganges, Brahmaputra, and Meghna (GBM) model suitable for 

large ungauged watersheds [33]. The GBM model data integration approach resulted in a reduced 

RMSE from 3.0 to 1.0 metres. 

The proposed Surface Water and Ocean Topography (SWOT) scheduled for launch in 2020 is 

expected to provide some of the best altimetry data for water resource monitoring and management 

at a global scale [57,91]. A few studies have explored the potential of SWOT derived bathymetry for 

improving the accuracy of hydrodynamic modelling. For example, Durand et al. [92] experimented 

simulated data of the SWOT mission, applying data assimilation technique to estimate bathymetric 

depth and slope at five points along a 240 km reach along the Amazon river to within 0.50 m and 0.30 

cm km-1 accuracies, respectively. These outcomes were then integrated into the LISFLOOD-FP 

hydrodynamic model [93] to improve estimates of inundation extent and downstream water surface 

elevation (WSE). SWOT WSE was also assimilated into the LISFLOOD-FP hydrodynamic model 

using a local ensemble batch smoother (LEnBS) method by Yoon et al. [94], to generate bathymetry, 

depth and discharge estimates. Bathymetry extracted from SWOT had a RMSE of 0.56 metres, 

improving with the inclusion of more SWOT observations in the modelling process. The proposed 

SWOT and recently launched Sentinel-3 provides a huge prospective dataset for future of 

hydrodynamic studies, and their integration into hydrodynamic models can improve flood extent, 

discharge and water levels predictions, particularly when multiple altimetry data are available along 

a modelled reach, as Yoon et al. [94] suggested. 

3.1.4. Altimetry for Hydrodynamic Model Calibration and Validation 

Hydrodynamic model calibration is usually undertaken by adjusting various model parameters 

such as floodplain roughness, channel roughness, river channel depth and river width in order to 

tune model outputs (water level, discharge and/or inundation extent) to observations, derived from 

in situ or remotely sensed measurements [38,42,95,96]. Validation, on the other hand, helps reveal 

how well a model represents what is found in reality [97], and is directly linked to the confidence in 

the flood management measures implemented as a result of the model outcome. Commercial high-

resolution optical and radar satellites images, aerial images and hydrological data have been largely 

established as the optimal data sources for hydrodynamic model calibration and validation [98–101]. 

However, the high cost of acquiring such data hinders their application in developing countries [102]. 

Hence, radar altimetry over the past decade has been explored globally as an alternate source of data 

for model calibration and validation [103]. 

Typically, in many developing regions river measurements are manually collected using staff 

gauges and later converted to discharge using an established rating curve. At the peak of floods, 

measurement equipment may be damaged, or access roads inundated, thus impeding the 

observation process [32]. Therefore, radar altimetry provides an alternative river measurement 

option that supports hydrodynamic model calibration and validation in the absence of observed 

records [103].  

Water level data from three ENVISAT altimetry virtual stations along a 150 km reach of the 

Danube river were applied in the calibration of a 2-D LISFLOOD-FP model to reconstruct the 2006 

transboundary flood occurrence [104]. Yan et al. [104] achieved a Mean Average Error (MAE) of 1.53 

m and 1.37 m for altimetry and in situ model calibration approaches, respectively, suggesting that 
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both datasets can be used interchangeably to improve flood modelling in sparsely gauged river 

basins. Domeneghetti et al. [105] performed hydrodynamic model calibration for a 140 km reach 

along the Po river using ERS-2 and ENVISAT altimetry data, resulting in RMSE of 0.85 m and 0.73 m 

respectively, and an improved NS efficiency when altimetry is combined with in situ data for model 

calibration. An implementation of the Soil and Water Assessment Tool (SWAT) rainfall run-off model 

for the sparsely gauged Okavango transboundary river of Angola, Namibia and Botswana were 

calibrated using total water storage derived from Gravity Recovery and Climate Experiment 

(GRACE) altimetry satellite and in situ data [106]. In addition, Sun et al. [42] assessed the uncertainty 

associated with Hydrological Model (HYMOD) along the Mississippi River, calibrated against in situ 

and altimetry data. NS efficiencies of 79.05 and 64.50 were reported for in situ stream flow and radar 

altimetry (TOPEX/Poseidon), respectively, showing reduced uncertainty for streamflow calibration 

in comparison to altimetry calibration.  

Notwithstanding the value of radar altimetry for hydrodynamic model calibration and 

validation, residual altimetry uncertainties are expected to affect flood model accuracy as Tommaso 

et al. [107] demonstrated. This was further emphasised by Domeneghetti et al. [105], where ENVISAT 

proved to provide higher accuracy than ERS-2 (See Table 2 for altimetry accuracy differences). Belaud 

et al. [38] applied TOPEX/Poseidon (T/P) and ENVISAT altimetry data to calibrate a propagation 

model and disclosed that inherent altimetry uncertainties have an effect on the model outcome. 

Despite these deficiencies, the importance of altimetry data in model calibration and validation in 

ungauged basins cannot be dismissed. However, it is advised that altimetry is applied in combination 

with in-situ data when available [105], and when there is a choice in situ data should take priority 

over altimetry [108]. 

3.2. Open-Access Digital Elevation Model Data and Applications in Flood Modelling 

Topographical data is an essential requirement in hydrological and hydrodynamic modelling, 

especially for ungauged river basins [29,109], and accounts for a substantial portion of the uncertainty 

that propagates through to model outcomes [66,110]. The effect of terrain accuracy on hydrodynamic 

models and the need for accuracy assessment have been discussed briefly in Sections 3.1.2. and 3.1.3, 

revealing how improved river channel characterization using altimetry can improve flood model 

outcomes [90,92,94]. High-resolution topographical data such as LiDAR, TanDEM, bathymetry and 

differential Geographic Positioning System (dGPS) survey provides the best terrain depiction with 

reduced uncertainty and error [19,89,111,112]. However, the cost of acquiring such data is enormous 

[69] and in other cases, remote locations are inaccessible and security challenges add to the 

complexity of field surveys [52]. Freely available DEMs have been widely used as an alternative to 

commercial data in many developing regions where data is sparse, and resources limited [67,113].  

The Shuttle Radar Topography Mission (SRTM) DEM is arguably one of the most widely used 

topographical data in developing regions, applied in improving flood modelling in data-sparse 

regions [52,69,103,114]. The 30 and 90 m resolution SRTM was collected during an 11-day mission in 

February 2000, through a collaborative effort involving NASA, the National Geospatial-Intelligence 

Agency (NGA) and the German Aerospace Centre (DLR), and provides near-global scale (80%) 

elevation data [115,116]. The 15-m Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) Global Digital Elevation Model (GDEM) acquired by a joint mission of the 

NASA and Japan’s Ministry of Economy, Trade, and Industry is also widely used in flood modelling 

and mapping [70,117,118]. However, the ASTER GDEM is argued to be less accurate than SRTM due 

to extensive elevation pixel voids [68,91]. 

Other open-access topographic data sets such as Altimeter Corrected Elevations 2 (ACE2) 

GDEM, Global 30 Arc-Second Elevation (GTOPO30) and Global Multi-resolution Terrain Elevation 

Data 2010 (GMTED2010) are generally coarse in resolution and are therefore employed in large-scale 

models only [114,119]. The recently released Advanced Land Observing Satellite (ALOS) DEM [120] 

has been evaluated and established to provide more accurate elevation in comparison to SRTM and 

ASTER [121]. A recent flood extent modelling study by Courty et al [122] revealed that the ALOS 

DEM outperformed its SRTM counterpart. The properties of various open-access DEMs and some 
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case studies are presented in Table 3. The discrepancies between open-access DEM and ground 

surveyed elevation presented in Table 3 can be attributed to inherent systemic and external factors 

[115]. For the SRTM, system noise, as well as beam reflection off forest canopies, water bodies and 

rooftops in urban areas contribute to DEM bias and elevation overestimation [66,78,123,124]. 

Table 3. Open source digital elevation models properties and case studies. 

DEM 
Spatial Resolution 

(m) 

Vertical Error 

(m) 
Case Study Reference 

SRTM 30, 90 ±16 Damoda River, India. [69,125] 

ASTER GDEM 30 ±25 Lake Tana, Ethiopia. [126,127] 

ACE 2 GDEM 1000 >10 Balkan Peninsula, Croatia [128] 

GTOPO30 1000 9–30 Balkan Peninsula, Croatia [128] 

ALOS 30 ±5 Sindh and Balochistan, Pakistan [120,129] 

GMTED2010 250 26–30 Shikoku, Japan. [130,131] 

Various methods have been adopted to curb the deficiencies and reduce the uncertainty 

associated with open-access DEMs. For example, Baugh et al. [124] reduced STRM uncertainty by 

combing vegetation canopy heights [132,133] and MODIS imagery to reduce vegetation height 

effects. Betbeder et al. [134] reduced SRTM bias by 64 percent by adopting a systematic approach that 

combines vegetation height [132], Landsat land cover map and radar altimetry to produce a 

hydrologically corrected DEM. SRTM derived river cross-sections were adjusted using limited 

bathymetric surveys and applied in the one-dimensional MIKE11 model [67] and LISFLOOD-FP two-

dimensional model Sanyal et al. [69] to reduce model uncertainty. Neal et al. [114] adopted an 

approach that reduced SRTM uncertainty by making hydrodynamic model parameters such as 

channel width and depth calibratable in a sub-grid LISFLOOD-FP model, thereby improving 

simulated water levels, wave propagation and flood extent. Biancamaria et al. [135] experimented by 

varying river channel depth in the SRTM DEM by 5, 10 and 15 m when modelling Obi river, and 

identified 10 m as the optimal average river channel depth for the best outcome. In a recent study in 

Australia, Jarihani et al. [52] adopted the Hydrological Correction (HC) and Vegetation Smoothening 

(VS) [136] approaches to reduce SRTM and ASTER DEM error and deduced that the HC DEM 

outperformed the VS DEM for flood modelling.  

Although the DEM modification techniques described above resulted in reduced DEM and flood 

model uncertainty, they require specific skill sets, computational power and supplementary data that 

are not always readily available. Hence, there is a need to identify globally available off-the-shelf 

modified DEMs that can be readily applied in developing regions where such resources are seldom 

available. At a global scale, errors emanating from satellite system noise, and sensor beam reflection 

off vegetation canopy, water surfaces and urban rooftops have been treated with different techniques, 

resulting in the development of freely available new data sets. O'Loughlin et al. [137] reduced average 

vertical bias from 14.1 m to 5.9 m by systematically combining ICESat GLAS ground elevation [73], 

vegetation height [132], MODIS-derived forest canopy density and climate regionalization maps 

[138,139]. Sampson et al. [86] reduced SRTM sensor noise irregularities, urban landscape and 

vegetation canopy elevation overestimations using a moving window filtering technique [136]. Their 

approach reduced RMSE from 10.96 m to 6.05 m when compared to LiDAR, and overall flood model 

bias from 15.08 m to −0.1 m. The EarthEnv-DEM90 was developed by Integrating ASTER GDEM2, 

CGIAR-CSI SRTM V4.1 and Global Land Survey Digital Elevation Model (GLSDEM) using a 

combined delta surface filling [140] and adaptive DEM noise smoothing [136] methodology, resulting 

in minimised error compared to raw SRTM and ASTER GDEM2 [141]. A recent DEM developed by 

Yamazaki et al [140] was developed using a multi-error removal approach that removed error factors 

that include absolute bias, stripe noise, speckle noise, and tree height bias using multiple satellite 

datasets and filtering techniques, resulting in Multi-Error-Removed Improved-Terrain DEM (MERIT 

DEM). The properties of various modified SRTM DEMs and some case studies are presented in Table 

4. 
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Table 4. Globally available Modified SRTM DEM properties and case studies. 

DEM 
Spatial 

Resolution (m) 

Vertical 

Error (m) 
Case Study Reference 

Bare-Earth SRTM 

(Veg/Urban) 
90 6.05–12.64 Belize, Honduras [86] 

Bare-Earth SRTM (Veg) 90 4.85–8.667 Global [87] 

EarthEnv-DEM90 90 4.13–10.55 Johor River Basin, Malaysia [141,142] 

MERIT DEM 90 ±2 Nile Basin, Congo and Ob rivers [140] 

Since no study currently presents a comparison of all globally available modified SRTM DEMs 

for a specific region, a comparative analysis of all the modified DEMs and raw SRTM is presented in 

Table 5, evaluated against ICE Sat/GLAS altimetry data for the Niger-South river basin of Nigeria. 

The result reveals that Bare-Earth SRTM corrected for vegetation provides the best elevation 

estimates in comparison to the ICE Sat/GLAS altimetry dataset. This is expected to support the 

selection of globally modified SRTM DEMs for flood modelling and mapping studies going forward. 

Table 5. SRTM and Modifications comparison with ICE Sat/GLAS altimetry elevation. 

Elevation Min Max Mean Std. Dev. R2 RMSE 

Bare-Earth SRTM (Urban and Veg) −3.89 151.00 29.65 37.66 0.99 3.21 

Bare-Earth SRTM (Veg) 0.35 151.18 29.72 37.72 0.99 2.96 

EarthEnv90 3.00 152.00 30.95 37.45 0.99 3.76 

MERIT DEM −1.27 148.44 28.96 37.71 0.99 3.68 

Raw-SRTM 2.00 153.00 30.33 37.48 0.99 3.27 

ICE Sat/GLAS 0.30 148.35 30.28 37.64 - - 

Std. Dev. = standard deviation, R2 = Correlation coefficient, Numbers of data Points = 522 

3.3. Open-Access Optical and Radar Satellite Images and Applications in Flood Modelling and Mapping 

Optical and radar images also play a crucial role in flood modelling and mapping, being used 

for a range of applications including (i) manning’s roughness derivation [143], (ii) river width 

estimation [143], (iii) geomorphological properties extraction [143], (iv) inundation extent mapping 

[112], (v) river discharge estimation [144,145], (vi) land use/cover derivation [146], (vii) bathymetry 

estimation [147] and (viii) hydrodynamic model calibration and validation [148]. In this context, 

open-access images from Landsat, MODIS and ASTER have been widely used in developing regions 

[32]. Until the launch of the free high-resolution C-Band Sentinel-1 SAR mission by the European 

Space Agency (ESA) in 2014, the use of radar imagery in developing regions has been limited due to 

the cost of acquisition [149,150]. Nevertheless, other low-cost radar satellite images such as ERS-1, 

ERS-2, JERS1 and ALOS PALSAR have widely been applied for flood modelling [29]. 

Optical and radar RS each provide unique merits and demerits and are characterised based on 

the source of energy employed during data collection. Optical (passive) RS relies on solar energy, 

while radar (active) RS uses an inbuilt energy source onboard the satellite [32]. Therefore, optical 

remotely sensed data can only be captured in the day-time and depends on cloud-free skies [32]. 

However, its multispectral characteristics make it a suitable for land use/cover classification, 

inundation delineation, drainage mapping and flood impact assessment [40,151,152]. Flood extent is 

derived from the discrimination between the spectral signatures of water surface and the 

surrounding landscape in single or multi-temporal images, using classification or spectral indices 

approaches [151,153]. 

Radar RS has the ability to penetrate clouds and its ability to discrimination water makes it the 

optimal data type for flood mapping when available [149,154]. Flood maps are usually extracted by 

pixel discrimination, given that flooded pixels tend to have lower values of back-scatter, due to the 

weak return signal associated with a smooth water surface [155]. The discrimination method applied 

can strongly influence the accuracy of the derived flood extent [156]. Analytical techniques for flood 
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mapping using radar data include statistical active contouring, radiometric thresholding, histogram 

thresholding, pixel-based segmentation, fractal dimensioning of multi-temporal images, neural 

networks in a grid system, image segmentation and decision tree analysis [157,158]. Despite the 

advantages of radar RS, sensor noise and backscatter from vegetation and buildings have been 

identified as factors that hamper flood discrimination potential using radar data [157,159,160]. 

Furthermore, the temporal resolution, spatial accuracy and flood detection precision also affect the 

usability of radar images, especial for near-real-time flood forecasting in data-sparse regions 

[161,162]. 

The properties of some open-access optical and radar data sources are presented in Table 6, 

along with some case studies in flood modelling and mapping. 

Table 6. Optical and radar satellite imageries case studies. 

Sat. Imagery Res. (m) Case Study References 

Landsat 30 

Floodplain inundation delineation for 2 and 1–dimensional model 

calibration and validation, Inner Niger and Missouri River, 

Nebraska, USA 

[114,163] 

MODIS 200 Hydrodynamic model calibration and validation. [113,164] 

Terra ASTER 15 Urban sprawl and flood management Dhaka, Bangladesh [113,164] 

Sentinel-1 10 
Sentinel-1 and Landsat-8 combination in mapping flooding at river 

Evros, Greece 
[113,164] 

Sentinel-2 10 Water bodies delineation [113,164] 

Sat. = Satellite, Res = Spatial resolution 

4. Case Study: Open-Access Remotely Sensed Data Applications in Flood Monitoring and 

Management in Nigeria 

Nigeria, used as the case study for this review is located downstream of the Niger Basin (Figure 

4) which collects run-off from a 2,156,000 km2 area and passes this through the Niger and Benue rivers 

[165]. Thus, Nigeria is prone to fluvial flooding, which exposes floodplain dwellers to diverse 

negative consequences [166–169]. Nigeria recently experienced unprecedented levels of flooding 

attributed to poor dam water release management and risk communication, linked to data 

unavailability for informed and prompt decision making [165].  

 

Figure 4. Map showing Nigeria, Niger Basin, Africa and the main inflow rivers (Niger and Benue). 
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This section focuses on identifying the causes of data deficiencies in Nigeria and presents the 

outcome of reviewed literature on the applications of open-access remotely sensed data in Nigeria, 

to identify gaps and opportunities for research based on global trends discussed in the preceding 

sections. This section builds upon previous reviews on GIS and RS in flood risk management in 

Nigeria [170–174], then expands further on data challenges, solutions and prospects for regional and 

national flood management using open-access remotely sensed data. 

4.1. Hydro-Meteorological Data Limitations in Nigeria 

Similarly to many developing countries, the lack of hydro-meteorological data in Nigeria has 

been widely documented, and the consequences for flood management decisions have been 

identified [175]. Currently, existing hydrological and meteorological gauge distributions do not meet 

the recommendations of the World Meteorological Organization [176] and Ngene [177], i.e., 237 

hydrological stations exist out of 384 recommended and 291 meteorological stations (rain gauges) 

exist of 970 recommended. In addition, several of the established stations have been reported to be 

inactive, decommissioned or discontinued (Figure 5), contributing to the data sparsity in the country 

[175,176].  

 

Figure 5. Status of some hydrological gauging stations in Nigeria (F = Functional, NF = Non-

Functional, Unknown). 

Lack of financial support, technical deficiency, poor institutional capacity and obsolete 

infrastructure have been identified as factors responsible for data shortages in Nigeria [178–180]. Poor 

hydrological data management systems and lack of standards have led to unreliable and inconsistent 

data (Maxwell, [24]; Ononiwu, [181]. Furthermore, Maxwell [24] and Olayinka [182] argued that even 

when data is available, custodians store data in paper formats, thus reducing transferability, 

applicability and long-term/sustainable data provision.  

Hydro-meteorological data are essentially applied in estimating expected flood magnitudes 

based on past trends, and a restricted length of available historical data contributes to the uncertainty 

in the derived flood estimates [183,184] . Extended historical data result in more accurate estimates 

and vice versa [13]. For the purposes of the present study, in 2016 a search was conducted within the 

peer-reviewed literature on the Google scholar (https://scholar.google.com) database spanning the 

years 2000 to 2016. A combination of the search terms and keywords including “hydrology”, “flood 

modelling”, “hydrodynamic modelling”, “flood frequency analysis”, “vulnerability assessment”, 

“rainfall frequency analysis”, “flood mapping”, and “GIS and Remote sensing of flooding”, were 
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used, with the results further refined with keywords such as “Nigeria”, to represent the country of 

interest. A meta-analysis of these river and rainfall estimation studies (Figure 6) shows that rainfall 

data sets are generally longer in duration than those of streamflow data. The majority of hydrological 

modelling studies are based on historical data of lengths ranging from 10 to 20 years, hence there is 

a need for the adoption of an approach that leverages data from multiple gauging stations to reduce 

flood estimate uncertainty and improve flood management decision making [185].  

 

Figure 6. Rainfall and streamflow data length variation in years from previous studies in Nigeria. 

4.2. Remote Sensing for Flood Management in Nigeria 

RS has been applied in seven sub-categories of flood management in Nigeria: (i) vulnerability 

assessment: integrating socio-economic and biophysical factors to ascertain a regions’ coping 

capacity in relation to flood exposure [186–188]; (ii) flood frequency analysis: estimating expected 

flood magnitudes by fitting historic flood time series to a suitable probability distribution or 

combining hydrological data from regions of physiographic similarity [179,189,190]; (iii) rainfall 

intensity-duration-Frequency: applying rainfall data to gives an idea on return period of rainfall 

intensity which can be expected for a defined period [191,192]; (iv) hydrodynamic modelling: once 

flood estimates are determined, the outcomes are routed in 1/2 dimensional models in combination 

with terrain data to derive flood hazard information such as inundation extent, depths and /or 

velocity [193]; (v) flood risk mapping: other than hydraulically modelling flood hazard, flood depths 

and inundation extent for a particular point in time can be directly determined using satellite images 

and digital elevations models [21,167]; (vi) floodplain encroachment analysis: the increasing 

development of industries and settlements within the floodplain increases exposure and 

vulnerability [188,194]; (vii) rainfall varibility assemment: understanding the degree to which the 

amount of rainfall across an area varies through time and space [195,196]; and RS and GIS approaches 

are used to monitor floodplain encroachment, to ensure adherence to, and enforcement of flood 

management policies [197,198]; and (viii) water resource management: adoption of GIS and RS for 

sustainable water resource management [199]. Figure 7 shows the flood studies application areas in 

Nigeria, revealing vulnerability mapping, flood frequency assessment and risk assessment are the 

main areas of interest. 
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Figure 7. Flood studies in Nigeria showing specific application areas. 

4.3. Applications of Open-Access Remotely Sensed Data for Flood Management in Nigeria 

Meta-analysis of 100 flood research journal articles focused on Nigeria acquired from google 

scholar using the methodology described in Section 4.1. shows the range of data applied in flood 

management studies (Figure 8) and reveals high reliance on Landsat and SRTM. Various data sets 

provide contrasting levels of accuracy and uncertainty [110], therefore high spatial resolution data 

such as LiDAR and SAR are mostly recommended for flood modelling processes due to the 

advantages of LiDAR’s ability to delineate complex terrains with high levels of details and the 

effective water surface discrimination capacity of SAR imagery [150,200].  

 

Figure 8. Remotely sensed data application in flood studies in Nigeria. 

Figure 9 further demonstrates the difference between flood extent extracted from radar and 

optical images, revealing the optical satellite image’s deficiency in delineating flood extent, especially 
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in cloudy regions of tropical environments. The TerraSAR-X (radar) flood map was derived using a 

histogram thresholding approach by the Disaster Charter consortium, while the MODIS (optical) 

flood extent was automatically generated from the Modis Water Product (MWP) through a 

collaborative effort between NASA and Dartmouth Flood Observatory, University of Colorado, USA, 

using an algorithm that uses a ratio of MODIS 250-m Bands 1 and 2, and a threshold on Band 7 to 

provisionally identify pixels as water [201]. 

 

Figure 9. Radar (TerraSAR-X) and optical (MODIS) flood extent comparison at Lokoja, Nigeria. 

5. Open-Access Remotely Sensed Data in Transboundary Flood Management 

Managing flood occurrences in a sovereign nation is challenging enough; the complexity is 

increased when floods transcend borders. Floods sometimes originate from one country, and if 

hydraulically connected to another country within a single catchment area, this travels downstream 

[202] creating transboundary flooding. Poor management of excess water releases from dams 

triggered by variable rainfall and other anthropogenic factors have been identified as some of the 

leading causes of transboundary flooding [203–206]. In such situations, efforts need to be coordinated 

between flood origin and destination countries to ensure effective flood management. Approximately 

2286 transboundary river basins exist globally (Figure 10), encircling 42% of the world’s population 

within a 62 million Km2 area, and they are responsible for approximately 50% of global river 

discharge [207,208]. 
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Figure 10. Global Transboundary River Basins (source: Transboundary Freshwater Dispute 

Database). 

Coordinating the activities of individual countries within a transboundary water resource 

management organisation is particularly challenging due to the diverse interests, policies and 

activities of riparian countries [209–211], thereby prompting the need for a shift to RS approaches 

that enables independent data collection by riparian countries without violating administrative 

protocols [212]. Several RS studies have been undertaken in this regard, using radar altimetry, 

optical/radar imagery and hydrodynamic models to curb the data limitation challenges associated 

with poorly coordinated transboundary flood management efforts.  

Mallinis et al. [213] delineated the transboundary Evros river (Bulgaria/Turkey) flood extent and 

damage caused by upstream dam water release using ENVISAT ASAR and post-flood multi-

temporal LANDSAT TM images. The effect of varying flood magnitudes released from upstream 

Ivaylovgrad dam (Bulgaria) on the connecting Ardas River (Greece) was modelled using HEC-HMS, 

using in situ gauge measurements and digital terrain data [214], thereby enabling effective 

downstream flood planning and management. Mati et al. [215] investigated changing land use/cover 

impact on the Mara transboundary river (Kenya/Tanzania) hydrological regime, using remotely 

sensed data (Landsat MSS, TM/ETM, and SRTM), ground-collected land use/cover data, 

meteorological and streamflow data integrated within the Geospatial Streamflow Model (GeoSFM). 

Biancamaria et al. [135] established an empirical relation between downstream altimetry 

(TOPEX/Poseidon) water levels (India) and upstream in situ measurements (Bangladesh) for 

forecasting purpose along the Ganges and Brahmaputra transboundary river. Hossain et al. [216] in 

the same study area applied a forecasting rating curve approach combined with HEC-RAS hydraulic 

model to forecast downstream water levels using upstream JASON-2 altimetry, in situ water levels 

and rating curve. Seyler et al. [217] further demonstrated the value of altimetry and SAR satellite 

missions in transboundary water resource management, as remote locations along the Beni-Madeira 

river in the Amazon were monitored using ENVISAT altimetry and JERS-1 radar images. 

The case studies discussed above illustrate the wide range of applications of open-access 

remotely sensed data in transboundary flood management, with radar altimetry, DEM, SAR, optical 

images, as well as hydrodynamic models and empirical formulas identified as alternatives for 

improved transboundary monitoring. These approached minimise or avoid the bureaucratic 

challenges of ground-based monitoring across country boundaries. In this way, RS makes it possible 
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to forecast expected floods, estimate flood exceedance probabilities and monitor how changes in 

riparian land use/cover can affect downstream hydrology, across different countries.  

5.1. Transboundary Flood Management Nigeria (Niger River Basin) 

The unprecedented flood event of 2012 in Nigeria was attributed to (i) excess water release from 

dams within and outside Nigeria due to intense precipitation; (ii) inadequate risk communication; 

and (iii) poor stakeholder collaboration [218,219]. One instance of a lack of transboundary stakeholder 

collaboration is evident in Nigeria’s inability to uphold part of the 1980 agreement with Cameroon, 

to establish Dasin Hausa dam to buffer the effect of Lagdo dam built by Cameroon along the Benue 

River [220,221]. 

The Niger transboundary river basin (Figure 11) encompasses 12 countries including Senegal, 

Guinea, Côte D'Ivoire Mauritania, Mali, Burkina Faso, Algeria, Niger, Benin, Nigeria, Cameroon and 

Chad. The basin hosts a human population of 93,617,850 within a 2,156,000 km2 area [165,208].  

 

Figure 11. Map of the transboundary Niger River Basin, showing constituting countries and Dams. 

Figure 11 also highlights the transboundary nature Niger River Basin, the constituent countries 

and characteristics. The Niger basin is largely regulated by dams, housing approximately 69 dams 

[222] conceived mostly as national and local projects, but these have transboundary impacts 

downstream [223]. To effectively manage transboundary water resource and impact on riparian 

countries, the Niger River Commission (NRC) was established in 1963, now the Niger Basin 

Authority (NBA) as reconstituted in 1980, to promote co-operation between member states and 

ensure sustainable Integrated Water Resource Management [224]. The Niger basin is presently 

controlled by several post-colonial agreements presented in Table 7. 
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Table 7. Niger River Basin Agreement, Nigeria. Adapted from [207,225,226]. 

S/N Treaty Function Location Year  

1 
Act regarding navigation and economic co-

operation between the states of the Niger Basin.  

Navigation and Joint 

management 

Niamey, 

Niger 
1963 

2 

Agreement concerning the River Niger 

Commission and the navigation and transport 

on the River Niger. 

Navigation, Joint 

management, information 

exchange 

Niamey, 

Niger 
1964 

3 

Agreement Revising the Agreement Concerning 

the Niger River Commission and the Navigation 

and Transport on the River Niger. 

Navigation, Joint 

management, information 

exchange 

Niamey, 

Niger 
1973 

4 
Convention Creating the Niger Basin Authority 

(NBA) 

Water resource mgt. 

coordination 

Faranah, 

Guinea 
1980 

5 
Protocol relating to the Development Fund of 

the Niger Basin 
Planning funds for NBA 

Faranah, 

Guinea 
1982 

6 Agreement between Nigeria and Mali 
Co-operation on water 

resource use in the Niger 
- 1988 

7 

Agreement Nigeria and the Republic of Niger 

concerning the equitable sharing in the 

development, conservation and use of their 

common water resources 

Environmental 

conservation and water 

resource management 

Maiduguri 1990 

8 Nigeria-Cameroon Protocol Agreement 
Coordinate dam water 

release. 
- 2000 

9 Niger Basin Water Charter. NBA review and update. 
Niamey, 

Niger 
2008 

10 African Risk Capacity 
Weather financial risk 

management 

Pretoria, 

South Africa 
2012 

Despite these multiple cooperative frameworks, several factors have hindered effective 

transboundary water resource management in the Niger Basin: (i) poor and fragmented data 

collection, (ii) lack of coordination between riparian countries and organizations, (iii) poor 

communication and knowledge of legal and institutional frameworks, (iv) Funding deficiency, (v) 

lack of clear objectives, (vi) lingual differences, and (vii) technical limitations [226–228]. Grossmann, 

[229] also lamented the deplorable state of the 65 gauging stations set-up by the NBA, through the 

“Hydro Niger Project” initiative. Nevertheless, the emergence of the ongoing Niger-HYCOS 

(Hydrological Cycle Observing System) program is expected to improve river monitoring networks 

in the Niger river basin [178,230]. Nigeria, however, further faces specific challenges such as poor 

engagement, varied risk perception, lack of interest, poor communication and commitment within 

the Nigeria Basin Authority, which hinder effective coordination and integrated water resource 

implementation [178]. 

5.2. Application of Open-Access Remotely Sensed Data in Transboundary Flood Management, Nigeria 

As transboundary floods become more prevalent and intense due to increased storms triggered 

by climate change and anthropogenic factors [231], sufficient hydrological data is required for 

planning interventions for flood impact mitigation. In addition, considering that transboundary flood 

management institutions are facing recurring challenges that limit their functionality and sufficient 

data acquisition, open-access remotely sensed data provide a low-cost and viable alternative to 

enable transboundary flood monitoring and management without disrupting any sovereign nation’s 

autonomy. Open-access satellite imagery such as Landsat and MODIS have been widely applied to 
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delineate flood extent across transboundary river basins, aiding flood impact quantification needed 

for prompt response, as well as risk assessment and evaluation [213,232]. Radar altimetry, on the 

other hand, can be applied independently or with satellite images to support planning, forecasting 

and flood management in riparian countries [216,217].  

In Nigeria, Tarpanelli et al. [63] explored the potential of integrating MODIS imagery and 

ENVISAT radar altimetry to predict and forecast discharge along the Niger-Benue river. The 

discharge was derived from daily (MOD09GQ) and 8-day (MOD09Q1) 250 m resolution MODIS 

TERRA and AQUA Image pixels (BAND 2-NIR), by establishing an empirical relationship between 

water-free land pixels during peak flood, permanent water pixels within the river and known 

discharge values derived from in situ measurements. Pandey and Amarnath [51] applied a combined 

forecasting rating curve approach developed by Hossain et al. [216] and hydraulic (HEC-RAS) model 

techniques to estimate discharge from ENVISAT, Jason-2 and AltiKa altimetry virtual station water 

levels along the Niger and Benue rivers, resulting in NS and R2 values of 0.7 and 0.97 respectively. 

In other closely related studies in the region, Salami and Nnadi, [233] monitored Kainji Lake 

along the Niger river, using TOPEX/Poseidon and ENVISAT altimetry, revealing stronger correlation 

between altimetry and in situ measurements in the wet season (R2 = 0.93) than the dry season (R2 = 

0.77), and RMSE varying from 0.50 m to 0.83 m for TOPEX/Poseidon and ENVISAT, respectively. 

Sparavigna [234] studied the water level variability of Nasser, Tana, Chad and Kainji lakes using 

TOPEX/POSEIDON and Jason-1 altimetry. Cretaux et al. [235] combined TOPEX/Poseidon (T/P) and 

ENVISAT altimetry with 8-day MODIS near-infrared band images to monitor water level variations 

and inundation along the Niger inner delta, Lake Tchad and Ganaga river delta. 

The high correlation between altimetry and in situ water levels during the wet season along the 

Niger river [233] suggests that altimetry can potentially be used in flood monitoring and management 

in Nigeria and the Niger Basin. The varying accuracies of different altimetry missions imply that 

altimetry data must be applied cautiously as earlier emphasized in Section 3.1.4, due to residual 

uncertainty. With current radar altimetry tracks, such as Jason-2 (Figure 12), Sentinel 3A/B (Figure 

13) and future SWOT (Figure 14) passing across the Niger basin, the potential for long-term 

acquisition of spaceborne altimetry data for flood management is considerable. 

 

Figure 12. Jason-1/2/3/TP Altimetry Tracks within the Niger River Basin of West Africa. 
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Figure 13. Sentinel 3A/B Altimetry Tracks within the Niger River Basin of West Africa. 

 

Figure 14. SWOT Altimetry Tracks within the Niger River Basin of West Africa. 

6. Providers of Data for Flood Emergency Management 

Other than open-access remotely sensed data, in some instances, commercial, regional and 

national satellite organisations collaboratively deliver high-resolution images and services to support 

flood response and mitigation efforts. This section discusses some of the available satellite data 

providers/consortia and disaster support services, as well as case study applications in Nigeria and 

hydraulically connected rivers in the Niger River Basin in West Africa.  

6.1. International Charter “Space and Major Disasters” 

The international charter “space and major disasters” (ICSMD) was established by ESA and the 

Centre National d’Etudes Spatiales (CNES) following the UNISPACE III conference held in Vienna 

in 1999 and was co-signed by the Canadian Space Agency (CSA) in 2001 [236]. The objective of the 

Charter is to provide data to enable critical decision making during environmental or technological 
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disasters such as flooding, oil spills, fires, earthquake, volcanoes, hurricanes, landslides and ice 

hazards, thereby minimizing the impact of disasters on people and infrastructures [237]. Between 

2001 and 2012, several satellite agencies joined the consortium: Japan Aerospace Exploration Agency 

(JAXA), Indian Space Research Organisation (ISRO), United States Geological Survey (USGS), 

National Oceanic and Atmospheric Administration (NOAA), Argentinean National Commission on 

Space Activities (CONAE), Exploration of Meteorological Satellite (EUMETSAT), German Space 

Agency (DLR), National Institute for Space Research (INPE) of Brazil, China National Space 

Administration, Disaster Monitoring Constellation International Imaging (DMCii) and Korean 

Aerospace Research Institute (KARI). This expansion of the consortium enhanced the Charter’s 

ability to deliver prompt high resolution optical and SAR images when disasters strike [238]. Between 

2000 and 2016 the ICSMD charter has been activated 500 times by more than 110 countries for various 

disasters [239]. An overview of disaster Charter activations for flood monitoring and management is 

presented in Figure 15, with South America, Africa and Asia showing the highest number of 

activations. 

 

Figure 15. Map showing International Disaster Charter Flood Activations (2000–2016) (Source: 

Disaster Charter). Blue markers represent single activation areas, while numbers represent areas of 

multiple activations. 

The Nigerian satellite NigeriaSat-1 joined the ICSMD in 2003, followed by NigeriaSat-2 and 

NigeriaSat-X in August 2011 [237] (all optical Sensors), to further enhance the Charter’s capacity to 

deliver on its mission. Through this involvement, Nigeria provides its optical sensor images for 

disaster-related activities at no cost, as well as data for research purposes, and sells imagery to 

commercial ventures at a variable cost depending on the area of coverage. Some instances of the 

Nigerian Satellite activation for disaster response include Peloponnese forest fires, Greece 2007 (call 

175); Beichuan Landslide and Debris flow, China 2008 (call 204); Java earthquake, Indonesia (call 269); 

Balkh, Kunduz, Takhar and Baghlan areas flooding, Afghanistan (call 255). 

In Nigeria, the charter is usually activated by the National Emergency Management Agency’s 

(NEMA) designated project manager. The activation follows five steps: (i) requisition by authorised 

person, (ii) requestor identification and request verification by a 24/7 operator, (iii) request analysis 

and satellite tasking for data capture, (iv) data acquisition and delivery, and (v) support in data 

processing throughout the emergency [240]. In Nigeria, activation of the disaster charter is relatively 

new, and only 6 activations have been made between 2010 and 2012 to monitor flooding events at 

Sokoto in 2010 (calls: 324 and 326), Ibadan in 2011 (call: 370), and in 2012 at Adamawa, Kogi and 
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Bayelsa, (calls: 407, 415 and 416) [240]. Some of the images collected over the course of the activations 

in Nigeria include RADARSAT-2, SPOT-5, TerraSAR-X/TanDEM-X, Landsat ETM, KOMPSAT, 

ENVISAT, UK-DMC, and NIGERIASAT [219,239]. One of the lingering challenges of the Disaster 

Charter images is the strict license and copyright policies that prohibit re-use and distribution of the 

raw data [240], thus limiting the prospect of further data analysis and application in research. 

Nevertheless, finished products are available via the Charter Activations webpage 

(https://www.disasterscharter.org/web/guest/activations/charter-activations) as high-resolution 

maps for download, and can be digitized for use in flood mapping processes. 

6.2. International Water Management Institute Emergency Response Products for Water Disasters 

This is a space-based information and rapid mapping platform for emergency response aimed 

at providing support for disaster management in Africa and Asia. The platform was developed from 

a collaboration amongst the International Water Management Institute (IWMI), Asia-Pacific Regional 

Space Agency Forum (APRSAF), ESA, the United Nations Office for Outer Space Affairs (UNOOSA) 

and the United Nations Platform for Space-based Information for Disaster Management and 

Emergency Response (UN-SPIDER). This platform channels an impacted country’s data request to 

the Disaster Charter, and also directly processes and analysis open-access images (i.e., Landsat, 

Sentinel 1, MODIS and Global Precipitation Measurement) to deliver products needed for decision 

making during a disaster [241]. So far, the platform has supported five countries including Sri Lanka, 

Myanmar, India, Bangladesh, and Nigeria [242]. In addition, a total of 37 activations to support flood 

information have deployed open-access satellites, as well as commercial TerraSAR-X, Radarsat-2, 

RISAT-1, ALOS-2 PALSAR-2, and JAXA-2 ALOS-2 satellite images [242]. 

Between 27th September–4th October 2015 this platform delivered 10 Sentinel-1 flood maps to 

support flood management efforts along the Niger and Benue rivers in Nigeria. This emanated from 

a collaborative effort amongst IWMI, ESA, Federal Ministry of Agriculture and Rural Development 

(FMARD) and Consortium of International Agricultural Research (CGIAR). 

6.3. Copernicus Emergency Management Service 

The European Union Copernicus Emergency Management Service (EMS) provide rapid (i.e., 

hours or days) free satellite-based maps to inform decision-making before, during and after natural 

and man-made disasters [243]. Although European nations are considered a priority for support 

provision, other countries can activate the Copernicus EMS. Thus far, between 1 April 2012 and 19 

August 2016, the Copernicus EMS has been activated 175 times (Table 8), with flooding identified as 

the highest cause of activation (40%), resulting in 68% of the delineation maps generated. 

Table 8. Summary of the Copernicus Emergency Management Service (EMS)-Mapping Activations. 

Type of Disaster 
Number of 

Activations 

Number of Reference 

Maps 

Number of Delineation 

Maps 

Earthquake 9 83 31 

Flood 71 358 692 

Forest fire, wildfire 21 47 98 

Industrial accident 5 12 3 

Other 55 218 143 

Wind storm 14 80 45 

Total 175 798 1012 

The Copernicus EMS has not been activated for Nigeria yet, but has been activated three times 

(EMSR018, EMSR019 and EMSR235) in Niger (Niamey) in 2012, Cameroon (Lake Maga, Garoua-

Benue River) in 2012 and Niger (Dosso, Maradi, Niamey, and Tillaberi) in 2017. These are riparian 

countries within the transboundary Niger River Basin, and this could prove useful for transboundary 
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flood monitoring in Nigeria. Authorised users France|Centre Operationnel de Gestion 

Interministeriel de Crises (C.O.G.I.C) and EC Services|DG JRC activated the Copernicus EMS for the 

countries mentioned above, providing Radarsat-2, Rapid Eye, COSMO-SkyMed, and SPOT-5 satellite 

images flood extent maps. 

6.4. Digital Globe Open Data Program 

More recently, Digital Globe, a commercial satellite company launched the Open Data Program 

(ODP) initiative to provide high-resolution satellite imagery to support recovery from large-scale 

natural disasters such as flooding [244]. ODP provides pre and post-disaster images, including 

support via the Tomnod (http://www.tomnod.com) and Humanitarian OpenStreetMap Team (HOT, 

https://hotosm.org) crowdsourcing platforms for damage assessment [245]. So far, the ODP has been 

activated six times by Haiti, Nepal, Mexico, Ecuador, Caribbean/United States, and Madagascar, to 

manage disasters including earthquakes, hurricanes, and cyclones. The prospects for this initiative is 

substantial, as high-resolution imagery can considerably improve the detail of risk and damage 

assessment in remote locations. Though the ODP is yet to be deployed in Nigeria, it was deployed 

for post-disaster assessment of the 2017 Sierra Leone mudslide. This was the first application case on 

the African continent, followed with the mapping of Ebola response the Democratic Republic of 

Congo in 2018. 

7. Synthesis 

Flood disasters are becoming more frequent, intense and destructive, owing to climate change 

and anthropogenic factors. Managing floods requires effective decision making based on up-to-date 

and reliable hydrological information [8]. Typically, data needed for flood management include river 

discharge, water levels, terrain and land use/cover characteristics, and these are traditionally 

collected through the establishment of ground monitoring stations and field observations/surveys 

[246]. In situations where floods transcend administrative boundaries due to natural catchment 

delineations or river network connectivity, transboundary corporations are often set up to enable 

collaborative data collection, co-operation, risk communication, information sharing and planning to 

effectively manage flood impact in riparian countries [202,211]. However, in many developing 

regions both independent and transboundary data collection systems for flood management are 

flawed by organisational, technical, institutional, infrastructural and financial challenges that limit 

their effectiveness [178,202,205,247,248]. 

The potential of RS in supporting flood monitoring, planning and management are considerable, 

as it enables data collection in remote, inaccessible and data sparse locations [40]. Open-access 

remotely sensed data is particularly important for improving flood management in developing 

countries where the ground monitoring network is limited and the cost of obtaining commercial 

satellite data is prohibitive [29,135]. Datasets such as radar altimetry, DEMs, optical and radar 

imagery can be applied independently, in combination with in situ measurements or integrated into 

hydrodynamic models in order to reduce the uncertainty in flood estimation for ungauged river 

basins [39,69,89,98]. Furthermore, in the case of transboundary floods, RS allows data collection in an 

upstream country where the flood originates by a downstream impacted country without the need 

for bureaucratic authorization [59,203]. 

It is worth noting that the different freely available remotely sensed datasets provide varying 

levels of accuracy, depending on multiple factors. Altimetry mission accuracies depend on the 

satellite ground footprint, virtual station location, river width, tributaries discharging into the main 

river and satellite sensor properties [29]. The inability of C and X-band radar to penetrate vegetation 

canopies, and backscattering from rooftops and water surfaces, can result in over-estimation of 

elevation [40,66,249]. Optical imagery applications can be hampered by atmospheric conditions and 

spatial resolution [250], while one of the core deficiencies of radar images is the inconsistency in 

delineating floods in urban and forested areas [251]. 

Despite these deficiencies, the role of remotely sensed data in flood management is significant, 

especially in developing regions, as it allows for the quantification of hydrological parameters at 



Hydrology 2018, 5, 39  24 of 36 

 

previously undetected locations once a retrieval technique has been proven at a location where in-

situ data is available [63]. With RS technology continuously advancing and more data becoming 

freely available, the reliance on ground observation data is expected to decline. Additionally, with 

commercial satellite companies such as Digital Globe and other satellite consortia making high-

resolution images available for disaster management [237,244] will improve high-resolution flood 

modelling and mapping in data-sparse regions. Despite the advantages of RS, the role of ground-

based data collection cannot be disregarded and must take priority or be applied in combination with 

remotely sensed data for enhanced flood mapping [42,105]. 

Planning for flood management usually requires flood magnitude estimates at varying return 

periods based on historical flood data. In many developing regions, such data are typically short time 

series if gauging stations are newly established or discontinued and contain gaps (missing data 

points) caused by equipment malfunction or poor data collation practices [24,182]. Altimetry can aid 

historical river data reconstruction where newly established and old discontinued gauging stations 

exist in proximity to virtual stations [252]. Nevertheless, the low revisit time of altimetry satellites 

[43] can result in a failure to capture peak floods needed for flood magnitude estimation [104,105] 

and in other instances, altimetry data is unavailable at certain locations [58]. Therefore, it is essential 

that the use of altimetry data is evaluated against other approaches, such as statistical techniques for 

infilling missing hydrological data, to ascertain the influence of both approaches on flood frequency 

estimates, and to understand when these individual approaches can be used. 

Although this review focused on fluvial flood modelling and mapping, it is important to note 

that precipitation data (in situ and satellite) could also be vital in this process and has been widely 

applied, especially in data-sparse regions for flood modelling and hazard mapping [253–256]. 

However, this topic is beyond the scope of this review. 

8. Conclusions 

The potential of remotely sensed data such as altimetry, DEMs, optical and radar images has 

been highlighted in this review, with the unique merits, demerits and achievable applications being 

highlighted. In very remote locations of developing regions, data sparsity is so widespread that 

uniform data is seldom available for a whole catchment area, owing to inadequate and declining 

hydrological monitoring network [257]. Therefore, an integrated approach that enables the 

combination of all available open-access remotely sensed data is recommended in such locations, 

leveraging the merits of individual datasets to improve all phases of flood mapping processes, i.e., 

hydrological modelling, hydrodynamic modelling and inundation mapping. 

Data from consortia of providers have proven to be useful in flood risk assessment when a flood 

occurs, where pre and post-flood images are provided for comparative analysis [219]. However, strict 

license and copyright policies prohibit re-use and distribution of the data [240], and this can hamper 

the important shift in focus from flood recovery to planning which is now imperative. Nevertheless, 

3 end products (i.e., high-resolution inundation maps) are available via the Charter Activations web 

page and can be applied to support flood-modelling processes to inform flood planning decisions. 

The deficiencies of open-source remotely sensed data for flood modelling and mapping can be 

quite pronounced in various landscapes, irrespective of the sensor type [157,258]. The private sector 

has played a vital role in advancing geo-informatics in developing regions [259], investing heavily in 

high-resolution satellite and airborne data needed for operational and disaster management 

purposes [21,260]. A significant opportunity now exists for integrating commercially sourced 

remotely sensed data with open-access and crowd-sourced data [261–263] to improve flood 

modelling and mapping in data sparse regions. 
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