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Abstract

Climate change is expected to reduce water availability during cropping season, while grow-
ing populations and rising living standards will increase the global water demand. This
creates an urgent need for national water management tools to optimize water allocation.
In particular, agriculture requires targeted approaches to improve efficiency. Alongside
field measurements and remote sensing, agro-hydrological models have emerged as a
particularly valuable resource for assessing and managing agricultural water demand. This
study introduces WaterCROPv2, a state-of-the-art agro-hydrological model designed to
estimate national-scale irrigation water demand while effectively balancing accuracy with
practical data requirements. WaterCROPv2 incorporates innovative features such as hourly
time-step computations, advanced rainwater canopy interception modeling, detailed soil-
dependent leakage dynamics, and localized daily evapotranspiration patterns based on
meteorological data. Through comprehensive analyses, WaterCROPv2 demonstrates sig-
nificantly enhanced reliability in estimating irrigation water needs across various climatic
regions, particularly under contrasting dry and wet conditions. Validation against inde-
pendent data from the Italian National Institute of Statistics (ISTAT) for maize cultivation
in Italy in 2010 confirms the model’s accuracy and underscores its potential for broader
international applications. A spatial analysis further reveals that the estimation errors align
closely with regional precipitation patterns: the model tends to slightly underestimate
irrigation needs in the wetter northern regions, whereas it somewhat overestimates demand
in the drier southern areas. WaterCROPv2 has also been used to analyze irrigation water
requirements for maize cultivation in Italy from 2005 to 2015, highlighting its significant
potential as a strategic decision-support tool. The model identifies optimal cultivation
areas, such as the Pianura Padana, where the irrigation requirements do not exceed 200 mm
for the entire maize growing period, and unsuitable regions, such as Salentino, where over
500 mm per season are required due to the local climatic conditions. In addition, estimates
of the water volumes required for the current extent of maize cultivation show that the Pia-
nura Padana region demands nearly three times the amount of water used in the Salentino
area. The model has also been used to identify regions where adopting efficient irrigation
technologies could lead to substantial water savings. With micro-irrigation currently cover-
ing less than 18% of irrigated land, simulations suggest that a complete transition to this
system could reduce the national water demand by 21%. Savings could reach 30–40% in
traditionally water-rich regions that rely on inefficient irrigation practices but are expected
to be increasingly exposed to temperature increases and precipitation shifts. The analysis
shows that those regions currently lacking adequate irrigation infrastructure stand to gain
the most from targeted irrigation system investments but also highlights how incentives
where micro-irrigation is already widespread can provide further 5–10% savings.

Hydrology 2025, 12, 240 https://doi.org/10.3390/hydrology12090240

https://doi.org/10.3390/hydrology12090240
https://doi.org/10.3390/hydrology12090240
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0009-0003-1641-8612
https://orcid.org/0000-0003-2619-8783
https://doi.org/10.3390/hydrology12090240
https://www.mdpi.com/article/10.3390/hydrology12090240?type=check_update&version=1


Hydrology 2025, 12, 240 2 of 25

Keywords: agro-hydrological modeling; blue water; water management

1. Introduction
Water governance operates at multiple levels, from international organizations down

to local consortia [1]. This multi-level approach is essential to guarantee that water policies
and laws ensure both (water-dependent) food and energy security without undermining
environmental protection [2,3]. In fact, nowadays, 40% of the world’s food production
comes from irrigated land, which, despite accounting for only 18% of the global cultivated
land [4], accounts for from 60% [5] to 70% of the total freshwater withdrawals [6]. This
pressure on freshwater bodies is expected to increase significantly, mainly due to the
world’s population growth [7], dietary changes towards more water-demanding food
choices [8,9], and the need to buffer the increased vulnerability of cultivated lands to
climate extremes [10]. Furthermore, future alterations in the hydrological cycle due to
climate change [11–14] will likely impact the natural availability of freshwater resources,
making effective water governance even more crucial [15]. This highlights the need for
effective local water management even in water-rich areas where water exploitation has
often been overlooked [16].

Under these conditions, there is an ongoing effort to improve national agricultural
water management to reduce both agriculture’s vulnerability to climatic variability and
the stress on freshwater bodies and the associated ecosystem [17–19]. Effective national
water management has the potential to regulate local water withdrawals from water bodies,
preventing regional excessive use of irrigation water and reducing crop losses due to water
stress [20,21].

To this aim, accurately evaluating irrigation demands, along with other water uses, is
essential for correct water management and allocation [22]. Comprehensive national-scale
evaluations of agricultural water use can provide pictures of the current water consumption
across different regions. This aids in identifying areas where structural and management
improvements are needed, thus supporting decision-making. Furthermore, reliable mod-
els can simulate various potential scenarios and predict the impact of different water
management practices, providing valuable insights for investments and action plans.

In this context, agro-hydrological models are powerful decision-support tools for
evaluating agricultural water requirements at various scales [16,23–26]. Numerous models
have been developed over the years for this purpose (e.g., AquaCrop [27], SWAP [28],
DSSAT [29], CropWat [30], APSIM [31], and CropSyst [32]), encompassing a wide range
of modeling approaches, accuracy levels, and flexibility [33,34]. However, the use of most
of these models is constrained by their data requirements and the spatial scales at which
they can be applied. In fact, on one hand, highly complex models offer great accuracy and
physical detail but are typically field-specific, computationally demanding, and require
detailed input data that is often difficult to obtain [35]. It follows that these models are
applied at the field scale but are hardly upscalable at the regional and national scales.

On the other hand, simpler large-scale models are adopted for simulations at the
continental and global scales [36,37]. They require much less information than the previous
class of models but may be too crude for agricultural water planning and management at
the regional scale [38]. They often fail to account for variations in irrigation practices or
soil diversity at the municipal scale, operate on a daily time scale, and approximate the
modeling of the soil water balance.

In this framework, our aim is to propose a physically based agro-hydrological model that
balances the complexity of detailed models with the lower data demand of large-scale models.
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Our model describes all the main hydrological processes that determine agricultural water
demand but, at the same time, requires data typically available at a municipal resolution
rather than using a coarse spatial resolution as typically employed for regional and global
models. By providing both quantitative outputs and spatially explicit maps, the model
proves suitable for regional-scale water resource planning and management. Its accessibility
and simplicity make the model usable by both specialists and non-experts, enabling process
tracking, parameter adjustment, and critical evaluation of results.

The WaterCROPv2 model proposed herein builds upon WaterCROPv1 [39], introduced
in 2015, enhancing it in several regards by incorporating new hydrological processes and
refining the existing ones. Although the model presented in Tuninetti et al. was originally
not named, it set the foundation for the present model. In agreement with its original
developer, we refer to it here as WaterCROPv1.

To show the potential of the proposed model, we will (i) describe the physical processes
considered and their modeling, (ii) show the typical WaterCROPv2 output, highlighting
the advantages obtained with the updates in the crop water demand assessment, and (iii)
focus on irrigated maize cultivation in Italy as an exemplifying case study. The case study
allows us not only to demonstrate the reliability of WaterCROPv2 in assessing irrigation
water demand but also to shed light on how the model can be used to analyze scenarios
aimed at saving irrigation water and reducing the stress on freshwater resources.

2. Materials and Methods
2.1. Model

WaterCROPv2 is an agro-hydrological bucket model that simulates the crop and
irrigation water demand during the growing season depending on soil, climate, crop,
and irrigation system features. The bucket is designed as a single soil layer whose depth
corresponds to the length of the plant roots Zn. As Zn elongates during the plant growth,
the control volume of the storage changes its depth accordingly. The bucket not only stores
water but also receives and releases hourly volumes of water. The fluxes entering the
storage are (see Figure 1) the effective precipitation (Pe f f ) and the crop blue water demand
(Ib), while the exiting ones are the leakage (L) and the actual evapotranspiration (ETa), also
known as crop water demand. Pe f f is the precipitation P, which first decreased regarding
the volume of drizzle water intercepted by the canopy, T, and secondly the runoff, R. All
the variables used in the model are summarized in Table 1.

Figure 1. Water balance components of the bucket model: precipitation P, interception T, runoff R,
evapotranspiration ETa, crop water demand Ib, and leakage L. Znini,Znmax, y stand for initial root
depth, maximum root depth, and irrigation system, respectively.
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Table 1. List of variables used in the paper.

Variable Description Unit

d Day day number
Dr* Critical depletion fraction m
ET0 Potential evapotranspiration mm/hour
ETa Actual evapotranspiration mm/hour

I Irrigation mm/day
Ib Blue water requirement mm/day

Imz Maize irrigation water demand mm/day
h Hour hour
H Time enlapsed since sunrise hour
kc Crop coefficient -

kc, f in Crop coefficient at the end of the growing season -
kc,ini Crop coefficeint at the beginning of the growing season -
kc,mid Crop coefficient at plant maturity -

ks Water stress coefficient -
ks,sat Saturated hydraulic conductivity m/s

L Leakage mm/hour
lgp Length of the growing period days
N Number of hours between sunrise and sunset hour
q Generic quantity -
P Precipitation mm/hour

Pe f f Effective Precipitation mm/hour
R Runoff mm/hour
s Relative soil moisture -

s f c Relative soil moisture at field capacity -
sr Sunrise time hour of day
ss Sunset time hour of day
SIq Sensitivity Index -

t time hour
T Canopy interception mm/hour

Vsoil Soil volume m3

WC Soil water content m
WC f c Soil water content at field capacity m
WCsat Soil water content at saturation m
WCth Soil water content at a chosen water content threshold m
WCwp Soil water content at wilting point m
WC∗ Soil water content at critical point m

y Irrigation system -
Znini Sowing depth m
Znmax Maximum Root depth m

α Irrigation inefficiency of the irrigation system -
β Soil-dependent coefficient -

θ f c Volumetric water content at field capacity m/m
θsat Volumetric water content at saturation m/m
θ∗ Volumetric water content at critical point m/m

The mentioned input and output fluxes entail the temporal fluctuations in the water
stored in the soil, namely the so-called soil water content, WC. The water balance equation
for the soil layer reads

dWC(t)
dt

= P(t) − T(P(t)) − R(WC(t)) − ETa(WC(t)) − L(WC(t)) + Ib(WC(t)) (1)

where the soil water content is expressed in mm, time t in hours, and fluxes in mm/hour.
It is important to note that, as will be described further later on, R, ETa, T, L, and Ib are
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functions of the soil water content. WC can span from WC = 0 mm to the soil water content
at saturation WCsat, whose magnitude depends on the soil type and the root length Zn.
Specific WC values play a crucial role in regulating the input/output fluxes (Figure 2):

• WCwp. It is the WC at wilting point and sets the minimum water content for plants
to survive;

• WC∗. It is the WC at critical condition and is the threshold that controls whether
evapotranspiration is at maximum and whether it is necessary to resort to irrigation;

• WC f c. It is the WC at field capacity, and, when WC goes below WC f c, the leakage
process ends;

• WCsat. It is the WC at saturation, which controls the surface runoff formation.

Figure 2. Ranges of possible water content (WC) values for different processes. Note that the
light-blue bar of irrigation requirements shows the case of irrigation up to the critical level (WC∗).

The previously defined WC thresholds are not fixed values but are proportional to the
length of the plant roots, Zn, which elongate during the growing season: the further the
roots grow into humid soil, the larger the amount of water (corresponding to the thresholds)
contained in the control volume becomes.

The growing period is subdivided into four growing stages, namely initial phase
(establishment, lgp1), development stage (vegetative, lgp2), mid-season (flowering, lgp3),
and late season (yield formation and ripening, lgp4). Taking Znini as initial root length,
Znmax as maximum length, and d as the day along the growing period, Zn is computed
as [30]

Znt =


Znini if d = 1

Znini +
Znmax−Znini

lgp1+lgp2
d if d ∈ [lgp1, lgp2]

Znmax if d ∈ [lgp3, lgp4]

(2)

Zn is assumed to always be in the vadose zone. It follows that there is no interaction
between root zone and the water table. For a visualization of the elongation trend of Zn
during the growing period, refer to Figure A4 in Appendix B.

WaterCROPv2 is designed so that the continuous description of the water balance
(Equation (1)) in time t is discretized in hours that, every day, run from h = 1 to h = 24. This
discretization implies that ETa, L, and P, which naturally occur during or throughout the
whole day, are discretized hourly. Every day, at the first hour (h = 1 of the day d), the
bucket stores the same volume of water as the last hour of the previous day (h = 24 of day
d − 1) plus Ib, computed as the amount of water needed to reach the chosen water content,
i.e., WCd(h = 1) = WCd−1(h = 24) + ETb,d−1.
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Evapotranspiration. ETa takes into account plant transpiration and water evaporation
from the soil. Each hour h along the growing period, ETa, is evaluated as

ETa(h, d) =

ET0(h, d)kc(d)ks(h) if P(h) = 0

0 if P(h) > 0
(3)

where ET0 is the reference evapotranspiration, kc is the crop coefficient, and ks is the water
stress coefficient. As ETa rate is strongly driven by the gradient in relative humidity, ∆e,
between stomata and atmosphere, in case of rain events (∆e ≃ 0), ETa is assumed to
shut down.

ET0 is defined as the evapotranspiration of a hypothetical well-watered grass reference
crop with fixed height, albedo, and surface resistance [30]. Databases usually provide daily
ET0 values in spite of transpiration being a diurnal process that shows a peak around
mid-day. In order to account for daily plant physiology, in WaterCROPv2, ET0 is modeled
according to [40] 

ET0(h, d) = ET0,d(d)πsin( πH
N )

2N

N = ss − sr

H = h − sr

(4)

where ET0,d(d) is the daily evapotranspiration value corresponding to the day d, N is the
amount of hours spanning from sunrise sr to sunset ss, and H is the time elapsed since
sunrise. Sunrise and sunset timing were defined, cell by cell, according to location (latitude
and longitude) and day of the year.

The crop coefficient, kc, is the coefficient that distinguishes the evapotranspiration rate
of a specific crop from the one of the reference grass. kc varies during the growing season
depending on the crop development in order to take into account changes in crop height
and leaf areas. In particular, kc evolves in time as [30]

kc,t =



kc,ini if d ∈ lgp1
kc,mid−kc,ini

d−lgp2
d if d ∈ lgp2

kc,mid if d ∈ lgp3
kc, f in−kc,mid

d−lgp1−lgp2−lgp3
d if d ∈ lgp4

(5)

where kc,ini, kc,mid, and kc, f in are kc at initial, mid, and final growing stages, respectively,
and d is the day along the growing period. Note that kc values and lgps lengths depend on
climate zone and crop type [30].

The water stress coefficient, ks ∈ [0, 1], is the coefficient that specifies whether the
plant is watered enough to evapotranspire at its potential. Thus, it is regulated by WC
as [30]

ks(h) =


0 if WC ≤ WCwp
WC(h)−WCwp
WC∗−WCwp

if WC ∈ [WCwp, WC∗]

1 if WC ≥ WC∗

(6)

To have a visualization of kc trend during the growing period and of ks trend as
function of WC, please, refer to Figures A4 and A5, respectively, in Appendix B.
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If soil water content is above the critical value, WC∗, the plant is in stress-free con-
ditions and evapotranspires at its maximum potential, ETa = ETc. Instead, whenever
the water content is below the critical value, the plant is under stress and the evapotran-
spiration is lower than the potential one, ETa < ETc. This linear reduction is due to a
gradual closure of the stomata that results in a progressive diminution in water uptake. If
wilting point is reached, WC = WCwp, water uptake stops and evapotranspiration ceases,
ETa = 0. Physical evaporation can take place below wilting point independently from
plant transpiration. However, this phenomenon is not modeled here as this study focuses
on irrigated crops that unlikely reach such conditions. Figure 3 reports an example of
ETa evolution (purple line): the last hump shows the undisturbed daily trend, while the
previous humps point out the effect of rain (green bins). Rain events cause the interruption
of daily ETa, but, if the rainwater has time to evaporate from the leaves, ETa activates again
(second hump).

Leakage. Leakage is modeled with the following exponential law [41]:

L(s) =


Ks

e
β(1−s f c)−1

[eβ(s−s f c) − 1] if s f c < s ≤ 1

0 if s < s f c

(7)

where Ks is the saturated hydraulic conductivity, β a soil-dependent coefficient, s the
relative soil moisture defined as s = WC/WCsat, and s f c the relative soil moisture at field
capacity. Coherently with the time discretization of water balance (Equation (1)), L is
evaluated with hourly steps.

Figure 3. Two rain events are reported that stop the daily evapotranspiration process. The evapotran-
spiration behavior is shown for 6 days (from 28th to 35th day) in May of the initial stage of maize
growth (kc ∈ [0.3–0.4125]), during which the plant is not under stress (ks = 1).

Precipitation, interception, and runoff. To avoid very small precipitation values that do
not affect the soil hydrological balance but can instead introduce spurious noise in the
system dynamics, a filter was introduced: a rainfall is considered a rain event only if it
accumulates at least 0.01 mm/h. Canopy interception, T(h), is included by subtracting,
from each rain event, 0.5 mm for grasses and 2 mm for trees [41]. Another key point is
when rainfalls can be considered as two separate rain events. In this work, a reasonable
break between two subsequent events was set at 5 h.
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Runoff, R(h), is formed only if the effective precipitation, Pe f f = P(h)− T(h), brings
in the control volume more water than the amount that can be stored. The overflowing
water forms runoff asR(h) = P(h)− T(h)− WCav(h) if Pe f f > WCav

WCav(h) = WCsat(d)− WC(h)
(8)

Irrigation. WaterCROPv2 computes irrigation volumes I in two steps: first, it computes
the crop blue water demand, Ib, and secondly the irrigation volumes I (called irrigation
water demand). Ib corresponds to the theoretical amount of water needed to keep the soil
at a chosen water content threshold, WCth, taking into account soil dynamics (leakage)
and plant physiology (evapotranspiration). Generally, WCth is chosen so that the plant can
evapotranspire at its potential: e.g., WC∗ < WCth < WCFC. In WaterCROPv2, Ib is applied,
conventionally at h = 24 (but other choices are easily implementable) only if the soil water
content is below the chosen water content, and only to reach such threshold. It follows that

Ib(d) =
WCth(d)− WC(h = 24)

∆h
(9)

Irrigation water demand I is the actual amount of water that the farmer has to provide
to the field. Such value depends on the irrigation systems as it encloses the irrigation
system inefficiency. There are several ways of defining the irrigation system inefficiency α

according to the application [5]. In this work, we neglect the inefficiency of the conveyance
system that transports water from the water body to the field as we instead focus on the
irrigation method present on the field (e.g., submersion, flow irrigation, sprinklers, or
micro-irrigation). Thus, in this work, the irrigation inefficiency α (α > 1) is defined, for
each irrigation system, as the average ratio between the volumes of water provided to the
field (I) and the one that has to infiltrate the rootzone (Ib), namely

I(d) = αIb(d) (10)

Flowchart. To aid the reader in grasping the logic of the model, the flowchart of the
operations implemented by the model is reported in Figure 4.

Modifications of WaterCROPv2 with respect to version 1. Note that the improvements in
water demand modeling of WaterCROPv2 with respect to WaterCROPv1 include (i) the
hourly timescale of the soil water balance, (ii) the use of hourly meteorological data instead
of monthly precipitation, (iii) the inclusion of the canopy interception of rainwater, (iv) the
simulation of leakage dynamics in relation to soil water content and soil characteristics,
(v) a detailed description of the diurnal trend of evapotranspiration accounting also for
location, day of the year, and the presence or absence of rain, and (vi) the computation
of Ib as the water that is required by the plant to be able to keep the field at a chosen
water content. Finally, (vii) a key change is the introduction of the inefficiency factor of
the irrigation system to take into account the additional water volume required to actually
convey Ib to the plants.
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Figure 4. Flowchart of the model functioning.

2.2. Data

WaterCROPv2 works at hourly temporal resolution on grid cells whose size is deter-
mined by the input data resolution. All the required data must be homogenized at the same
spatial and temporal resolution. The required input data fall into four categories: crop data,
soil data, climate data, and irrigation data.
Crop data. Crop data characterize the crop in terms of growth and response to water
stress. They are (i) daily reference evapotranspiration (ET0, d), (ii) crop-specific growth
coefficients (kcini, kcmid, and kc f in), (iii) length of the four growing period stages (lgp1, lgp2,
lgp3, and lgp4), (iv) critical soil moisture (WC∗), (v) initial and maximum root depth (Znini

and Znmax), (vi) sowing and harvesting dates, and (vii) extension of irrigated areas. Notice
that sowing and harvesting dates, length of the growing stages, and root depth depend on
cultural conditions and on the local climate zone.

It is noteworthy that, in the literature, it is easier to retrieve values of critical depletion
fraction, Dr∗, rather than WC∗. Dr∗ is defined as the critical soil water shortage with respect
to field capacity and is related to WC∗ as follows:

Dr∗ = WC f c − WC∗ (11)

Soil data. The description of runoff and leakage processes requires: (i) saturated hydraulic
conductivity (Ks), (ii) volumetric water content at field capacity (θ f c), (iii) volumetric water
content at saturation (θsat), and (iv) the fitting coefficient (β). Note that the volumetric
water content θ is defined as the ratio of water volume WC to soil volume Vsoil (e.g.,
θ f c = WC f c/Vsoil).
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Climate data. Major players in plant phenology are local climate and precipitation. Thus,
(i) climate zone, (ii) hourly precipitation time series, and (iii) geographical coordinates have
to be provided for in the studied area.
Irrigation data. WaterCROPv2 determines the irrigation water demand, I, from the blue
water demand, Ib (Equation (12)). Thus, the inefficiency factor α of the used irrigation
systems has to be provided.

3. Results
WaterCROPv2 was developed to evaluate in a reliable and functional way irrigation

water demand at seasonal and regional scales. As an example, we report and analyze the
outputs of the employment of WaterCROPv2 at the Italian national scale. In Section 3.1,
firstly, the mean maize irrigation demand for the years 2005–2015 obtained by Water-
CROPv2 is compared to the evaluation obtained from the previous version, WaterCROPv1,
to show the effect of modeling improvements; secondly, the model reliability is assessed
using independent data of irrigation water provided by the Italian National Institute of
Statistics, ISTAT [42], for 2010. Lastly, Section 3.2 presents some possible applications of the
WaterCROPv2 model as a decision-making tool using country-scale mean results for maize
cultivation in Italy. Maize is, in fact, one of the most water-demanding crops, and, in Italy,
it is so widespread that it alone accounts for more than 20% of the irrigated cropland [42].
Refer to Appendix A for an overview of the used data and the pre-processing employed to
run WaterCROPv1 and WaterCROPv2 for the above-mentioned analyses.

3.1. Validation
3.1.1. Comparison with Previous Version, WaterCROPv1

To analyze the impact of the updates introduced in version 2, both WaterCROPv1 and
WaterCROPv2 were run with the same crop and irrigation data. The used data—provided
by “Agricultural Census” [42] (Table A1 in Appendix A)—refer to maize cultivation in Italy
in 2010.

The comparison was run analyzing the maize irrigation water demand (Imz), defined
as the cumulative sum of the daily volume required to keep the soil above a chosen water
content, WCth, over the growing period. In this case, WCth was set to critical level WC∗. In
Figure 5a, the scatterplot compares WaterCROPv1 and WaterCROPv2 cell by cell. The two
versions display general consistency as the points tend to align along the bisector. However,
relevant differences due to the modeling improvements emerge clearly. In particular, it is
visible how the relative importance of the newly added processes (leakage and the shutting
down of the evapotranspiration process) and the use of hourly precipitation time series
play a major role in the differences between the versions. In fact, the dot distribution
exhibits a smaller dispersion for higher irrigation water values, a condition corresponding
to reduced relevance of the added physical processes. High irrigation demands are due to
low precipitation that only rarely triggers leakage and evapotranspiration shutting down.
On the contrary, v1 and v2 show weaker correlations for lower water demand values, which
correspond to high precipitation levels, when leakage and shutting down play a relevant
role. Finally, notice the significantly lower number of zero irrigation water demands
according to the improved model. This result demonstrates the importance of describing
precipitation on an hourly scale rather than distributing monthly values uniformly. This
allows capturing periods of water shortage even in regions characterized by high mean
monthly precipitation.
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(a) (b)

Figure 5. Scatterplots comparing, cell by cell, the irrigation water demand of maize in 2010 in Italy
computed by (a) WaterCROPv2 and WaterCROPv1 and (b) WaterCROPv2 and ISTAT database. The
black line corresponds to the bisector. The color of the dots varies gradually from green (scarce
precipitation) to blue (abundant precipitation) according to the values of cumulative precipitation
over the growing season in the cell.

3.1.2. Comparison with Independent Data

In Figure 5b we tested WaterCROPv2’s consistency with irrigation values provided by
the Italian National Institute of Statistics, ISTAT [42]. In this case, the Imz values provided
by WaterCROPv2 correspond to the case of irrigation up to field capacity (WCth = WC f c)
rather than to a critical point. It is indeed common practice among farmers to irrigate up to
field capacity. The ISTAT values provided for each municipality correspond to the output of
the MARSALa model [43], a model calibrated over 300 farms assumed to be representative
of Italian agriculture. MARSALa is a more detailed and computationally demanding model
with respect to WaterCROPv2 as it includes a section of irrigation method scheduling that
requires additional input data. Furthermore, the model relied on farm-level input data on
sowing and harvesting dates, as well as on locally employed irrigation systems, none of
which are available in the “Agricultural Census” [42] database used to run WaterCROPv2.
Due to the robustness of the sources of the input data used to run MARSALa, we assume
the output values as the benchmark for the evaluation of WaterCROPv2’s reliability. Due
to the different complexity of the irrigation models and the accuracy of the input data,
the WaterCROPv2 values are not expected to precisely match the ISTAT values but rather
to exhibit a similar trend. Figure 5b confirms this expectation as dots align along the
bisector. The observed relation between estimation errors and precipitation suggests a
spatial distribution of the differences, which is confirmed in Figure 6a,b. Northern Italy,
generally wetter (most of blue dots in Figure 5b, shows a mean underestimation of 23%.
Southern Italy, on the contrary, which is generally drier (generally green dots in Figure 5b),
experiences a mean overestimation of 14%. Central Italy, with locally variable differences,
shows a more consistent mean and distribution, with a mean underestimation of 2%.
The overestimation of WaterCROP2 can possibly be explained by the fact that, especially
in dry areas, it might be hard for farmers to always irrigate up to field capacity and
meet the model assumption. Lastly, note the dots in the bottom left of Figure 5b, where
WaterCROPv2 and the ISTAT dataset show strong disagreement: they correspond to cells
with high precipitation, mainly clustered in two specific pre-alpine areas in the northwest
and northeast of Italy. The real ground slope in those areas might explain the disagreement.
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In fact, runoff in sloped fields is generally larger than in flat areas. As WaterCROPv2
does not include a terrain model, the underestimation of the runoff in those areas, and the
consequent infiltration overestimation, might result in smaller Imz values.

(a) (b)

Figure 6. (a) Absolute and (b) relative differences in irrigation water demand of maize in 2010
computed by WaterCROPv2 and ISTAT.

3.1.3. Comparison with Previous Local-Scale Studies

The mean maize irrigation water demand estimated with WaterCROPv2 was validated
against values reported in field- or local-scale studies. For instance, Katerji et al. (2013) [44]
assessed the maize irrigation demand in southern Italy (Rutigliano) for the 1996–1997
growing seasons using the AquaCrop model on a private farm. Bocchiola et al. (2012) [45]
investigated the irrigation requirements in the Po Plain (Persico Domico) between 2001
and 2010 using CropSyst. Casa et al. (2009) applied remote sensing data combined with
the FAO method [30] to evaluate the mean irrigation needs in the Pontina Plain in the
1996–2001 period [46]. Similarly, Todisco et al. (2007) [47] analyzed the average maize
water requirements in several locations in Umbria (central Italy) over the 1951–2004 period
using CropSyst. In Figure 7, the comparison between the values reported in the above-
mentioned studies (I-comp) and those obtained with WaterCROPv2 (I-WC) is presented. In
the insets, the black-outlined rectangles mark the WaterCROPv2 pixels that overlap with the
areas analyzed in the previous studies, with the corresponding Imz values shown directly
within the pixels. The I-WC value shown next to each inset represents the average of the
pixel-scale Imz values. All the comparisons considered highlight the good performance of
our model despite the smaller number of parameters used and the national scale of our
analysis. Only the case of the Persico Domico area (see panel Figure 7a) shows a significant
difference: 120 mm/lgp estimated by WaterCROPv2 versus about 200 mm/lgp reported
in [45]. However, it should be noted that the I-comp value refers to a single farm (shown
in red in the panel), whereas the WaterCROPv2 estimate integrates contributions from
several municipalities and fields. Finally, in panel Figure 7b, all the areas falling within
the Pontine Plain are colored, but the crop distribution reported by [46] shows that corn is
mainly located in the municipality of Latina (shown in light brown in the panel). For this
reason, the numerical comparison with our model refers to this specific area.
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Figure 7. Comparisons between irrigation requirements estimated at the national scale with Wa-
terCROPv2 (I-WC) and irrigation requirements evaluated in previous studies at field or local
scale (I-comp): (a) Po Plain (Persico Domico) [45], (b) Pontina Plain [46], (c) Umbria region [47],
(d) Puglia region (Rutigliano) [44].

3.2. Examples of Model Application
3.2.1. Water Demand Assessment

In this section, we present some possible applications of WaterCROPv2 as a tool to
evaluate the irrigation water demand both in the current state and scenarios of interest.

We used WaterCROPv2 to assess the mean present state of maize irrigation water
demand (Imz) in Italy. Thus, we employed crop, soil, climate, and irrigation data as specified
in Appendix A and assumed an irrigation threshold up to critical level (WCth = WC∗). The
used precipitation record covers the period from 2005 to 2015 as this timespan is considered
representative of the Italian climate. In fact, Italy in those years experienced fairly large
oscillations in cumulative precipitation, with dry (e.g., 2010–2011) and wet seasons (e.g.,
2006–2007) [48]. The mean present state was evaluated by averaging the Imz values for
each simulated year. As indicated in Equation (A3), the mean Imz is defined as maize
blue water demand (Ib) divided by weighted irrigation system efficiency. For each cell,
the weight of each irrigation system is based on the relative number of hectares irrigated
with that system with respect to the total amount of irrigated hectares. Figure 8a,b show
Imz in cubic meters and millimeters, respectively, presenting two different perspectives.
The cubic meter perspective reveals the total actual amount of water used for maize in a
specific cell. However, it does not provide information on the areal density of such amount
of water. The millimeters, instead, corresponding to the normalization of the m3 over the
cultivated areas, provide this detail. Millimeters highlight which areas are more suitable
for maize cultivation due to the local climate. The evident gradient in millimeter demand
from the wetter north to the drier south points out how the local climate strongly influences
the water demand. Two good examples are Pianura Padana (red rectangle) and Salentino
(green rectangle). In Pianura Padana, climate and soil are suitable for maize growth, with
Imz generally below 120 mm/lgp, leading to a large maize cultivation and high volumetric
water demand (above 200,000 m3/lgp). In contrast, Salentino area has a much drier climate,
resulting in high millimeter demand and less extensive maize cultivation, thus leading
to lower m3 demand. It is noteworthy that most areas with the highest Imz correspond
to regions where maize is the primary crop (Figure A1a, Appendix A), making maize the
pivotal crop in those areas. The areas showing high or small water demand in both maps
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are areas the attention of decision-makers should be driven to. In fact, the dark-blue cells
in both maps are regions where the present extensive cultivation is actually located in areas
poor in rainwater, and thus crop shifts should be put in place. Light-gray cells, instead,
spotlight zones where maize cultivation should be developed (focusing only on the maize
perspective) as it is not yet largely present despite the favorable climate.

(a) (b)

Figure 8. Map of modeled mean irrigation demand by maize in Italy expressed in (a) cubic meters;
(b) millimeters. The red rectangle spotlights the Pianura Padana region, while the green one encloses
the Salentino region.

The key sources of uncertainty, cell by cell, in the Imz evaluation are the irrigation
system heterogeneity and the efficiency. While it is not possible to assess a range of
local efficiencies in the absence of more information, a reasonable computation of the
uncertainty in Imz due to the heterogeneity and the relative relevance of the irrigation
systems can be carried out instead. Thus, two other possible values of α were considered:
they correspond to the scenarios of upper (lower efficiency) and lower (higher efficiency)
boundaries of Imz. They can be defined based on whether maize was assumed to be
irrigated primarily using less or more efficient irrigation systems. The upper α value was
computed covering the irrigated area from the least efficient irrigation system to the most
efficient one until exhaustion. For the lower α value, the irrigation systems were applied
from the most efficient to the least efficient. Figure 9a,b display the offsets of the highest
and lowest Imz values, respectively, as percentage deviations with respect to mean values.
The correspondence of zones with the smallest deviations—[0–5%]: light yellow for the
upper limit and light blue for the lower limit—among the figures indicate higher reliability
of Imz values due to smaller heterogeneity regarding the irrigation systems in those areas.
These cells account for almost 15% of the cells. In the majority of the cells (92%), the lower
Imz deviates less than 25% from the mean, while in 67% of the cells the higher Imz is at most
30% larger than the mean. This skewness regarding the distribution around the mean is
due to the fact that micro-irrigation, the most efficient system, covers less than 18% of the
irrigated areas, while flow irrigation, one of the least efficient methods, is used on over
30% (Table 2). If local information on the applied irrigation system were available, the
uncertainty would be limited to the irrigation efficiency values, whose uncertainty has a
smaller impact on Imz computation at the national level.
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(a) (b)

Figure 9. Relative difference in modeled (a) maximum and (b) minimum irrigation water demand
with respect to the mean irrigation requirement.

3.2.2. Scenario Analysis

A key use of agro-hydrological models, such as WaterCROPv2, is to evaluate irrigation
water demand. However, even though they are generally used as assessment tools, they
can also be applied as modeling tools. In this sense, they are key instruments to analyze
scenarios and propose alternatives to the current state. For instance, it is possible to analyze
the effect of changing irrigation thresholds (e.g., irrigation up to fractions of field capacity)
or timing (e.g., biweekly or weekly) to study the impact of different irrigation systems and
to investigate the effects of climate change. These scenarios are fundamental to make the
right decisions on the management and planning of water resources. As an example, we
report here (Figure 10) the hypothetical scenario where maize is irrigated solely by micro-
irrigation. It can be useful for critical analysis, localization, and quantitative evaluation
of the water savings of potential investments in new micro-irrigation systems. Figure 10
shows that, at the national level, the mean water saving is 21%, and in 75% of the cells it
goes up up to 28% (59 mm/lgp). In some areas, it can have even larger effects: it is evident
how the strongest potential water-use reduction of 30–40% is mostly located close to the
Alps and the southern Apennines, where flow irrigation is now predominant due to the
abundance of water (Figure A1b, Appendix A). This information becomes particularly
valuable when considering future temperature and precipitation projections. Studies on
climate change impacts foresee in the areas close to the mountains an increase in mean
temperature of 4 °C and a shift in precipitation distribution towards winter, causing an
increase in drought spells in summer [49]. Thus, the increased evapotranspirative water
demand caused by the higher temperatures will find even less support in the precipitation
water, increasing the stress on the irrigation water.

It is also possible to evaluate how incentives on the increase in micro-irrigation use
(where it is already present) can still bring 5–10% savings. This is important regarding
regions such as Salentino (recall the green rectangle in Figure 8a, very scarce in rainwater).
Figure 11 shows both the preferred irrigation system (indicated by color) and the amount
of water (indicated by shades) currently used in each cell where maize is cultivated. This
paired information allows one to better understand where potential investments would
have the greatest impact as it spotlights where large amounts of water are conveyed on the
field with inefficient systems. For example, the dark-blue and dark-green areas, correspond-
ing to central regions of Pianura Padana (recall the red rectangle in Figure 8a, representing
key target areas for implementing the most effective changes in irrigation systems, resulting
in the most water-demanding zones and the most inefficient irrigation systems on the
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ground). At the same time, it is possible to evaluate the feasibility of changing irrigation
systems: investments in micro-irrigation are more likely to occur regarding fields without
existing equipment rather than in areas already equipped with sprinklers.

Figure 10. Percentage difference in modeled irrigation water demand when only micro-irrigation is
used compared to the mean irrigation requirement under current mixed irrigation systems.

Table 2. Extension of the areas irrigated with a specific irrigation system in Italy, their efficiencies [50],
and their relative relevance at national scale.

Irrigation System Coverage
[103·ha] % Efficiency

η

Submersion 221.0 9 0.25
Micro-irrigation 423.0 17 0.9
Flow and Lateral infiltration 748.4 31 0.55
Sprinklers 958.5 40 0.75
Other 68.4 3 0.7

Figure 11. Classification of Imz according to irrigation system (flow irrigation in blue, sprinklers in
green, and micro-irrigation in yellow) and volumetry class (reported to the right of the color legend
in m3).
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4. Sensitivity Analysis
A sensitivity analysis was carried out to evaluate the impact of data uncertainty on

the estimation of water demand, ETb. To this aim, selected quantities were perturbed one
at a time to assess their individual impact on the model. To compare the sensitivity of ETb

to the different quantities, q, the normalized sensitivity index, SIq, was applied [39]:

SIq =
∆ETb,q

ETb,q
/

∆q
q

(12)

where ∆ETb,q is the variation that ETb undergoes due to the quantity perturbation, ∆q.
We focused on the sensitivity with respect to four key input parameters: maximum root-
ing depth, Znmax, relative soil water content at field capacity, θ f c, interception, T, and
precipitation, P. Rooting depth and interception were considered to test the impact of
simplifying assumptions in the model; in fact, WaterCROPv2 root growth throughout the
entire season does not depend on environmental conditions that may alter the potential
growth, whereas, in reality, growth rates vary depending on external factors such as soil
compaction, water availability, and microbial activity, and an interception independent of
canopy extension. Variations in θ f c reflect the challenges of characterizing soil properties at
the cell scale as they vary within fields and across soil profiles due to agricultural practices
(e.g., compaction). Finally, precipitation can display highly localized patterns (particularly
in spring and summer) that may not be captured by spatially distributed datasets. Positive
and negative variations of 5% were applied to analyze the model’s response in terms of
both the magnitude and direction of change (see Table 3).

Figure 12 illustrates the variability of SIq for each perturbed quantity. Lighter and
darker shades correspond to negative and positive 5% variations in the quantities, respec-
tively. The extent of the boxplots reflects the spatial variability of SI across Italy. It is
evident that soil properties, θ f c, and precipitation, P, have the greatest influence, while
rooting depth, Zn f in, and the interception threshold, T, exhibit smaller effects. Additionally,
negative and positive perturbations produce effects that are similar in magnitude but
opposite in direction: on average, soil properties and precipitation have SI values equal to
±0.86 (−0.79/+0.93) and ±0.8 (+0.84/−0.75), respectively, while Zn f in and T ±0.20 and
±0.17, respectively. The magnitude of the variations at the local scale is consistent across
scales, being comparable to the national-level evaluations (Table 3). Overall, the stability
analysis indicates that the model is robust as changes in the input quantities produce output
variations smaller than the perturbations themselves (i.e., SI < 1).

Table 3. Sensitivity analysis: tested quantities and their associated variations in water demand.

Variable Description Initial Value Variation Final Value
National

Water Demand
Variation

National SIv

Zn f in
Maximum rooting
depth 1 m ± 5% 1.05/0.95 −0.83%/+0.84 % −0.166/+0.168

θ f c

Relative soil water
content at field
capacity

0.275
(silt–clay–loam) ± 5% 0.28875/0.26125

+4.44%/−4.13% +0.88/−0.826
0.225 (loam) ± 5% 0.23625/0.21375
0.125 (loam–sand) ± 5% 0.13125/0.118

T Interception 0.5 mm ± 5% 0.525/0.475 +1.03%/−1.00% +0.206/−0.2

P Precipitation site- and
hour-specific ± 5% site- and

hour-specific −5.10%/+5.53 % −1.02/+1.106
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Figure 12. Boxplots of the sensitivity index, SI, of the water demand evaluated with WaterCROP
model. The x-axis shows the perturbed quantities (both positive and negative): interception threshold,
T, relative water content at field capacity, θ f c, maximum rooting depth, Zn f in, and precipitation, P.

5. Conclusions and Recommendations
The aim of this work was to provide a physically based agro-hydrological model

that could balance the reliability of the evaluation of irrigation water demands at regional
scales with the simplicity of required inputs and short computational time demand. Water-
CROPv2 possesses these characteristics. By building on the original WaterCROPv1 model,
it maintains the use of readily accessible data but enhances the precision of evapotran-
spiration calculations through the inclusion of hourly resolution, daily plant physiology,
rainwater interception, and leakage dynamics, all critical factors for regions with diverse
climates and irrigation practices. However, the authors acknowledge that the model has
some limitations under extreme conditions as it does not account for processes such as
reduced root and canopy growth under severe stress, soil hysteresis, or water stress caused
by excess water. In addition, it was specifically developed for herbaceous and seasonal
crops and is not directly applicable to trees or perennials. Nevertheless, WaterCROPv2
provides improved irrigation demand estimates compared to the previous version and
shows good to excellent agreement with reference data and previous studies at the local
scale. This consistency demonstrates that, despite its lower complexity and non-site-specific
input data, the model is able to reliably estimate crop water needs. Furthermore, sensitiv-
ity analysis with respect to key quantities demonstrated the robustness of the proposed
model’s outputs.

The application of WaterCROPv2 to maize cultivation in Italy was used to show the
potential of the model to be applied as a valuable decision-making tool for water managers
and policymakers. Specifically, the model offers an efficient approach to assess the current
irrigation needs as well as to develop future sustainable water management practices.
The evaluation of the mean irrigation water demand of maize (2005–2015) allowed us
to identify areas where maize production is either suitable or unsustainable due to the
climatic conditions and to spotlight the most water-demanding zones. The possibility to
include different precipitation patterns and simulate irrigation scenarios (e.g., irrigation
systems and timings) allowed us to evaluate the effects of these variables on water demand
and make investment decisions accordingly. The presented example scenario showed
the impact of switching maize irrigation entirely to micro-irrigation, resulting in a mean
national reduction of 21% in water use with potential savings of up to 30–40% in areas
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characterized by high water availability. Furthermore, by intersecting water demand maps
with irrigation system maps, it was possible to gain critical insights into the areas that
would benefit most from investments in upgrading irrigation systems.

In conclusion, from the perspective of increasing water scarcity and the growing
need for efficiency, WaterCROPv2 provides a practical way to assess the sustainability of
agriculture in a given area and identify where adjustments are most urgent and effective.
The model’s simplicity allows evaluations to be undertaken without demanding specialized
expertise while safeguarding process transparency and mitigating the ‘black-box’ effect
characteristic of more complex approaches.

Regarding the Italian case study, future research should extend the analysis of irriga-
tion water demand to encompass all major crops and compare total agricultural demand
with local water availability. Such an approach would help to address issues related to
groundwater and surface water exploitation for agricultural purposes, as well as evalu-
ate variations in demand driven by climate change and the expected pressure on water
resources. These assessments could also contribute to the water–energy–food nexus by
reducing agricultural water demand and providing evidence to support investments in
crop diversification or improvements in irrigation systems.
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Appendix A. Data Pre-Processing
To study the water demand of maize in Italy, accurate research was carried out among

databases and literature data to build the best dataset combining availability, accuracy,
handiness, and reliability (Table A1). According to the resolution of the selected datasets,
the case study was run at 5 × 5 arc-min (pixel of ∼8 × 8 km2 on average in Italy) cell
spatial resolution for the year 2010. This reference year was selected due to data constraints:
detailed information at the municipal scale was only provided by the 6th Agricultural
Census carried out by the National Institute of Statistics, ISTAT [42], which refers to 2010.

https://doi.org/10.5281/zenodo.14217709
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(a) (b)

Figure A1. Maps of (a) the extension of maize cultivation in each cell; (b) the most extensively
adopted irrigation system. Data refer to year 2010.

Table A1. Datasets adopted for the model application to maize in Italy. 1 [52], 2 [42], 3 [53], 4 [30],
5 [54], 6 [55], 7 [56], 8, 9 [57], 10 [50].

Data Type Variable Dataset Temporal Resolution Spatial Resolution

Crop

Potential evapotranspiration CRU 1 month 0.5°

p fraction 3 - year 5 arc min

kc, Dr, Znini , Znmax , ds, dh FAO-56 4 - -

Soil

Available water content Harmonized World 5 Soil Database v1.2 year 5 arc min

Pedologic characteristics 6 - - -

Soil type LUCAS 7 year 500 m

Climate
Climate zones PAMDataset 8 year 5 arc min

Precipitation ERA5 9 hour 0.25°

Irrigation

Cultivated areas CensimentoAgricoltura2010 2 year municipality

Irrigated areas CensimentoAgricoltura2010 2 year municipality

Irrigation system CensimentoAgricoltura2010 2 year municipality

Irrigation system efficiency 10 - - -

Municipalities extensions ConfiniAmministrativi2010 2 year municipality

Crop data. The daily reference evapotranspiration values were defined as 1/30 of the
monthly values provided in the CRU dataset [52]. Given the lack of localized characteri-
zation of maize in terms of growth (kc, Znini, Zmax) and response to water stress (Dr∗), we
referred to general values provided by [58] (Table A2).

Table A2. Crop parameters for maize [58].

Znini Znmax Dr∗ kcini kcmid kcend

0.3 rf: 1.7
irr: 1

0.55 0.3 1.2 0.5

Differently, the grid dataset of sowing and harvesting dates available for cultivated
areas in 2000 [59] allowed us to take into account the quite high climatic heterogeneity
of the Italian territory. By employing a resampling process, we were able to define local
sowing, dS, and harvesting dates, dH . Where cultivated areas existed in 2010 but not in 2000,
and consequently lacked corresponding dates, we performed a linear spatial interpolation
based on the nearest 24 neighboring cells. Through the evaluation of dS and dH , we defined
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lgp: the length of each g-th growing stage. The length of each stage varies according to the
climate zone and was computed as a fraction, p, of the total growing period length [53]

lgpg = pg (̇dS − dH) (A1)

Soil data. To categorize the Italian soil into soil classes, we relied on the 500 × 500 m
resolution dataset LUCAS [56]. As this resolution is higher than 5 arc-min, an upscale was
run. The type of soil attributed to the 5 arc-min cell was the most recurring one among the
500 × 500 m cells falling inside the larger cell. To obtain a consistent result, the behavior of
the different classes of soil to leakage was compared. The aim was to check whether some
classes could be merged into one and, thus, correctly assign a soil type to each 5 arc-min cell.
The classes that showed similar trends have pedological differences that can be considered
negligible for the aim of this study. Figure A2 shows the different behaviors of the eight
soil classes. It is evident how the eight classes group into four clusters. For the sake of
simplicity, even though the sand–loam class is a cluster on its own, it was associated with
loam–sand as very few cells fell into this class, and the remaining classes were traced back
to three classes: silt–clay–loam, loam, and loam–sand.

Figure A2. Leakage L according to the type of soil as a function of s, the relative soil moisture: sand
in black, loam–sand in pink, sand–loam in yellow, silt–loam in light blue, loam in purple, clay–loam
in green, silt–clay–loam in orange, and clay in red.

Typical values of hydraulic soil characteristics, for each class, are reported in Table A3.

Table A3. Soil characteristics [55].

Soil Class Ks [mm/h] b θsat θ f c

Silt–Clay–Loam 0.0612 7.75 0.477 0.275
Loam 0.2502 5.39 0.451 0.225
Loam–sand 5.628 4.38 0.401 0.125

Climate data. Local climate conditions were defined by the climate zones provided in the
PAMDataset [54], and the hourly precipitation data were taken from the reanalysis ERA5
dataset [57]. Geographical coordinates correspond to the location of the centroid of each
grid cell.
Irrigation data. Data on the extension of irrigated areas were available for 2010, only
in listed form and by municipality thanks to the agriculture census run by the National
Institute of Statistics (ISTAT) [42]. To retrieve spatial information (with 5 arc-min resolution)
on maize, the listed data were first combined with the spatial location of each municipality
and then rasterized in grid cells (Figure A3). The rasterization was necessary because
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more than one municipality fell within the same grid cell and each municipality fell within
multiple grid cells.

Figure A3. Pre-processing steps to obtain the spatial distribution of irrigated areas. The first step
requires to attribute to each municipality, spatially located across Italy, its value of irrigated areas.
The second step rasterizes into grid cells the information according to Equation (A2).

Lacking details at the sub-municipal scale, we assumed the maize irrigated area of
each municipality ham to be homogeneously distributed within each municipality m. Hence,
for each grid cell, c, the maize irrigated area hac [ha] was computed assuming that (i) the
percentage of the municipality extension within the grid cell could be directly applied to
the irrigated area, (ii) hac to be homogeneously distributed within the grid cell, and (iii) hac

to be defined as the sum of the percentages of irrigated areas of the m-tot municipalities
that fell within the grid cell. It follows that

hac =
m−tot

∑
m=1

ham
Am,c

Am
(A2)

where ham stands for the maize irrigated area within the m-th municipality, Am for the
municipality area, and Am,c for the municipality extent within the grid cell.

Unfortunately, the CensimentoAgricoltura2010 database provides, for each crop and
municipality, data on the amount of irrigated hectares but not the specific irrigation system
used for each crop. This did not allow us to define a local maize-specific value for the
inefficiency factor α.

To overcome this gap, information about the typical irrigation systems used for maize
in each cell was intersected with information on the available irrigation systems in each
municipality. It was thus possible to define, for each cell, a plausible mix of used irrigation
systems. Typically, in Italy, maize is irrigated with flow and lateral infiltration, sprinklers,
and micro-irrigation systems, and for their efficiencies we referred to data published by the
Italian Ministry of Agriculture Food Sovereignty and Forestry [50] reported in Table 2.

Hence, for each cell, c, the inefficiency factor α was computed as

αc = ∑
y
(

1
ηy

hay

hatot
) (A3)

where y stands for each irrigation system used in the cell, ηy for the corresponding efficiency,
hay for the hectares irrigated with the irrigation system y, and hatot for the total amount of
irrigated hectares within the cell.
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Appendix B. Trends of Root Growth and Crop and Stress Coefficient
Figure A4 reports the trends of Zn and kc during the growing stages of the growing

season. Figure A5, instead, shows the trend of ks as function of the soil water content WC.

Figure A4. Qualitative description of the crop coefficient kc (in black) and the elongation of the roots
Zn (in purple) during the growing stages lgps of the growing season.

Figure A5. Qualitative description of the crop coefficient, ks, according to the soil water content.
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