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Abstract

Due to global warming, extreme temperature events have become increasingly prevalent,
posing significant threats to both socioeconomic development and human safety. While
previous studies have extensively examined the influence of individual climatic circulation
systems on extreme temperature, the combined effects of multiple concurrent circulation
patterns remain poorly understood. Using daily temperature data from 29 meteorological
stations in Chongqing (1960–2019), this study employs linear trend analysis, correlation
analysis, and random forest (RF) models to analyze spatiotemporal variations in the in-
tensity and frequency of extreme temperature. We selected 21 climate indicators from
three categories—atmospheric circulation, sea surface temperature (SST), and sea-level
pressure (SLP)—to identify the primary drivers of extreme temperatures and quantify
their respective contributions. The key findings are as follows: (1) All extreme intensity
indices exhibited an increasing trend, with the TXx (annual maximum daily maximum tem-
perature) showing the higher trend (0.03 ◦C/year). The northeastern region experienced
the most pronounced increases. (2) Frequency indices also displayed an upward trend.
This was particularly evident for the TD35 (number of days with maximum temperature
≥35 ◦C), which increased at an average rate of 0.16 days/year, most notably in the north-
east. (3) The Western Pacific Subtropical High Ridge Position Index (GX) and Asia Polar
Vortex Area Index (APV) were the dominant climate factors driving intensity indices, with
cumulative contributions of 26.0% to 33.4%, while the Western Pacific Warm Pool Strength
Index (WPWPS), Asia Polar Vortex Area Index (APV), North Atlantic Subtropical High
Intensity Index (NASH), and Indian Ocean Warm Pool Strength Index (IOWP) were the
dominant climate factors influencing frequency indices, with cumulative contributions of
46.4 to 49.5%. The explanatory power of these indices varies spatially across stations, and
the RF model effectively identifies key circulation factors at each station. In the future, more
attention should be paid to urban planning adaptations, particularly green infrastructure
and land use optimization, along with targeted heat mitigation strategies, such as early
warning systems and public health interventions, to strengthen urban resilience against
escalating extreme temperatures.

Keywords: Chongqing: extreme temperature; circulation indices; RF model

1. Introduction
According to the sixth assessment report of the intergovernmental panel on climate

change (IPCC, 2021), the global average surface temperature in 2011–2020 was 1.1 ◦C
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higher than that recorded during 1850–1900 [1]. In China, the temperature has increased by
0.26 ◦C per decade since 1951—nearly double the global average increase of 0.15 ◦C per
decade over the same period. The China Climate Change Blue Book emphasizes that China is
both a highly sensitive and significantly impacted region in the context of global climate
change [2,3]. Projections by the WMO indicate that extreme high-temperature events will
intensify, characterized by greater intensity, a prolonged duration, and increased frequency.
These changes pose severe risks to natural ecosystems, socioeconomic stability, and public
health [4,5], with heatwaves already ranking as the deadliest weather-related disaster [6].
Between 2000 and 2019, extreme heat caused an estimated 489,000 annual deaths globally,
and by 2100, half of the world’s population could face life-threatening heatwaves [7]. In
light of these threats, understanding the spatiotemporal patterns and driving mechanisms
of extreme temperatures is critical for mitigation and adaptation strategies [8].

Numerous countries and regions worldwide—particularly Western Europe, North
America, and East Asia—are experiencing increasingly severe extreme high-temperature
events [9,10]. Previous studies indicate that Western Europe has warmed at a rate of
0.74 ◦C per global warming degree (GWD) over the past 70 years—a faster increase than
that observed in other regions [11]. In the US, the frequency of extreme high-temperature
events rose by approximately 20% between 1983 and 2023, while heatwave duration ex-
tended from 30 to 70 days [12]. East Asia has experienced approximately 2 ◦C of warming
relative to pre-industrial levels [13]. Meanwhile, China has faced growing threats from
extreme heat, particularly in the middle and lower Yangtze River Basin, Huai River Basin,
and Sichuan Basin, which have emerged as high-frequency zones for such events [14,15].
Projections suggest that these regions will experience further intensification of extreme
temperatures in the coming decades. Existing studies have primarily characterized ex-
treme high-temperature events through metrics such as maximum values, frequency, and
duration [16,17].

The factors driving extreme high temperatures have emerged as a key focus of current
climate research. Scholars typically examine the impact of atmospheric circulation patterns
on regional heat events, with studies demonstrating that the Western Pacific Subtropical
High and El Niño–Southern Oscillation significantly influence temperature extremes in
China [18–20]. Conventional approaches using linear regression and composite analysis
have established important relationships between circulation patterns and extreme heat.
However, existing research is limited by its predominant reliance on single-variable cor-
relation analysis, with few studies examining the coupled effects of multiple circulation
elements [21]. In reality, extreme heat events result from complex interactions between
atmospheric circulation, sea surface temperatures, sea-level pressure, and local topography,
which introduce substantial variability and uncertainty. Single-variable linear correlation
methods have proven inadequate for uncovering the underlying formation mechanisms.
Future research should prioritize multivariate analysis to better understand the synergistic
effects of these factors. Such approaches would enable a more accurate identification of
dominant drivers and provide a stronger scientific foundation for a predictive modeling of
extreme heat events.

As one of China’s most heat-vulnerable regions, Chongqing has experienced increas-
ingly severe extreme high-temperature events under global climate change. In recent years,
researchers have witnessed a notable intensification in both the duration and severity of
heatwaves, exemplified by two extreme events in July 2022 and August 2024 that resulted
in temperatures exceeding 35 ◦C for up to 70 days. The 2024 heatwave alone resulted in
RMB 3.33 billion in direct economic losses, severely impacting urban infrastructure and
public health [22,23]. Existing research on Chongqing’s thermal extremes remains limited
in temporal scope and analytical depth. Although Zhang et al. examined temperature
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frequency and intensity from 1961 to 2006 [24] and Cheng et al. identified the Yangtze
and Wujiang River basins as high-temperature hotspots, most of the existing studies were
conducted prior to 2015 and focus primarily on occurrence trend analysis rather than
causal mechanisms [25]. This knowledge gap hinders both the understanding of heatwave
formation and the development of effective mitigation strategies. To address these limi-
tations, this study employs daily temperature data from 29 meteorological stations and
applies a random forest model to systematically investigate the nonlinear relationships
between circulation patterns and extreme temperatures. Our approach aims to (1) elucidate
the complex drivers of heat extremes in Chongqing and (2) enhance predictive capabili-
ties to support climate adaptation planning and heat-risk management in mountainous
urban areas.

2. Study Area and Dataset
2.1. Study Area

Chongqing covers an area of 82,400 km2 and has predominantly mountainous and hilly
terrain (75.8% of the total area) [26]. The topography exhibits distinct regional variations:
higher elevations dominate the southeast and northeast, while lower elevations characterize
the central and western regions, gradually descending along the Yangtze River valley
from north to south [27]. The northeast is framed by the Daba and Wushan Mountains,
whereas the south is traversed diagonally by the Dalou and Wuling Mountains, with parallel
ridges and valleys predominating in the central region (Figure 1a). It has a subtropical
humid monsoon climate, with rain and heat occurring during the same period (summer:
June–July–August), and any extreme temperature event occurred during summer [28]. In
recent decades, there has been an increase in both the frequency and intensity of extreme
high-temperature events, with profound impacts on urban infrastructure, public health,
and agricultural productivity. The July–August 2022 heatwave set multiple records that
were originally established in 1961, including the highest average temperature, maximum
number of hot days, and peak intensity [29]. Seventeen districts reported unprecedented
temperatures, which affected 2.72 million residents and caused CNY 3.56 billion in direct
economic losses [30]. As shown in Figure 1b, the annual average temperature distribution
displays marked spatial heterogeneity, which can be divided into four climatic zones, namely
northeast, southeast, central, and western. High-temperature centers cluster in central
and western plains/hills, while low-temperature areas concentrate in southeastern and
northeastern high-altitude mountains. Representative extreme-temperature stations include
Fengjie (northeast), Zhongxian (central), Shapingba (western), and Youyang (southeast).

2.2. Data Sources

This study utilizes maximum temperature data from the China Meteorological Data
Service Center (http://data.cma.cn (accessed on 30 September 2024)); the station meta-
data are presented in Table 1. To maintain data integrity, we applied linear regression
interpolation for stations with minor data gaps (0.005–0.42% missing rates in Wanzhou,
Changshou, Fuling, and Wulong) using contemporaneous data from neighboring stations
for imputation. Stations with more than 1.5% of their data missing (Tiancheng, Wansheng,
Wushan, and Kaixian) were excluded from the analysis. Previous studies indicated that
atmospheric circulation was a principal driver of extreme heat events [31,32]. For example,
the Yangtze River Basin heatwave in 2022 was associated with an anomalously intense
and westward-extending Western Pacific Subtropical High [33]. In this study, we select
21 climatic indices, including 13 atmospheric circulation, 6 SST, and 2 SLP indices (Table 2,
sourced from the National Climate Center: http://cmdp.ncc-cma.net/cn/download.htm

http://data.cma.cn
http://cmdp.ncc-cma.net/cn/download.htm
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(accessed on 30 September 2024)). These were selected to identify the key factors influencing
extreme temperature indices in Chongqing.

Figure 1. Overview of Chongqing. (a) Distribution of the region’s topography and meteorological
stations; (b) annual average temperature; and (c) annual maximum temperature.

Table 1. Basic information of selected meteorological stations in Chongqing.

Station No. Station Latitude/◦ Longitude/◦ Elevation/m Distance to
Sea/km

1 Chengkou 31.57 108.4 798.2 1029.3
2 Yunyang 30.57 108.41 297.2 1001.1
3 Wuxi 31.24 109.37 337.8 970.6
4 Fengjie 31.01 109.32 299.8 996.8
5 Tongnan 30.11 105.48 297.7 956.2
6 Dianjiang 30.2 107.2 433.8 940.5
7 Liangping 30.41 107.48 454.5 974.3
8 Wanzhou 30.46 108.24 186.7 980.8
9 Zhongxian 30.18 108.02 325.6 930.4

10 Shizhu 29.59 108.07 632.3 894.9
11 Rongchang 29.25 105.35 338 882.6
12 Tongliang 29.51 106.04 326.3 913.5
13 Beibei 29.51 106.27 240.8 903.8
14 Hechuan 29.58 106.16 364.5 920.7
15 Yubei 29.44 106.37 464.7 887.5
16 Bishan 29.35 106.13 331.5 881.1
17 Shapingba 29.35 106.28 259.1 874.7
18 Jiangjin 29.17 106.15 261.4 848.2
19 Banan 29.2 106.3 506.1 847.1
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Table 1. Cont.

Station No. Station Latitude/◦ Longitude/◦ Elevation/m Distance to
Sea/km

20 Nanchuan 29.1 107.07 698.8 816.1
21 Changshou 29.5 107.04 377.6 889.7
22 Fuling 29.44 107.16 372.8 875.6
23 Fengdu 29.51 107.44 290.5 882.8
24 Wulong 29.19 107.45 406.9 823.8
25 Qianjiang 29.31 108.46 786.9 842.3
26 Pengshui 29.18 108.1 322.2 818.9
27 Qijiang 29 106.39 474.7 807.7
28 Youyang 28.49 108.46 826.5 764.7
29 Xiushan 28.22 109.01 548.7 715.9

Table 2. The large-scale climate driving indices and their abbreviations used in this study.

Type Circulation Name Abbreviation

Atmospheric circulation

Indian Subtropical High Area Index ISA
Western Pacific Subtropical High Area Index WPSHA

Atlantic Subtropical High Area Index AHA
North Atlantic Subtropical High Intensity Index NASH

Arctic Oscillation AO
Atlantic Sub Tropical High Ridge Position Index ASRP

Western Pacific Subtropical High Ridge Position Index GX
Western Pacific Subtropical High Intensity Index WPSH

West Pacific Pattern WP
Asia Polar Vortex Area Index APVA

Asia Polar Vortex Intensity Index APV
Indian Subtropical High Ridge Position Index IRP

Indian Subtropical High Intensity Index ISHI

SST

Niño 4 Index Niño 4
Indian Ocean Warm Pool Area Index IOWPA

Western Pacific Warm Pool Area Index WPWPA
Atlantic Multi-decadal Oscillation Index AMO

Western Pacific Warm Pool Strength index WPWPS
Indian Ocean Warm Pool Strength Index IOWP

SLP
Southern Oscillation Index SOI
Multivariate ENSO Index MEI

3. Methodology
This study comprises the two following key components: (1) an analysis of the spa-

tiotemporal characteristics of extreme temperatures, and (2) an investigation of their cli-
matic drivers. In pursuit of the former, we employed linear regression, Mann–Kendall
(M-K) trend tests, and Pettitt tests to examine the spatiotemporal evolution of four extreme
temperature indices. The second component involved conducting both single-factor (Pear-
son correlation) and multi-factor (RF model) analyses to identify relationships between
extreme temperature indices and climatic drivers.

3.1. Extreme Temperature Indices

The RClimDex model, developed by Zhang et al. at the Canadian Meteorological
Research Center using the R software version 4.3.3, provides an efficient platform for
computing extreme climate indices [34]. This tool simplifies the calculation process and
can generate 16 extreme temperature indices. For our analysis, we employed RClimDex
to calculate the TXx (annual maximum daily maximum temperature) and TNn (annual
minimum daily minimum temperature). Following established meteorological standards,
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we adopted the China Meteorological Administration’s definition of extreme high tem-
peratures as daily maximum temperatures exceeding 35 ◦C—a threshold associated with
significant health risks and adverse impacts [35]. We also incorporated the international
criterion of daily minimum temperatures above 20 ◦C, which is particularly relevant for
agricultural and industrial systems [36,37]. Based on these standards, our study focuses
on four key extreme temperature indices (shown in Table 3), which are TXx, TXn, TD35,
and TR20.

Table 3. Description of extreme temperature indexes used in this study.

Sector Index Index Definitions Units

Intensity Index

TXx
The highest value of the highest

temperature for each month from the
daily maximum temperature data.

◦C

TXn
The lowest value of the highest

temperature for each month from the
daily maximum temperature data.

◦C

Frequency Index

TD35

The number of days with a maximum
temperature above 35 ◦C in each
month from the daily maximum

temperature data.

days

TR20

The number of days with a minimum
temperature above 20 ◦C in each
month from the daily minimum

temperature data.

nights

3.2. Mann–Kendall Test

We employed the non-parametric M-K trend test to analyze extreme temperature
indices. This test was selected for its robustness to non-normal distributions and outliers.
The analysis was performed at both 0.05 and 0.01 confidence levels. The standardized test
statistic (Z) was calculated from the M-K statistic and its variance (with adjustment for
tied values), where a statistically significant positive Z value indicates an increasing trend,
while a significant negative Z value denotes a decreasing trend [38].

3.3. Attribution Analysis of Extreme Temperature Changes
3.3.1. Selection of Climate Driving Factors

To address potential multicollinearity among the climate factors listed in Table 2, we
implemented a two-step variable selection procedure [39]. First, we calculated Pearson
correlation coefficients between all climate factors to identify highly correlated variable
groups. We then applied principal component analysis (PCA) to these groups and noted
the presence of multicollinearity when the vector angle between factors was less than
30◦ (Figure 2). Through this screening process, we excluded seven redundant climate
factors, namely the Niño 4, MEI, IOWPA, IOSHA, WPSHA, AHA, and WPWPA. As a
result, 14 climate factors were retained for subsequent analysis. Recognizing the potential
lagged effects of climate factors on extreme temperatures, we identified optimal lag times
by computing Pearson correlation coefficients across 0–12-month lags. For each factor, we
selected the lag period that showed the maximum correlation with extreme temperatures.
We then used these optimally lagged climate factors in our attribution analysis of extreme
high-temperature events.



Hydrology 2025, 12, 208 7 of 20

Figure 2. Multicollinearity analysis between pairwise atmospheric circulation indices.

3.3.2. Random Forest

The RF model is an ensemble machine learning method that utilizes bootstrap ag-
gregation (bagging) to enhance predictive performance, as this model excels at handling
nonlinear relationships between multiple factors [40]. For every bootstrap subset, the
method builds a decision tree, where each tree is trained on a randomly selected portion
of the data to improve the model’s generalization performance. This algorithm operates
by (1) generating multiple bootstrap samples from the original dataset, (2) constructing a
decision tree for each sample using randomly selected subsets of predictors at each node,
and (3) aggregating predictions across all trees. This approach significantly improves
model generalization and demonstrates robust performance in both classification and
regression tasks.

In the RF model, the incremental mean squared error (IMSE) is typically employed
as a key indicator for evaluating the importance of individual factors. In this study, we
applied normalization to scale the cumulative factor importance to 100%, enabling us to
accurately derive the relative contribution of each factor. The formula is as follows:

VIMk =
VIMk

(Gini)

∑m
k=1 VIMk

(Gini)

where VIMk represents the extent to which the factor contributes to extreme high temper-
ature; VIM(Gini)

k indicates the importance of the factors; and the total of VIMk across all
factors is equal to 1.

4. Results
4.1. Long-Term Changes in Selected Extreme Temperature Indices

Figure 3 illustrates the temporal evolution of four extreme temperature indices at
Shapingba station, which has been selected as Chongqing’s national representative station.
All indices exhibit significant increasing trends, with maximum values predominantly
occurring post-2000, indicating heightened exposure to extreme temperature risks. This
pattern was consistently observed across other stations. We identified abrupt change points
in four indices using Pettitt’s test [41]. Three indices (TXx, TD35, and TR20) showed change
points around 2000, while TXn exhibited an earlier shift in 1985. These transitions likely
reflect responses to global climate change, with the earlier TXn shift potentially indicating
initial changes in minimum temperature extremes preceding other indices.



Hydrology 2025, 12, 208 8 of 20

Figure 3. Change evolution and potential abrupt changes in four selected extreme temperature indices
in a typical station (Shapingba in region III) from 1960 to 2019. U* and p represent the statistical and
significance level of the Pettitt test, respectively.

4.2. Changes in Intensity of Extreme Temperature

Figure 4 presents the spatial distribution of extreme temperature intensity, as mea-
sured by TXx and TXn indices. Our analysis reveals a predominant increasing trend
in TXx across most stations, with considerable spatial variability in warming rates
(−0.0065 to 0.166 ◦C/year). The most pronounced warming occurred at Qianjiang sta-
tion (0.166 ◦C/year) in the southeastern region, while Banan station in the western re-
gion showed a marginal cooling trend (−0.0065 ◦C/year). Notably, only three stations
(Tongnan, Banan, and Youyang) exhibited slight decreases. Regional analysis demon-
strates distinct spatial patterns: the western region displayed the most significant warming
(0.028–0.035 ◦C/year), while the central region showed minimal change with near-zero
growth rates. The TXn analysis reveals a similar (predominantly increasing) trend, though
with reduced magnitude compared to TXx (0.01–0.09 ◦C/year). The strongest warming
effect occurs at Fengjie station in the northeast (0.09 ◦C/year), while Banan station in
the west again shows minimal cooling (−0.01 ◦C/year). Spatially, the northeast exhibits
the most pronounced increases (0.05–0.10 ◦C/year) in contrast with the southeast, where
trends approach zero. These findings highlight substantial spatial heterogeneity in extreme
temperature trends across Chongqing.

The M-K test results reveal statistically significant trends for both TXx and TXn
indices at most stations. For TXx, 62% of stations showed a significance level of 0.05,
with 31% reaching a significance level of 0.01. The corresponding figures for TXn were
55% and 27%, respectively. Spatially, stations with higher significance levels clustered
predominantly in the western region, where 75% (TXx) and 50% (TXn) of stations achieved a
significance level of 0.05. In contrast, most southeastern stations failed to achieve statistical
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significance at either level. Notably, Wuxi (TXx) and Fengjie (TXn) demonstrated the
strongest significance, indicating particularly pronounced trends in these locations. These
results collectively demonstrate more robust temperature trends in western compared to
southeastern Chongqing.

Figure 4. Spatial trends of extreme temperature intensity from 1960 to 2019 in Chongqing.

Figure 5 presents the decadal evolution of extreme temperature intensity indices
across Chongqing. Spatially, high-value areas consistently concentrate along the Yangtze
River valley, while low-value centers persist in southeastern and northeastern mountain-
ous regions. Regarding TXx, since the 1960s, most districts and counties in Chongqing
have recorded TXx values exceeding 38 ◦C, with only a few stations in the central and
southwestern regions surpassing 40 ◦C. From the 1970s onward, high-value areas began to
expand, followed by a further notable increase in the 2000s. The most significant expansion
occurred in the 2010s, when areas with TXx ≥ 40 ◦C accounted for approximately half of
the entire city, indicating a substantial intensification of extreme maximum temperature
intensity. The evolution of TXn shows a similar trend: in the 1960s, most areas, except for
some parts of the central and western regions, recorded TXn values below 2.5 ◦C. Although
there was a brief decline in the 1970s and 1980s, TXn has steadily risen since the 1990s.
By the 2010s, areas with TXn ≥ 5 ◦C had expanded significantly, covering about 50% of
the region. Overall, both intensity indices have exhibited a consistent upward trend over
the past 60 years, with only a slight decline in the 1970s and 1980s. The most pronounced
increase occurred between the 2000s and 2010s, during which the area with TXx values
reaching 40–43 ◦C expanded by nearly one-third, and the area with TXn values reaching
5–7.5 ◦C increased by approximately one-fifth. This indicates a rapid expansion of extreme
high temperatures from the central axis of the Yangtze River to the surrounding regions.

4.3. Changes in Frequency of Extreme Temperatures

Figure 6 displays the spatial distribution of extreme temperature frequency trends
as measured by TD35 and TR20. The TD35 index shows a predominantly increasing
trend across most stations, though considerable spatial variability is observed (−0.16 to
0.77 days/year). The most pronounced increase occurs at Wuxi station in the northeastern
mountains (0.77 days/year), while Banan station in the southern urban core shows a
marginal decrease (−0.16 days/year). The northeastern region exhibits the strongest
warming trend, with multiple stations exceeding 0.10 days/year. Southwestern and central
regions demonstrate more moderate changes, ranging from slow increases to near-stable
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conditions. Only Banan station shows declining trends. These patterns highlight significant
spatial heterogeneity in the intensification of extreme heat frequency across Chongqing’s
diverse topography.

Figure 5. Spatial changes in extreme temperature intensity in each decade from 1960 to 2019.

Similarly, the TR20 index demonstrates an increasing trend, reflecting more fre-
quent nighttime high-temperature events across the region. Annual change rates range
from −0.28 to 0.55 days/year, with Fengjie station showing the most significant increase
(0.55 days/year) and Banan station in the southeastern hills exhibiting the largest decrease
(−0.28 days/year). Western regions show the strongest warming trend at multiple sta-
tions (>0.1 days/year), while southeastern areas display minimal change overall, with
some localized decreases. These patterns indicate substantial regional variability in night-
time temperature extremes, with western Chongqing experiencing the most pronounced
increases in tropical night frequency.
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The M-K trend test results reveal statistically significant trends for both frequency
indices across multiple monitoring stations. For TD35 (days ≥ 35 ◦C), 31% of stations
showed significant trends at 0.05, with 20% reaching a significance level of 0.01. Wuxi
station exhibited the strongest statistical confidence for this index. The TR20 index demon-
strated even greater significance, with 38% of stations achieving a significance level of 0.05
and 27% achieving a significance level of 0.01, with Shapingba station showing the most
robust trend.

Figure 6. Spatial trends of extreme temperature frequency from 1960 to 2019.

Figure 7 presents the decadal evolution of extreme temperature frequency indices
(TD35 and TR20) across Chongqing. Spatially, high-frequency zones consistently concen-
trate along the Yangtze River valley, while low-frequency areas persist in the southeastern
and northeastern highlands. For TD35, central/western regions experienced more than
20 hot days/year, while southeastern/northeastern areas remained below this threshold
in the 1960s. From the 1970s onward, high-frequency hot day zones (TD35) progressively
expanded outward, undergoing accelerated growth during the 2000s. This spatial prop-
agation peaked in the 2010s, when areas experiencing more than 40 hot days annually
encompassed approximately 67% of Chongqing’s metropolitan area, demonstrating a sub-
stantial intensification of extreme heat frequency. The trend of TR20 aligns closely with that
of TD35. During the 1960s, TR20 exceeded 90 hot nights/year only in localized areas of
central and western Chongqing, with most regions recording fewer than 60 hot nights. This
pattern shifted markedly by the 2010s, when conditions involving more than 90 tropical
nights/year expanded to encompass approximately 67% of the study area, representing a
substantial increase in both the frequency and spatial extent of tropical nights.

Overall, both TD35 and TR20 indices demonstrated sustained increasing trends, in-
terrupted only by a temporary decline in TD35 during the 1970s–1980s when 20–30 hot
day zones contracted by nearly 50%. The most substantial expansion occurred during the
2000–2010 period, with the number of regions experiencing 30–40 annual hot days (TD35)
increasing by 33%, and areas with more than 5 ◦C TR20 growing by 20%. These trends
reveal a synchronous expansion in both the frequency and spatial coverage of extreme heat
events, radiating outward from Chongqing’s Yangtze River corridor and urban centers
under persistent warming conditions.



Hydrology 2025, 12, 208 12 of 20

Figure 7. Spatial changes in extreme temperature frequency in each decade from 1960 to 2019.

4.4. Attribution Analysis of CLIMATE Indices on Extreme Temperature

Figure 8 depicts the correlation matrix between 14 climatic drivers and four extreme
temperature indices. Significant correlations (p < 0.05) between multiple climatic factors
and all temperature indices can be observed, with optimal lag times predominantly occur-
ring during June–August. The strongest associations are observed for seven circulation
indices, namely IOWP, IRP, APVI, APVA, GX, ASRP, and NASH. TXx shows negative corre-
lations with IOWP, IRP, WP, GX, ASRP, and NASH, while TXn exhibits positive correlations
with these same indices. TXx exhibits positive correlations with APVI, APVA, WPWPS,
and WPSH, whereas TXn shows negative correlations. As for TD35 and TR20, they were
both positively correlated with IOWP, IRP, GX, ASRP, NASH, and WPSH and negatively
correlated with APVI and APVA, respectively. These results highlight the dominant influ-
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ence of regional circulation patterns on Chongqing’s extreme temperature variability, with
particularly strong seasonal coupling during the summer months.

Figure 8. Pearson’s correlation coefficient between extreme temperature indices and large-scale
circulation. Bold font indicates a significance level of greater than 0.05.

We employed an RF model to quantify climatic drivers’ contributions to extreme
temperature indices in Chongqing. To avoid overfitting the RF model, the dataset was
split into 70% for calibration and 30% for validation. We conducted model calibration
and validation for four typical stations. Their determination coefficients (R2) were greater
than 0.85. As shown in Figure 9, the model calibration results for Shapingba station
demonstrate strong predictive performance across all four indices, with determination
coefficients (R2) exceeding 0.86 and root mean square errors (RMSEs) of less than 3.01.
These robust validation metrics confirm the RF model’s suitability for forecasting extreme
temperature patterns.

The contributions of individual atmospheric circulation indices are listed in Figure 10.
As for intensity indices, we noted no significant regional difference in the contribution rates
of various climate driving indices. Both GX and APV were the dominant climate driving
factors influencing TXx and TXn. The cumulative contributions of GX and APV accounted
for 29.7% (TXx) and 33.0% (TXn) at Shapingba (region III) compared to 26.0% and 33.4%
at Fengjie (region I), respectively. According to Figure 8, both strong GX and weak APV
could contribute to the occurrence of extremely high temperatures. Enhanced GX intensity
promotes westward expansion, positioning Chongqing under a subsiding northwesterly
airflow that suppresses convection and reduces cloud cover, thereby increasing surface solar
radiation. APV reductions indicate polar vortex contraction, weakening cold air advection
from mid-latitude regions. As for frequency indices, the dominant climate driving factor
varied with different regions due to the randomness of TD35 and TR20. For example,
NASH made the most significant contribution (16.3%) to TD35 in Fengjie (region I), and
APV made the most significant contribution (15.1%) to TD35 in Shapingba (region III).
Overall, WPWPS, APV, NASH, and IOWP were the dominant climate driving factors that
affected TD35 and TR20, which indicates that the occurrence of extreme heat events is
determined by multiple factors [42].
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Figure 9. Comparison between four extreme temperature indices (simulated and observed) of a
typical station (Shapingba in region III) based on the RF model.

Figure 10. Contribution of large-scale atmospheric circulations on extreme temperature indices in
Chongqing. (a) Contribution rates (%) of large-scale circulation factors to intensity indices (TXx, TXn).
(b) Contribution rates (%) of large-scale circulation factors to frequency indices (TD35, TR20).

5. Discussion
5.1. Variation Characteristics of Extreme Temperatures

Chongqing experienced significant warming from 1960 to 2019. Regarding the four
extreme temperature indices discussed in this study, regardless of intensity or frequency
indices, the overall average trend showed a sensitive response to global warming, with the
change amplitude exceeding the global average [43]. Table 4 reveals the differences in the
trends of extreme temperature indices in China’s other regions and the global land. While
the study periods examined across different research papers vary slightly (within a 10-year
range), this temporal discrepancy does not preclude meaningful qualitative comparisons.
The TXx trend (0.30 ◦C/decade) in Chongqing was the highest among these studies, whose
trends were reported to be almost twice those of the Yangtze River Basin (0.16 ◦C/decade).
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We also noted signs of sudden changes in Chongqing’s warming, with an abrupt increase
in three extreme temperature indices (TXx, TD35, and TR20) around the year 2000. These
observations are indicative of an increased likelihood of more frequent and severe extreme
heat events in the coming decades [44–46].

The extreme temperature intensity in Chongqing is greater than that of other re-
gions [47]. We used TD35 rather than TD25 (the number of days with a maximum temper-
ature of ≥25 ◦C) to investigate extreme temperature frequency. Although the increasing
trend of TD35 was lower than that of TD25 in other regions of China (Table 4), the TD35
trend showed greater significance compared to other indices, which may be attributed to
the nonlinear response of the climate system due to complex topography [48].

Table 4. Comparison of the change trends of extreme temperature indices in different regions.

Regions Period TXx
(◦C/Decade)

TXn
(◦C/Decade)

TD35 (TD25)
(Days/Decade)

TR20
(Nights/Decade)

Chongqing 1960–2019 0.31 0.19 1.60 (TD35) 1.30
The Loess Plateau [49] 1960–2013 0.20 0.30 4.17 (TD25) 1.40

The Yangtze River
Basin [50] 1962–2011 0.16 0.33 2.93 (TD25) 1.80

China land [51] 1960–2010 0.17 0.32 1.90 (TD25) 1.20
Global land [43] 1951–2015 0.11 0.28 0.47 (TD25) 0.91

5.2. Climate Driving Factors of Extreme Temperatures

Extreme temperature events result from complex interactions among multiple factors,
with atmospheric circulation patterns and sea–atmosphere interactions emerging as the
two dominant drivers [52]. These systems regulate temperature extremes through dynamic
and thermodynamic processes, often triggering cascading impacts across regional and
global climates [53]. While previous studies have typically examined individual or limited
climate indices, our analysis incorporates 21 indicators across three categories (atmospheric
circulation, SST, and SLP) to comprehensively assess their combined influence on extreme
temperatures. We employ an RF model to quantify these relationships, which captures
the nonlinear responses of extreme temperatures to climatic drivers—a critical expansion
of traditional linear methods (e.g., stepwise regression) that fails to account for such
complexities [54].

Our analysis identifies GX and APV as the dominant climatic drivers of extreme
temperature intensity (TXx and TXn) in Chongqing and suggests that WPWPS, APV, NASH,
and IOWP primarily influence frequency indices (TD35 and TR20). Notably, Western
Pacific Subtropical High indicators (i.e., GX and WPWPS) exhibit the strongest impacts on
extreme temperatures, with GX modulating temperatures through atmospheric circulation
anomalies and WPWPS acting via sea–atmosphere interactions [55,56]. These results
are consistent with broader patterns observed across China, where the Western Pacific
Subtropical High serves as the principal driver of extreme temperatures. Its anomalous
westward extension enhances subsidence warming while suppressing cloud formation and
precipitation [57]. Additional factors, including NASH, IOWP, and APV, also contribute to
temperature extremes through distinct mechanisms: NASH influences the Yangtze River
Basin via mid-latitude Rossby waves, while IOWP modulates the regional climate through
Indian Ocean sea surface temperature anomalies. This multi-factor interplay underscores
the complexity of extreme temperature formation [58]. The identified mechanisms align
with findings by Qin et al. [59], who demonstrated that coupling between the South Asian
High and WPSH exacerbated drought and extreme heat events in southern China during
summer months.
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Urbanization further exacerbates regional temperature increases through modifica-
tions to surface properties, anthropogenic heat emissions, and local circulation patterns,
which have a particularly noticeable impact on the intensification of summer extreme heat
events [60,61]. While numerous studies have documented this urban heat island effect
in major Chinese cities such as Shanghai and Beijing [62,63], our analysis did not detect
a pronounced urban heat island effect signal across the broader Chongqing area. How-
ever, the marked acceleration in extreme temperature trends observed circa 2000 coincides
temporally with Chongqing’s rapid urbanization phase. Recent climate conditions have
demonstrated an increasing prevalence of extreme temperatures under combined urban-
ization and climatic forcing [64]. This is evidenced by two record-breaking heat events (in
July 2022 and August 2024) occurring within the past five years. These findings highlight
the critical need to implement evidence-based urban planning adaptations—particularly
green infrastructure development and land use optimization—along with targeted heat
mitigation strategies, such as early warning systems and public health interventions, to
strengthen urban resilience against escalating temperature extremes [65,66].

6. Conclusions
This study examined the spatiotemporal evolution of extreme temperature in

Chongqing using daily temperature records from 29 meteorological stations (1960–2019). By
applying a RF model, we quantify the nonlinear relationships between climatic drivers and
extreme temperature indices, identifying dominant circulation factors. Key findings include

(1) From the perspective of temporal changes, all extreme temperature indices exhibited
obvious increasing trends, with TXx of 0.03 ◦C/year, TXn of 0.02 ◦C/year, TD35 of
0.16 days/year, and TR20 of 0.14 nights/year. Abrupt change points of all indices
were identified at around 2000, except for TXn.

(2) From the perspective of spatial changes, extreme temperature in most stations
showed an increasing trend, with 58.6%, 55.2%, 31.0%, and 41.4% of stations be-
yond 0.05 significance level for TXx, TXn, TD35, and TR20, respectively.

(3) RF models were established between extreme temperature indices and climate driving
factors, with an R2 value for all stations more than 0.85. GX and APV were the
dominant climate driving factors in TXx and TXn, with cumulative contributions of
26.0% to 33.4%, while WPWPS, APV, NASH, and IOWP were the main dominant
climate driving factors in TD35 and TR20, with cumulative contributions of 46.4
to 49.5%.
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Abbreviations
The following abbreviations are used in this manuscript:

TXx The highest temperature of each month from the daily maximum temperature data

TXn
The lowest value of the highest temperature for each month from the daily
maximum temperature data

TD35
The number of days with a maximum temperature above 35 ◦C in each month
from the daily maximum temperature data

TR20
The number of days with a minimum temperature above 20 ◦C in each month
from the daily minimum temperature data

SST Sea surface temperature
SLP Sea-level pressure
ISA Indian Subtropical High Area Index
WPSHA Western Pacific Subtropical High Area Index
AHA Atlantic Subtropical High Area Index
NASH North Atlantic Subtropical High Intensity Index
AO Arctic Oscillation
ASRP Atlantic Sub Tropical High Ridge Position Index
GX Western Pacific Subtropical High Ridge Position Index
WPSH Western Pacific Subtropical High Intensity Index
WP West Pacific Pattern
APVA Asia Polar Vortex Area Index
APV Asia Polar Vortex Intensity Index
IRP Indian Subtropical High Ridge Position Index
ISHI Indian Subtropical High Intensity Index
Niño 4 Niño 4 Index
IOWPA Indian Ocean Warm Pool Area Index
WPWPA Western Pacific Warm Pool Area Index
AMO Atlantic Multi-decadal Oscillation Index
WPWPS Western Pacific Warm Pool Strength index
IOWP Indian Ocean Warm Pool Strength Index
SOI Southern Oscillation Index
MEI Multiviarate ENSO Index
RF Random forest model
RMSEs Root mean square errors
M-K Mann–Kendall
IMSE Incremental mean squared error
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