
Hydrology 2015, 2, 69-92; doi:10.3390/hydrology2020069
OPEN ACCESS

hydrology
ISSN 2306-5338

www.mdpi.com/journal/hydrology

Article

Hydrological Model Calibration by Sequential Replacement of
Weak Parameter Sets Using Depth Function
Shailesh Kumar Singh 1,* and András Bárdossy 2

1 National Institute of Water and Atmospheric Research, 8011 Christchurch, New Zealand
2 Institute for Modeling Hydraulic and Environmental Systems, University of Stuttgart, 70569 Stuttgart,

Germany; E-Mail: andras.bardossy@iws.uni-stuttgart.de

* Author to whom correspondence should be addressed; E-Mail: shailesh.singh@niwa.co.nz;
Tel.: +64-3-3438053.

Academic Editor: Okke Batelaan

Received: 31 December 2014 / Accepted: 21 April 2015 / Published: 23 April 2015

Abstract: It is always a dream of hydrologists to model the mystery of complex hydrological
processes in a precise way. If parameterized correctly, a simple hydrological model can
represent nature very accurately. In this study, a simple and effective optimization algorithm,
sequential replacement of weak parameters (SRWP), is introduced for automatic calibration
of hydrological models. In the SRWP algorithm, a weak parameter set is sequentially
replaced with another deeper and good parameter set. The SRWP algorithm is tested on
several theoretical test functions, as well as with a hydrological model. The SRWP algorithm
result is compared with the shuffled complex evolution-University of Arizona (SCE-UA)
algorithm and the robust parameter estimation (ROPE) algorithm. The result shows that the
SRWP algorithm easily overcomes the local minima and converges to the optimal parameter
space. The SRWP algorithm does not converge to a single optima; instead, it gives a convex
hull of an optimal space. An ensemble of results can be generated from the optimal space
for prediction purpose. The ensemble spread will account for the parameter estimation
uncertainty. The methodology was demonstrated using the hydrological model (HYMOD)
conceptual model on upper Neckar catchments of southwest Germany. The results show
that the parameters estimated by this stepwise calibration are robust and comparable to
commonly-used optimization algorithms. SRWP can be an alternative to other optimization
algorithms for model calibration.
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1. Introduction

Over the last few decades, a number of conceptual hydrological models that represent complex
hydrological processes have emerged. They are increasingly used due to the simplicity of
implementation. All of the hydrological models have a certain number of parameters; some of them
have a physical meaning, while others do not. An important step in applying these models is the need to
estimate the parameters using observed data before using the model for practical purposes. The typical
way to estimate the parameters is by adjusting the parameters values by various means, so that the
response of the model approximates, as closely and consistently as possible, the observed behavior of the
catchment [1]. Numerous techniques have been developed to estimate the parameters of a hydrological
model. Generally, there are two types of model calibration. First is manual calibration, which relies
completely on expert knowledge. Manual calibration can be extremely labor intensive and difficult to
implement for complex model calibration situations where models are calibrated to long time series of
measured data; hence, it can only be useful as a learning exercise for modelers [2]. The other method is
automatic calibration, which employs the power, ability to follow systematic programmed rules, speed
and capability of the computer [1,3]. This can be used for any complex model calibration situation.

In manual calibration, agreement between simulated and observed hydrographs is usually subjective
and based on visual comparison. The parameters are tuned based on the expert guesses. Automatic
calibration can use different single or multi-objective functions for parameter adjustments, and different
criteria can be used for the evaluation of the goodness of fit between observed and modeled hydrographs.
Parameterization is a challenging task due to the fact that different parameter vectors that control the
model’s physical processes’ description might have the same effect on the discharge generation [4,5].
There are several local and global optimization algorithms available. Some of the algorithm results
depend on initial guesses and can get trapped in local minima or maxima. To overcome such problems,
global optimization algorithms, like shuffled complex evolution-University of Arizona (SCE-UA),
simulated annealing (SA), the genetic algorithm (GA), etc., have emerged [6].

Parameter estimation of hydrological models has been receiving increased attention from the
hydrology and land surface modeling community [1,4–16] and many more. Following the same trend,
in this current study, a simple parameter estimation technique is presented to solve and understand the
problem associated with parameter estimation of hydrological models.

In this study, the concepts of geometry and multivariate statistics are used to address the problem
associated with parameter estimation in hydrological models. Specifically, convex sets and the depth
function defined in Tukey [17] are used as a tool. Bárdossy and Singh [5], Singh and Bárdossy [18]
and Singh [19] have previously used convex sets and the depth function for model calibration. This
paper is the continuation of the work done by Bárdossy and Singh [5] for robust parameter estimation
for hydrological models. Here, the goal is not to find the parameter vectors that perform best for the
calibration period, but to find parameter vectors that:

1. lead to good model performance over the selected time period of prediction;
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2. lead to a hydrologically-reasonable representation of the corresponding hydrological processes;
3. are within the optimal parameter space (small changes of the parameters should not lead to very

different results);
4. are transferable; they perform well for other time periods and might also perform well for

other catchments.

The main objective of the proposed method is to fulfill all of the general requirements of a model
calibration (as mentioned above) and also to have a reduction in computational time and to get the
optimal space of the parameter set. The algorithm is tested on several theoretical test functions, as
well as with a hydrological model. The SRWP algorithm results are compared with the shuffled
complex evolution-University of Arizona (SCE-UA) algorithm and the robust parameter estimation
(ROPE) algorithm.

The remainder of this paper is organized as follows: Section 2 discusses the methodology adopted
in this study. In Section 3, the case study is presented. In the final section, results are discussed and
conclusions are drawn.

2. Methodology

The SRWP algorithm uses the data depth function for the generation of new parameter sets. A brief
description of the data depth function and its uses for the SRWP algorithm is explained below.

2.1. Depth Function and Parameters

Data depth is a quantitative measurement of how central a point is with respect to a dataset
or a distribution. This helps to define the order (so-called central-outward ordering) and ranks of
multivariate data. Depth functions were first introduced by Tukey [17] to identify the center (a kind of
generalized median) of a multivariate dataset. Several generalizations of this concept have been defined
since [20–22]. The points with high depth are the points that lie in the interior of the data cloud, while
those with low depth lie near the side of the set and can be seen as unusual in nature. Several types of
data depth functions have been developed. For example, the half space depth function, L1depth function,
Mahalanobis depth function, Oja median, convex hull peeling depth function and simplicial median. For
more detailed information about data depth functions and their uses, please refer to [5,20,23]. The
methodology presented in this study is not affected by the choice of data depth function. Tukey’s half
space depth is one of the most popular depth functions available, and it is conceptually simple and
satisfies several desirable properties of depth functions [24]. Hence, in this study, the half space data
depth function was used.

The half space depth of a point, p, with respect to the finite set X in the ddimensional space is defined
as the minimum number of points of the set X lying on one side of a hyperplane through the point p.
The minimum is calculated over all possible hyperplanes. Formally, the half space depth of the point p
with respect to set X (both in the d dimensional space) is:

DX(p) = min
nh

(min (|{x ∈ X 〈nh, x− p〉 > 0}|) , (|{x ∈ X 〈nh, x− p〉 < 0}|)) (1)
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Here, 〈x, y〉 is the scalar product of the d dimensional vectors and nh is an arbitrary unit vector in the
d dimensional space representing the normal vector of a selected hyperplane.
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Figure 1. Example of convex hull, high and low depth in the two-dimensional case (P1 and
P2 are two parameters of a model. The red star (A) is a point with depth 0 and red square
(B) is a point with depth 3).

If the point p is outside the convex hull of X , then its depth is 0. The convex hull of a set of
points S is the smallest area polygon that encloses S. Points on and near the boundary of the convex
hull have low depth, while points deep inside have high depth. Let P1 and P2 be two parameters of
any model. Figure 1 shows the example of a convex hull with low and high depth. The combination
of parameters P1 and P2 makes a parameter set. The parameter set that is more central in the
parameter space has higher depth. One advantage of this depth function is that it is invariant to
affine transformations of the space. This means that the different ranges of the parameters have no
influence on their depth. These properties of data depth functions are very useful for hydrological
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model calibration. This is simply because hydrological model parameters vary in their range and
scale. Application of the data depth function is relatively new in the field of water resources. The
first application of data depth functions in the field of water resources was seen in the year 2008 by
Chebana and Ouarda [23]. They used a depth function to identify the weights of a non-linear regression
for flood estimation. In order to identify robust parameters for hydrological models, the statistical
concept of data depth was first used by Bárdossy and Singh [5]. They used the data depth function to
study the geometrical properties of hydrological model parameters and developed the ROPE algorithm.
Singh and Bárdossy [18] used the data depth function for the identification of critical events and
developed the ICEalgorithm. Singh et al. [25] used the data depth function for defining predictive
uncertainty. Recently, Singh et al. [26] used the data depth function for improving the training of an
artificial neural network model.

Bárdossy and Singh [5] demonstrated that the parameters having higher depths are robust in the sense
of sensitivity (small change in the parameters’ values) and transferability to other time periods. In this
study, the idea of the geometrical properties of the parameters is extended, and a new algorithm for
hydrological model parameter estimation is developed. For details about the geometrical properties of
the model parameters, please refer to Bárdossy and Singh [5].

2.2. Sequential Replacement of Weak Parameters Algorithm

The ROPE algorithm was further modified and improved by sequential replacement of the weak
parameter set with another deeper and good parameter set. A Monte Carlo simulation was performed
using a wide range of parameters, and the upper N percentage of well-performing parameters were
taken to form a boundary/domain of parameter space. A new parameter was generated in the defined
domain, such that the depth of the parameter set is greater than zero in that domain. The performance
of this generated parameter set was calculated. If the performance of this newly generated parameter
set were better than the minimum performance within a predefined domain, then it was replaced with a
newly generated parameter set. This step-wise procedure was repeated until the difference between the
maximum and minimum performance in the domain of the parameter space was minimal and acceptable
for the purpose of modeling. A general description of the SRWP method is given below. Furthermore,
Figure 2 illustrates the methodology.

1. Generate N parameter sets from a uniform distribution in the feasible parameter space.
2. Compute the objective function at each parameter set.
3. Sort the parameter sets in order of increasing or decreasing criteria based on the goal (minimize

or maximize)
4. Select the best m percentage parameter set and make a convex hull.
5. Generate a new parameter set, such that its depth > 0, and compute the objective function for this

parameter set.
6. If the value of the objective function is better than the worst criterion in the convex hull, replace the

corresponding parameter set with the newly-generated parameter set. Otherwise, repeat Steps 5
and 6 until there is no change in the volume of the convex hull or the minimum performance
is satisfied.
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Figure 2. Schematical explanation of the sequential replacement of weak parameters algorithm.

This algorithm does not converge to a single best parameter set (which may not exist). Instead it
gives a convex hull of parameters, where all of the parameters are equally good. This simply means that
it is an optimal parameter space where objective functions are very similar. Once the optimal space is
obtained, for real-world applications, the model can be run for many parameter sets from the optimal
space, and the results can be given as an ensemble. The spread of the ensemble will account for the
parameter uncertainty. Alternatively, the deepest parameter set from the optimal space can be used for
prediction purposes. This algorithm can be applied to any performance measures or objective functions.
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The SRWP algorithm increases the sample of the parameter sets with higher relative depth with the aim
of obtaining parameter sets that are robust with respect to changing the period of simulation.

The basic difference between the SRWP and ROPE algorithm is that the SRWP algorithm utilizes
Monte Carlo simulation initially to generate numerous candidates in the defined domain of the parameter
range, and then, the data depth function is used to get a new parameter set. The candidates with “worst”
performances are replaced with those with “better” performances. Whereas in the ROPE algorithm,
the optimal parameter space is reached by the help of the convex hull. In each iteration, a convex
hull is created and moved towards the optimal space. Whereas in SRWP, we are filtering out the worst
parameters with better performing ones. Hence, the SRWP algorithm can move faster toward the optimal
space. The stopping criteria for the SRWP algorithm are very flexible compared to the ROPE algorithm.
Optimization can be stopped based on the purpose of the modeling and required accuracy.

3. Case Study

3.1. Test of the SRWP Algorithm on Test Functions

The methodology was tested on some of the well-known simple to complex theoretical test
functions [27,28]. These functions are the McCormick function, Levy function, Styblinski–Tang
function, Leorn function, Giunta function, Rastrigin function and six-hump camel back function. Details
about the test functions and their properties are given in the Appendix. For all seven test functions given
in the Appendix, the SRWP algorithm was used to obtain the theoretical optima. The SRWP method
succeeded in all of the cases. In all of the cases, the SRWP methods have converged to the optimal
space. The beauty of this SRWP method is that it does not converge to a single value; instead, it gives
the optimal region or optimal parameter space. Tables 1–5, show the analytical solution of some simple to
complex theoretical test functions and the solution obtained by the SRWP algorithm. From the table, we
can see that the SRWP algorithm has given very similar results to those obtained analytically. Figures 3–6
show the contour map of the test function and optimal space mapped by the SRWP method. It can be
seen from the figures that the SRWP method has successfully mapped out the optimal space at different
levels of complexity of the function (single optimal space to multiple optimal spaces). The theoretical
optimal value is a subset of the optimal space. We can see from the function map of the Rastrigin
function that it has different levels of optimal space. The contour map of the Rastrigin map with optimal
points shown in Figure 3 shows that the SRWP algorithm is successfully able to map the optimal space,
as the concentration of the points are more in the optimal space. Similarly, the six-hump camel back
function has two optimal spaces, and the optimal parameter points obtained by the SRWP algorithm
have a higher concentration in the two optimal spaces; hence, the SRWP algorithm has successfully
mapped both of the optimal spaces. Similar results were obtained for all of the other functions (figure
not shown). Hydrological model parameter calibration is also complex, nonlinear and multimodal in
nature. Hence, we believe SRWP can perform equally well as it performed on the theoretical functions.
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Table 1. McCormick function, its theoretical solution and the solution from the SRWP algorithm.
Std, standard deviation.

Optimal X SRWP Optimal Function Abs.ERin function
X value value value value

Avg −0.54725 Avg 0.00016
X1 −0.54719 Max −0.53530 −1.9133 Max 0.00020

Min −0.55910 Min 0.00010
Std 0.00602 Std 0.00005
Avg −1.54731 Range Max Min

X2 −1.54719 Max −1.53540 X1 4 −1.5
Min −1.55910 X2 4 −3
Std 0.00597

Table 2. Leon function, its theoretical solution and the solution from the SRWP algorithm.

Optimal X SRWP Optimal Function Abs.ER in function
X value value value value

Avg 0.99982 Avg 0.00007
X1 1 Max 1.01190 0 Max 0.00010

Min 0.98790 Min 0.00000
Std 0.00602 Std 0.00005
Avg 0.99964 Range Max Min

X2 1 Max 1.02390 X1 1.2 −1.2
Min 0.97600 X2 1.2 −1.2
Std 0.01210

Table 3. Giunta function, its theoretical solution and the solution from the SRWP algorithm.

Optimal X SRWP Optimal Function Abs.ER in function
X value value value value

Avg 0.46729 Avg 0.00420
X1 0.45834282 Max 0.47230 0.0602472184 Max 0.00420

Min 0.46240 Min 0.00420
Std 0.00249 Std 0.00000
Avg 0.46735 Range Max Min

X2 0.45834282 Max 0.47230 X1 1 −1
Min 0.46230 X2 1 −1
Std 0.00254
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Table 4. Styblinski–Tang function, its theoretical solution and the solution from the SRWP algorithm.

Optimal X SRWP Optimal Function Abs.ER in function
X value value value value

Avg −2.90349 Avg 0.00007
X1 −2.903534 Max −2.89830 −78.332 Max 0.00010

Min −2.90870 Min 0.00000
Std 0.00313 Std 0.00005
Avg −2.90348 Range Max Min

X2 −2.903534 Max −2.89840 X1 5 −5
Min −2.90880 X2 5 −5
Std 0.00308

Table 5. Levy function, its theoretical solution and the solution from the SRWP algorithm.

Optimal X SRWP Optimal Function Abs.ER in function
X value value value value

Avg 1.00034 Avg 0.00790
X1 1 Max 1.01350 0 Max 0.01640

Min 0.98670 Min 0.00000
Std 0.00695 Std 0.00474
Avg 0.99981 Range Max Min

X2 1 Max 1.10710 X1 10 −10
Min 0.89160 X2 10 −10
Std 0.05415

3.2. Case Study on the Hydrological Model

The concept of this paper will be illustrated with examples from the Neckar catchment. The
hydrological model chosen is a modified version of the HYMOD model. A short description of the
catchment and the model is provided in this section.

3.2.1. Study Area

This study was carried out on the upper Neckar Basin in southwest Germany in the state of
Baden-Württemberg using data from the period 1961–2000. The upper Neckar Basin is characterized by
strong variation in altitude between the foot hills of the Black forest in the west, the Neckar River Valley
in the center and the steep ascent to the Swabian Alb in the east. The study area elevations range from
238 m a.s.l.–1010 m a.s.l. The 4000 km2 Upper Neckar Basin was subdivided into 13 sub-catchments
based on gauging stations (Figure 7). Three of the headwater sub-catchments (Rottweil (Neckar),
Tübingen( Steinlach) and Süssen (Fils)) were used for this study.
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Figure 5. Six-hump camel back function.
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Figure 7. Study area: Upper Neckar catchment in southwest Germany.

The dataset used in this study includes measurements of daily precipitation from 151 gauges and daily
air temperature at 74 climatic stations. The meteorological inputs required for the hydrological model
were interpolated from the observations with external drift kriging [29] using topographical elevation as
the external drift. The mean annual precipitation is 908 mm/year. Land use is mainly agricultural in
the lowlands and forest in the medium elevation ranges. The hydrological characteristics of the three
selected sub-catchments are given in Table 6. Table 7 contains runoff and precipitation characteristic
for different time periods. For further details, please refer to Samaniego [30], Bárdossy et al. [31] and
Singh [19].

Table 6. Summary of the catchment characteristics of the different sub-catchments in the
study area.

Sub-catchment Sub-catchment Elevation Slope Mean Discharge Annual
size (km2) (m) (degrees) (m3/s) Precipitation (mm)

1 Rottweil 454.65 555–1010 0–34.2 5.1 968.16
(Neckar)

2 Tübingen 140.21 340–880 0–38.8 1.7 849.84
(Steinlach)

3 Süssen 345.74 360–860 0–49.3 5.9 1003.45
(Fils)
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Table 7. Runoff characteristics for different time periods for the case study area.

Sub-catchment Rottweil (Neckar) Tübingen (Steinlach) Süssen (Fils)

Time period Annual Annual Annual Annual Annual Annual
Precipitation Discharge Precipitation Discharge Precipitation Discharge

(mm) (mm) (mm) (mm) (mm) (mm)
1961–1970 997.53 375.26 851.84 400.36 1007.94 575.55
1971–1980 908.48 309.36 808.14 366.62 960.02 512.62
1981–1990 997.21 385.66 888.84 404.86 1041.72 541.81

3.3. HYMOD Model

A modified version of the conceptual HYMOD model has been used for this study. HYMOD
is a simple conceptual model. This model has two main components, namely rainfall excess (two
parameters) and two series of linear reservoirs (three parameters, three identical quick and single for
the slow response) in parallel as routing components. The model is based on the characteristics of the
runoff production process at a point in a catchment, and then, a probability distribution, which describes
the spatial variation in the catchments, is derived by an algebraic expression [32]. This model makes
an assumption that the soil structure, texture and water storage capacity vary across the catchment.
Therefore, the distribution function of different storage capacities is described as:

F (C) = 1− (C/Cmax)
β 0 ≤ C ≤ Cmax (2)

Figure 8. Schematic representation of the hydrological model (HYMOD) model.

The model structure is shown in Figure 8. The modified HYMOD has eight parameters to
conceptualize the hydrological process of the water cycle. The five parameters of this model are the
maximum storage capacity in the catchment (Cmax), the degree of spatial variability of the soil moisture
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capacity within the catchment (β), the factor distributing the flow between the two series of reservoirs (α)
and the residence times of the linear reservoirs (Rq and Rs). The modification in HYMOD was done by
adding snow routine. The snow accumulation or melting is calculated based on the degree day method.
The three model parameters related to snow are the threshold temperature for snow melt initiation (Th),
degree-day factor (DD) and precipitation/degree-day relation (Dew). Additional information about the
HYMOD model in general can be found in Moore [32], Wagener et al. [33], Boyle et al. [34].

4. Result and Discussion

The SRWP algorithm has consistently performed well for all of the simple to complex theoretical
test functions. Hence, it was further tested on a hydrological model. All eight parameters of the
HYMOD model were calibrated for the time period 1961–1970 by the above-mentioned method and
validated for other time periods (1971–1980, 1981–1990 and 1991–2000) for all three sub-catchments,
respectively. The rainfall-runoff ratio of the three sub-catchments are 0.37, 0.47 and 0.57 for Rottweil
(Neckar), Tübingen (Steinlach) and Süssen (Fils), respectively. The catchments area varies from 140 to
454 km2 for the three sub-catchments; irrespective of the different catchment behaviors, the calibration
and validation results from all of the sub-catchments were similar. This may be due to the general feature
(non-catchment dependent) of the proposed methodology. Hence, results from only one sub-catchment
(Rottweil) are discussed here. Any objective function can be used in the SRWP algorithm. In this
study, the most commonly used Nash–Sutcliffe coefficient [35] was used for the evaluation of model
performance. Figure 9 shows the stepwise improvement of performance due to sequential replacement
of weak parameters with deeper and good parameter sets. It can be seen from Figure 9 that the mean
Nash–Sutcliffe coefficient (NS) has improved from 0.64 to 0.69 (as more and more weak parameter sets
were replaced with good and deeper parameter sets). There is a gradual improvement in maximum NS,
as well. It could be improved further if we allow for more iterations, but it will make the parameter
space further shrink and, thus, reduce the transferability and robustness of the parameter space. If more
iterations are to be carried out, it would eventually converge to a best single parameter set, which is not
necessarily the best for other time periods and can be sensitive, too. Therefore, it is a trade-off to keep the
space large enough to be robust and transferable. It can be seen from the same figure that the difference
of the maximum and minimum decreases to a point acceptable for the purposes of the modeling exercise.
This result shows that after a certain number of replacements of parameters, we cannot get much
improvement in the model performance, so we can stop searching for better parameters. The rate of
replacement of weak parameter sets decreases as the number of iterations increases. This is because
the volume of the parameter space shrinks so much that there is very little scope to improve the model
parameters. It is very obvious that when our criteria of difference between maximum and minimum
performance is less, we need more iterations and need more parameter replacements. Optimal parameters
after the calibration were transferred to different validation time periods to test the transferability of the
optimal parameters over time. Table 8 shows the calibration results using the SRWP and transferability
of the parameters to validation time periods (1971–1980, 1981–1990 and 1991–2000). The maximum
and minimum NS varies between 0.7 and 0.68 with a mean of 0.69. This small variation of maximum and
minimum within the optimal parameter space shows that any small change in parameters will not effect
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the performance. An example of the observed and model hydrograph for the calibration time period is
given in Figure 10. The model hydrograph is reasonably well represented for low- to medium-range
flooding, but it has missed the very high peaks. We believe this is mainly under-representation of
precipitation in the catchment. The calibrated model parameters were tested on validation time periods.
The mean NS varies from 0.63–0.75 for different validation time periods. For the period 1981–1990,
mean NS is the highest among the other time periods. It is very clear that the parameters have performed
well for all three time periods. This shows that the parameters obtained during the calibration by the
SRWP algorithm are hydrologically reasonable and transferable. An example of the observed and model
hydrographs for the validation time period (1970–1980) is given in Figure 11. The model hydrograph is
reasonably well represented for low- to medium-range floods, but it has been over-predicted for some of
the floods.
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Figure 9. Improvement of the model performance curve in terms of the Nash–Sutcliffe
coefficient (NS) during the calibration by the SRWP algorithm for Rottweil catchment (Diff.
is difference; std.is the standard deviation). ROPE, robust parameter estimation; SCE-UA,
shuffled complex evolution-University of Arizona.
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Table 8. Model performance for calibration time period 1961–1970 and validation for other
time periods for Rottweil using the SRWP, ROPE and SCE-UA algorithms (the statistics of
1000 parameter sets are given for the SRWP and ROPE algorithms).

SRWP ROPE SCE-UA
Periods mean max min std mean max min std

1961–1970 0.69 0.70 0.68 0.0035 0.69 0.70 0.69 0.0017 0.70
1971–1980 0.63 0.65 0.56 0.0135 0.63 0.64 0.58 0.0090 0.64
1981–1990 0.75 0.76 0.71 0.0082 0.75 0.76 0.72 0.0062 0.74
1991–2000 0.68 0.70 0.64 0.0104 0.68 0.70 0.65 0.0086 0.69
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Figure 10. Example of the observed and model hydrographs during the calibration period
from the ROPE, SRWP and SCE-UA algorithms for Rottweil catchment.

Table 9 shows the initial and final range of parameters of the model. It is clear from the table that
we have a wide range of parameters after the calibration. Though the volume of the optimal parameter
space has shrunk, the range of parameter values remains large with respect to the initial parameter range.
This gives flexibility in choosing parameters, where a small change in parameters will not bring much
effect in performance. Figure 12 showed the spread of the parameter range at the initial N percentage
to the final parameters sets. It can be seen from the figure that at the N percentage, we have a wide
range of parameters, which have narrowed down as the number of iterations increased. As we cannot
plot an eight-dimensional figure, hence a plot matrix is made for clear visualization. Figure 13 shows
the plot matrix of the initial N percentage parameters. It can be seen from the figure that there is no
clear structure of any parameters. However, from the final plot matrix of the parameter (Figure 14), we
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can see that the parameter vector has less scatter and more structure. This is because the volume of the
parameter space has shrunk as the number of iterations increased.
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Figure 11. Example of the observed and model hydrographs during the validation period
(1971–1980) from the ROPE, SRWP and SCE-UA algorithms for Rottweil catchment.

Table 9. Initial and final model parameter range obtained during calibration by the SRWP
algorithm and calibration by the SCE-UA algorithm for Rottweil catchment.

Parameters Initial SRWP ROPE SCE-UA

Cmax
Max 600.0 564.02 573.67

258.58
min 150.0 230.18 294.68

Beta
Max 8.0 7.34 6.91

6.01
min 3.0 3.36 3.73

Alpha
Max 0.8 0.55 0.53

0.53
min 0.2 0.37 3.73

RS
Max 0.2 0.02 0.02

0.02
min 0.01 0.01 0.01

RQ
Max 0.7 0.68 0.68

0.65
min 0.3 0.59 0.59

Th
Max 1.5 1.40 1.10

0.78
min −1.0 0.19 0.28

DD
Max 3.0 2.90 2.87

2.27
min 1.0 1.17 1.39

Dew
Max 2.0 0.90 1.68

0.22
min 0.0 0.08 0.09
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Figure 12. Model parameters at different stages of the SRWP algorithm (the y-axis
is the normalized parameter value, and the x-axis shows all of the parameters of the
HYMOD model).

Figure 13. Plot matrix of the model parameter at the initial iteration of the SRWP algorithm.
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Figure 14. Plot matrix of the parameter at the final iteration of the SRWP algorithm.

4.1. Comparison with Existing Methods

The SRWP algorithm is an extension of the ROPE algorithm. Hence, the result obtained by the
SRWP algorithm was compared with the previous study by Bárdossy and Singh [5] on the same study
area using the ROPE algorithm. The performance of the HYMOD model during the calibration and
validation time period obtained by the ROPE algorithm on Rottweil catchment is given in Table 8. It
can be seen from Table 8 that the performance by both of the methods is very similar for both the
calibration and validation time periods; however, SRWP requires fewer iterations to achieve an optimal
parameter space when compared to ROPE (8000 vs. 30,000 parameter evaluations). The robustness of
the ROPE algorithm is still maintained by the sequential calibration method, as both use the data depth
function to generate new parameters. For further comparison, the HYMOD model was calibrated using
the commonly-used global optimization algorithm SCE-UA [27]. Table 8 shows the calibration and
validation performance of the HYMOD model using SCE-UA for Rottweil catchment. It can be seen
clearly from Table 8 that the calibration of the model using the methodology developed in this paper has
very similar results when compared to global optimization with SCE-UA. The validation performance for
all three time periods was very much similar to the mean performance obtained by the SRWP algorithm.
Very similar results from all three optimization algorithms indicate that the model is well calibrated.
Any additional effort to parameterize the model may lead to over-parameterization. Irrespective of
the optimization algorithm, the performance of any given model is limited by uncertainty in inputs,
parameter estimation, model structure, etc. The hydrographs obtained by ROPE, SRWP and SCE-UA
calibration for the calibration and validation time periods are given in Figures 10 and 11. From these
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figures, we can see that the hydrographs obtained by all three (ROPE, SRWP, SCE-UA) are reasonably
good for low to medium high flow, but all of them have missed very high flow in the calibration period.
During the validation, SCE-UA is slightly under predicting the low flow and over estimating the high
flow, compared to SRWP and ROPE. The final parameters obtained by SCE-UA optimization are given in
Table 9. These parameters are a subset of the optimal parameter range obtained by the SRWP algorithm.
The result of the sequential calibration method is better compared to SCE-UA and ROPE, due to its
robustness in the transferability of parameters in time and quick convergence. Furthermore, it does not
depend on the initial values, as initial runs of SRWP start with a wide range of parameters. The advantage
of the SRWP calibration method over global optimization can be explained from the final parameter sets.
In the SRWP calibration method, we get a parameter space instead of a single value of the parameter set.
The single optimal parameter set indeed is a subset of the optimal parameter space. Within the optimal
parameter space, small changes in the parameters set do not affect the model performance. For prediction
purposes, the deepest parameter set in the convex hull of the optimal space can be used, as well as an
ensemble of parameter sets can be drawn from the optimal parameter space, which can account for the
parameter uncertainty. Over fitting can be avoided by SRWP, as it always replaces the weak parameters
with better parameters, while still maintaining the optimal space. The major limitation of the SRWP
algorithm is, after many iterations, when the parameter space is small, it takes more time to get new
acceptable parameters. Defining a wider range of parameters for initial runs can be the limitation of
SRWP-based calibration.

5. Conclusion

This current work is an advancement of our previous work on the ROPE algorithm [5]. The major
improvement of the ROPE algorithm by the sequential replacement of weak parameters algorithm can
be seen in terms of convergence efficiency. In sequential replacements of weak parameter sets, we can
convergefaster than the ROPE algorithm, as each time, we are replacing weaker model parameters by
deeper and good parameter sets sequentially. The other properties, like transferability to other time
periods and sensitivity of parameters, remain the same in the sequential replacement of weak parameters
algorithm. The result of the SRWP calibration method is comparable to the commonly-used global
optimization technique (SCE-UA). The biggest advantage is that it converges to the optimal parameter
space, and we can use any kind of criteria or objective functions. Further, instead of a single value
as the best parameter set, the sequential calibration method gives an optimal parameter space in which
numerous sets of parameters can exist. This can help to define uncertainty due to parameter estimation.

The SRWP procedure clearly shows consistent results over the range of the problem tested. The
SRWP algorithm is not model dependent and can be easily implemented on any optimization problem,
but further studies may be needed to test the algorithm on more difficult problems. To test the suitability
of the SRWP algorithm for very complex multimodal and very high-dimensional problems, it may need
to be tested on composite complex functions, such as those proposed by Liang et al. [36]. The authors
are working towards this.
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Appendix A

Some of the test functions used in this study are given below. For more details, please refer to [27]
and [28].

A.1. McCormick Function

f(x) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1 (A1)

Search domain: x1 ∈ [−1.5, 4], x2 ∈ [−3, 4] and fmin(−0.54719,−1.54719) = −1.9133

A.2. Levy Function

f(x) = sin2(3πx1) + (x1 − 1)2
[
1 + sin2(3πx2)

]
+ (x2 − 1)2

[
1 + sin2(2πx2)

]
(A2)

Search domain: x1 ∈ [−10, 10], x2 ∈ [−10, 10] and fmin(1, 1) = 0

A.3. Styblinski–Tang Function

f(x) =
1

2

∑
(x4i − 16x2i + 5xi) (A3)

Search domain: x1 ∈ [−5, 5], x2 ∈ [−5, 5] and fmin(−2.903534,−2.903534) = −78.332

A.4. Leon Function
f(x) = 100(x2 − x21)2 + (1− x1)2 (A4)

Search domain: x1 ∈ [−1.2, 1.2], x2 ∈ [−1.2, 1.2] and fmin(1, 1) = 0
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A.5. Giunta Function

f(x) = 0.6 +
∑[

sin(
16

15
xi − 1) + sin2(

16

15
xi − 1) +

1

50
sin(4(

16

15
xi − 1))

]
(A5)

Search domain: x1 ∈ [−1, 1], x2 ∈ [−1, 1] and fmin(0.45834282, 0.45834282) = 0.0602472184

A.6. Rastrigin Function

f(x) = 2 + x21 + x22 − cos(18x1)− cos(18x2) (A6)

Search domain: x1 ∈ [−1, 1], x2 ∈ [−1, 1] and fmin(0, 0) = 0

A.7. Six-Hump Camel Back Function

f(x) = 1.036285 + 4x21 − 2.1x41 + (
1

3
)x61 + x1x2 − 4x22 + 4x42 (A7)

Search domain: x1 ∈ [−2, 2], x2 ∈ [−1, 1] and fmin(0.08983,−0.7126)
and(−0.08983, 0.7126) = 0
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