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Abstract: The interlinked issues of climate change and increasing water demand are
creating high pressure on water resources. In Slovakia, groundwater is a principal resource
for human consumption. Consequently, an analysis was conducted of the current water
yields of three springs, river discharges and precipitation trends, from several points of
view. As a case study, we selected the area around Slatina nad Bebravou (Slovakia), which
has the most relevant database. Descriptive statistics, the Mann–Kendall test and Sen’s
slope were used for the trend analysis. The findings indicate that the current capacity of
springs is sufficient to meet the present needs of water users. However, the downward
trend in abundance, the increasing trend in water withdrawal, and the current poor state of
infrastructure point to an early tipping point. Data analysis revealed a problem with the
yield of springs, especially in the summer and autumn months.

Keywords: groundwater withdrawal; spring yield; flow rate; hydrological trend

1. Introduction
Ongoing climate change, the energy crisis, industrial development and recreation

are exerting pressure on the availability of sufficient water of the required quality. Rising
average temperatures, changing distributions of annual rainfall and increasing weather
extremes are resulting in decreasing water availability for people and the landscape. Conse-
quently, there is an increasing discourse surrounding the retention of water in the landscape.
To manage water resources effectively, it is necessary to ascertain their current status and
utilization. Mainly, ground water is used to fulfil human needs.

In the context of escalating global demand and the increasingly prevalent phenomenon
of drought in numerous regions worldwide, groundwater, stored within aquifers, has
emerged as a critical water resource. This assertion is further substantiated by projections
indicating a further exacerbation of water scarcity, attributable to both the expanding
global population and the concomitant economic growth. Consequently, the value of
groundwater is anticipated to rise in proportion to the diminishing water availability
across various regions, a phenomenon compounded by the effects of climate change. This
underscores the imperative for effective groundwater management to be recognized as a
pivotal strategy [1]. Therefore, it is imperative that long-term groundwater recharge and
exploitation be monitored to ensure current and future sustainable groundwater extraction
in the context of climate change [2].
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The sustainable utilization of groundwater is contingent upon the maintenance of
optimal levels of groundwater recharge, a process that is anticipated to be subject to
alteration in the context of climate change. However, the extent to which climate change
will impact recharge remains uncertain, primarily due to the scarcity of measurements
pertaining to global recharge trends [3]. The establishment of a comprehensive monitoring
network has been identified as a potential solution to address this knowledge gap, with the
capability to identify areas of preferential recharge. This approach facilitates the mapping
of preferential groundwater flow paths, enabling the targeted replenishment of surface
runoff during the rainy season [2].

The issue of groundwater depletion is exacerbated by overexploitation, particularly
in cases where natural recharge is impaired. Recharge, a complex process influenced by
various factors such as soil properties, rainfall intensity, water table depth, soil moisture,
evaporation, area, geomorphology, and geology, and these factors play pivotal roles in
determining the rate of infiltration. Infiltration, being the primary process for ground-
water recharge, is subject to modification by land use change, which in turn affects the
rainfall–runoff partitioning [4,5]. Topographic effects and vegetation cover can introduce
uncertainties in recharge estimates derived from baseflow separation [2]. Furthermore, land
use change impacts not only the soil water balance but also the occurrence of preferential
flow by destroying preferential channels in soil, thereby causing changes in groundwater
recharge rates [6].

Agriculture is the world’s largest consumer of water, with water resources worldwide
under pressure from rapidly growing demands (increasing food production, urban expan-
sion and industrial development) as well as climate change. Concurrently, the escalating
demand for water has been a substantial contributing factor to the contamination of existing
water bodies [7].

Drought is one of the most serious consequences of climate and land use change.
Climate change is expected to affect almost every environmental and social aspect. Socio-
economic sectors, energy, services, ecosystems and water resources will face a clear increase
in vulnerability to climate change. The water cycle is one of the most important components
of the natural system and one of the most vulnerable in socio-economic terms. Already a
large proportion of the world’s population is suffering from water stress, and therefore,
changes in water availability have a significant impact. Soil moisture is one of the most
important water resources as it provides a large part of the world’s food production [8].

Hydrological drought is primarily associated with water scarcity in hydrological sys-
tems, as evidenced by abnormally low flows or deficits in lake, reservoir or groundwater
levels. These abnormal hydrological conditions can also affect other sectors, including
aquatic and riparian habitat, water quality, domestic water supply, agricultural and indus-
trial uses, river transport, and hydropower generation [9]. As a result of recent climate
change and variability, as well as unprecedented rates of urbanization, industrialization,
and population growth, these negative impacts have accelerated in recent decades [10].
Although drought is mainly caused by a lack of precipitation, other factors (e.g., demand
for atmospheric evaporation, storage in ice and snow, land use change) may also play a role
in the occurrence of hydrological drought [11]. To address hydrological drought, there are
several measures that aim to improve water management. Increasing storage capacity or
storing rainwater, equitable practices for water supply and distribution, river health, and
watershed management can reduce the negative effects of climate change on the availability
of water resources. Similarly, developing climate-resilient crops, water management for
irrigation, adopting climate-smart agriculture approaches, and promoting local knowledge
can ensure food security by increasing agricultural yields [12].
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The aim of this study is to analyze the impact of climate change on the rainfall–runoff
process in the landscape and on changes in spring yield in the study area over time. Based
on this, the availability of water for the population in the future will be assessed.

2. Materials and Methods
2.1. Location

An important water supply system in the territory of Western Slovakian Water Com-
pany, Inc. is the Ponitrian Group Water Supply System, which supplies drinking water to
Banovce nad Bebravou, Partizanske, Topolcany, Nitra and other smaller consumption local-
ities. The system utilizes groundwater sources from the north-western part of the Banovce
nad Bebravou district (water sources: Slatina, Cierna Lehota, Timoradza, Podluzany), as
well as from the Trencin district (water source: Motesice) and other local water sources.

The area is located in central Slovakia, in the district of Banovce nad Bebravou, in the
Trencin Region (see Figure 1). The Bebrava river flows through the territory, which rises
in the Strazovske vrchy mountains on the south-western slopes of the Kremeniste hill at
an altitude of about 770 m above sea level in the cadastral territory of the Cierna Lehota
municipality [13]. In years of low precipitation, the section between Sipkov and Slatina
nad Bebravou is known to lose the surface water connection, a phenomenon attributed
to the influence of karst-volcanic development of the bedrock, as asserted by Toman and
Dzúrik [14]. The catchment area of the Bebrava is 631 km2, with the river’s length being
47.2 km. The shape factor of the basin has a magnitude of 0.29, and the slope of the Bebrava
basin is 10.9‰. The highest point of the basin is 1042 m above sea level, and the lowest is
165 m above sea level at the confluence of the Bebrava and the Nitra River near the village of
Praznovce. From a hydrological perspective, the Bebrava can be characterized as a stream
with a rain–snow runoff regime [13], which is characteristic of upland–lowland areas.

The water resources we analyze are found in the localities of Slatina nad Bebravou and
Slatinka nad Bebravou and are included in the hydrogeological region MP 066 Mesozoic
and Paleogene of the southern part of the Strazovske vrchy [15], and they also belong
to the pre-Quaternary groundwater body SK200140KF—a body with dominant karst–
fissure groundwater in the northern part of the Strazovske vrchy and Lucanska Mala
Fatra mountains in the Vah River basin area, while the water source (Vrchoviste) in the
Dolne Motesice locality belongs to the pre-Quaternary groundwater body SK2001300P—an
intergranular groundwater of the Banovska basin in the Vah River basin area [16]. Based
on the results of three geological wells, Bahnová et al. [17] determined the average value of
the transmissivity coefficient T, calculated as the geometric mean, to be 1.48 × 10−3 m2/s
and the average value of the filtration coefficient k to be 4.78 × 10−5 m/s.

From a climatological perspective, most of the area is situated within a moderately
warm region, with the upper part of the catchment falling within a cold area characterized
by an average temperature in July of ≥12 ◦C and <16 ◦C [13].

The springs of Pri mlyne and Pri moste in Slatina nad Bebravou, and Vrchoviste in
Slatinka nad Bebravou (Table 1) are springs connected to the Ponitrian group water sup-
ply system.

Table 1. General information related to springs.

Spring Municipality Type of the Spring Permitted Withdrawal, L/s Start of Operation

Pri moste Slatina nad Bebravou karst 71.9 1976
Pri mlyne Slatina nad Bebravou karst 37.0 1976
Vrchoviste Slatinka nad Bebravou karst 204.4 1968
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and rainfall gauge.

2.2. Data Sources

Data connected to the yield of springs were processed from the database of the Western
Slovakian Water Company, Inc., Nitra, Slovakia. The measurements were prepared in 7-day
intervals for the period from 1 January 2000 to 31 December 2023. The same database
was used for processing monthly water withdrawal from individual springs source, the
volumes of we processed monthly. Mean monthly discharges at the Krasna Ves gauging
station on the Bebrava River were obtained from the Slovak Hydrometeorological Institute
yearbooks for the period 2000–2023.

The rainfall and other climate data were obtained from the E-OBS dataset from the
Copernicus Climate Change Service (C3S, https://surfobs.climate.copernicus.eu, accessed
on 30 January 2025) and the data providers in the ECA&D project (https://www.ecad.eu,
accessed on 30 January 2025) in the form of daily gridded meteorological data for Europe
from 1950 to present derived from in situ observations [18]. The station data are provided
by 87 participating institutions, and the ECA&D dataset contains over 23,700 meteorological
stations, according to its September 2024 status. Metadata of the time series, including
the source and information about the meteorological stations, are provided through the
ECA&D website. Data for the years 2000–2023 were selected.

2.3. Statistical Analysis

The datasets were analyzed by standard statistical methods and visualized using
MS 365 Excel. The descriptive statistics, correlation and regression analysis and his-
tograms were used to compare the two decades. Furthermore, the Mann–Kendall test,

https://surfobs.climate.copernicus.eu
https://www.ecad.eu
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Sen’s slope [19] and linear trend analysis were also used to perform the trend analysis. The
histograms, normal and gamma distributions were created by HEC-SSP 2.3.

3. Results
3.1. Trends in Spring Yields

A consistent downward trend in abundance, accompanied by inter-annual variability,
is evident across all three springs (Figure 2). There is variability in the yields of the springs
(Appendix A: Table A1), with the absolute lowest values of daily discharge recorded
in May 2021 in the spring Pri moste and in August 2021 in Pri mlyne, with a minimum
recorded in December 2020 in the Vrchoviste spring. During the study period, the yield
at Pri moste spring was 45.12% below the permitted water withdrawal. For the Vrchoviste
spring, this value was almost 62%, while for the Pri mlyne spring it was less than 40%.
The lowest values of yields were observed in the summer and autumn months (August
to October), with maximum values recorded in the early spring months of March and
April (Appendix B: Figure A1). The skewness values indicate that in all three springs,
lower abundances prevail over higher ones, particularly in the Vrchoviste spring. This
phenomenon is further substantiated by the kurtosis values, which, for the Vrchoviste
spring, demonstrate a heightened prevalence of lower values closer to the mean.
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The decreasing prevalence of yields is visible also from the results of the Mann–Kendall
test for all three springs, with even values of −1.02 (confidence 85%) for Pri moste and −0.82
(confidence level 79%) for Vrchoviste showing a stable trend. However, spring Pri mlyne has
a visibly decreasing trend (−2.01, confidence 98%). Also, all three springs have a negative
value of Sen’s slope: −0.695 (Pri moste), −0.198 (Pri mlyne), and −1.072 (Vrchoviste).

A consistent downward trend in abundance is visible also from the comparison of
decades. While during the years 2000–2012, 52.63% of yields were below the available
withdrawal, in the decade 2013–2023, this value was 57.5% for the Pri moste spring. Similarly,
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the springs Pri mlyne and Vrchoviste had increased values in the second decade (2000–2012:
17.86% and 50.79%; 2013–2023: 60.57% and 61.43%, respectively).

The comparison of the frequency distribution curves of the spring yields for the Pri
moste site in the periods 2000–2012 (Figure 3) and 2013–2023 (Figure 4) shows a decrease in
the average yield value from 89.85 to 75.96 L/s, while the mode value increased from 26.40
to 45.70. This was also reflected in the decreased standard deviation (from 67.28 to 45.66).
The frequency distribution of yield values for the period 2013–2023 tended to better follow
the normal distribution (decreasing of kurtosis from 6.70 to 4.14).
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Figure 3. Histogram and frequency distribution curves for the Pri moste spring yields, 2000–2012.

The comparison of the frequency distribution curves of the spring yields for the Pri
mlyne site in the periods 2000–2012 (Figure 5) and 2013–2023 (Figure 6) shows a slight
decrease in the average yield value from 40.76 to 36.82 L/s. Also, the mode value decreased
from 37.90 to 33.90, with the standard deviation decreasing from 4.45 to 3.36. The frequency
distribution of yield values for the period 2013–2023 is very close to following the normal
distribution (with a decrease in kurtosis from 6.19 to 2.92).

The comparison of the frequency distribution curves of the spring yields for the
Vrchoviste site in the periods 2000–2012 (Figure 7) and 2013–2023 (Figure 8) shows a decrease
in the average yield value from 229.67 to 216.18 L/s, while the mode value increased from
114.00 to 198.00. This was also reflected in the decreased standard deviation (from 177.62
to 139.37). The frequency distribution of yield values for the period 2013–2023 tended to
better follow the normal distribution (with a decrease in kurtosis from 3.67 to 2.83).

3.2. Trends in Water Withdrawals from Springs

The data indicate a general upward trend in water withdrawals at all three springs,
with the annual withdrawals since 2021 reaching the highest levels observed over the entire
period. In contrast, from 2007 to 2019, total water withdrawals were at their lowest, with
a local increase from 2013 to 2017 (see Figure 9). The highest monthly flow withdrawals
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were observed in May and June at all springs, and the lowest in October, apart from Pri
moste spring, where the lowest total withdrawals were recorded in September (Appendix B:
Figure A2). The increase in extractions from the springs can be attributed to infrastructure
development and the connection of new customers to the network, as well as water losses
within the network.
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Figure 5. Histogram and frequency distribution curves for the Pri mlyne spring yields, 2000–2012.
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Figure 6. Histogram and frequency distribution curves for the Pri mlyne spring yields, 2013–2023.
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Figure 7. Histogram and frequency distribution curves for the Vrchoviste spring yields, 2000–2012.
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Figure 9. Sum of annual water withdrawals from individual springs in m3 in 2000–2023, with the
overall linear trend.

The percentage distribution of water withdrawal in each month ranges from 6.84 to
9.37% for the Pri Moste spring, from 7.13 to 9.24% for the Pri mlyne spring and from 6.82 to
9.33% for the Vrchoviste spring. The distribution of withdrawal over the year is comparable
for all three springs, showing a strong linear dependence. The increased water withdrawal
observed during the spring and summer months is attributable to the irrigation of gardens
and recreational activities, such as filling swimming pools. The water withdrawals from
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the Pri mlyne spring are predominantly lower than average, while the Pri moste spring is
characterized by higher than average water withdrawal. At the Pri mlyne spring, the values
are more concentrated around the mean; however, for the other springs, the distribution of
values is more evenly distributed to either side of the mean (see Appendix A: Table A2).

Sen’s slope of all springs has an increasing trend (8921 for Pri moste, 3174 for Pri mlyne
and 15,577 for Vrchoviste). The Mann–Kendall test shows an increasing trend in water
withdrawal from springs Pri moste (2.11, confidence 98%) and Pri mlyne (1.41, confidence
92%), while for the spring Vrchoviste, the trend was not significant, and more data are
needed to distinguish a trend.

3.3. Trends in Water Flow in the Bebrava River

The mean annual flows in the Bebrava river range from 0.21 to 0.75 m3/s (see
Figure 10). The highest mean flows were recorded in March (0.95 m3/s) and the low-
est in September (0.21 m3/s), which corresponds to the rain–snow runoff regime (see
Appendix B: Figure A3). The mean monthly flows tend to increase in the autumn and
winter months (October–December and February), while they reach increasingly lower
values in the spring and summer months. Despite the variability of flows from year to
year, a decreasing trend in annual average flows can be observed. In the second half of the
period under consideration, the variability and dispersion of the annual mean flows were
lower than in the first half. While the maximum annual flows demonstrate a downward
trend, the minimum annual flows exhibit an upward trend, thereby leading to a flattening
of the extremes.
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Figure 10. Mean annual flows in the Bebrava river at the Krasna Ves water gauging station in m3/s in
2002–2023.

Even though the confidence level of the Mann–Kendall test is low (about 61%) and
shows a stable trend, the negative value −0.27 indicates a somewhat more negative trend.
Also, the negative Sen’s slope (−0.002) indicates a decreasing trend.
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3.4. Precipitation Trends at the Sipkov Station

The long-term precipitation trend is balanced, with the lowest recorded rainfall occur-
ring in 2003 (547.16 mm), followed by 2011 and 2022 (634.44 and 639.6 mm, respectively).
On the other hand, the highest recorded rainfall totals were observed in 2010 (1053.41 mm),
2020 (960.51 mm), and 2023 (960.15 mm) (Figure 11). The months of April and July experi-
enced the lowest and highest rainfall, respectively, with the late spring and summer months
demonstrating the highest monthly rainfall totals, and the autumn to April period exhibit-
ing a decreasing trend (Appendix B: Figure A4). A decline in precipitation totals is evident
in the months of March, June, and July, suggesting a decrease in precipitation in these
months. In contrast, January, May, August to October and December have higher monthly
totals. The remaining months show more or less balanced totals. Significant decreases in
maximum rainfall totals are evident in July, while May and September show increases,
with the two highest totals in May being the highest in the last five years. The period of
26 October 2011 to 2 December 2011 (38 days) is noteworthy for its uninterrupted rainless
status, while the maximum daily precipitation recorded was 52.13 mm on 1 June 2021. The
values of skewness (3.25) and kurtosis (15.5) demonstrate the predominance of low rainfall
values, a phenomenon that is further exacerbated by the number of rainless days.
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4. Discussion
A comparison of the trend in the average monthly yield with the sum of the monthly

withdrawals from the springs in each year does not demonstrate a linear dependence.
Similarly, the dependence between rainfall, flow and yield is low to moderate. However,
a comparison of average monthly discharge and average monthly streamflow values in
each year demonstrates a strong linear dependence at the Pri moste and Vrchoviste springs
(R = 0.82 and R2 = 0.7584, and R = 0.77 and R2 = 0.7466, respectively). The Pri mlyne spring
exhibited a comparatively negligible relationship (R = 0.26 and R2 = 0.2131) with flows (see
Table 2, Appendix B: Figure A3).
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Table 2. Correlation coefficients based on annual data (mean discharge, mean flow, rainfall).

Pri Moste Pri Mlyne Vrchoviste Krasna Ves Rainfall

Pri moste 1
Pri mlyne 0.45 1
Vrchoviste 0.92 0.45 1
Krasna Ves 0.82 0.26 0.77 1

Rainfall 0.47 0.16 0.57 0.41 1

The distribution of annual data as a percentage over the course of the year reveals
a clear relationship between spring discharge and streamflow’s (R = 0.93–0.95; Table 3,
Figure 12). Although the Pri mlyne spring has more or less equilibrated throughout the year,
a slight increase and decrease can be observed in the same months as for the other springs
and water flow. The distribution of rainfall during the year exhibits a reverse pattern to
that of discharge and flow, with the increase in discharge and flow commencing at the
minimum rainfall and reaching its minimum in the months with the highest rainfall. This
is also supported by the findings of Chang et al. [20] that the shape of the recession curve
changed under different rainfall conditions.

Table 3. Correlation coefficients based on monthly data (average discharge, average flow, rainfall).

Pri Moste Pri Mlyne Vrchoviste Krasna Ves Rainfall

Pri moste 1
Pri mlyne 0.97 1
Vrchoviste 0.99 0.98 1
Krasna Ves 0.95 0.93 0.95 1

Rainfall −0.40 −0.34 −0.40 −0.59 1
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All the evaluated springs showed a tendency to have decreased average yield values
and variability when comparing the two reference periods (2000–2012 and 2013–2023). This
is in accordance with the findings of Ferencz et al. [21], who analyzed the changes in the
yields of springs in a research area consisting of two physic-geographical units, the Lublin
Upland and Roztocze Region in Poland. Frequency distributions for the period 2013–2023
tended to more closely follow a normal distribution.

Our results did not confirm the findings of Worthington and Foley [22] that annual
groundwater levels, and consequently the spring discharge, in carbonate aquifers show a
strong correlation with precipitation. It is a well-established fact that a significant propor-
tion of limestone rock springs exhibit considerable variations in yield, with rapid responses
to alterations in hydrometeorological parameters being a common feature. It is evident
from the ratio of minimum-to-maximum discharge that these springs are predominantly
unstable to quite unstable [23]. Of course, there will be differences year by year; however,
the trend will continue to decrease.

Our findings of close correlations between the discharge in the Bebrava river and
particular springs (R2 are in the interval from 0.93 to 0.95) confirm the findings of Ferencz
et al. [21] that riverbank and slope springs are the most sensitive to changes in supply. In the
alluvial floodplains of rivers near surface streams, and in the mountains of lower altitudes,
as is the case of the selected springs, the groundwater level regime reflects fluctuations in
water levels in streams with shorter or longer lags [24]. Based on the models, diminished
levels of natural water resources are to be anticipated in the majority of European basins
when considering the most unfavorable scenario and the long-term predictions of mean
annual runoff. These reductions will inevitably lead to a decrease in water availability [25].
Therefore, we also expect decreases in groundwater levels.

Of the total number of springs under the management of the Western Slovakian Water
Company, Inc. that were evaluated in the years 2000–2023, up to 53% showed a balanced
stable yield without significant change, 4% showed yield increases in the long term, 27%
showed a gradually decreasing yield, 14% a significantly decreasing deviation in the long
term, and 2% showed an extreme decrease in the years, with almost zero deviation [26].
Generally, springs localized in karst and fractured limestone rocks demonstrate increased
yield [4].

Providing a complete picture of groundwater response to a changing climate is even
more challenging given that climate change impacts are often influenced by human and
indirect factors such as land use change and groundwater overexploitation [27]. A second-
level protection zone was delineated for all springs in the area around Slatina nad Bebravou
in 1989. Therefore, strict rules apply for the river basin management in the locality. Espe-
cially, land use changes are regulated by legislation and relevant local decrees. Therefore,
during the selected period of study, no land use changes were made, and none had been
made for several decades before. The basin is mostly covered by deciduous and coniferous
forests and meadows. The urban area is located only in the valley surrounding the Bebrava
river. Therefore, the impact of land use on the spring yield variability in this area is low.

Decades 2010 and 2020 were warmer by 2 ◦C than the entire 20th century in Slovakia.
Furthermore, it is expected that the country will be affected by severe drought episodes
almost every year. There are no exceptions to the precipitation totals, but the rain will
fall in the warmer and drier seasons. In particular, the rainfall in the warm period of
the year occurs mainly in the form of showers and thundery downpours [28]. These do
not gradually infiltrate and percolate into the groundwater but instead result in rapid
direct surface runoff. Therefore, we can see the disproportion and low correlation between
spring yields, river flow and precipitation in the mean monthly (Figure 12) and yearly steps
(Appendix B: Figure A5).
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The trend in withdrawals is highly affected by the connection of new residents, water
losses in the water supply system and the price. Currently, due to the decrease in the
yield of several other springs in the operation of the Western Slovakian Water Company,
Inc., there is higher demand and pressure on the water withdrawal from the springs Pri
moste, Pri mlyne and Vrchoviste. Since the springs have been operated for almost 50 years
(Vrchoviste spring for about 57 years), the water supply system is nearing the end of its
service life. In 2023, the total water losses in the water supply system were 26.63% of
total water production in Slovakia [29]. However, previous years the water losses in the
water supply system in the selected systems were about 32.6% [30], so almost third of the
withdrawals were “lost” in the soil without being delivered to the people. This is one of
the reasons for the price increase in the last years. Generally, these price increases have led
to decreases in water use and withdrawal (Figure 13). The water demand and withdrawal
are not affected by the water yield from the springs. Only during the dry years are the
water withdraws from the springs lower (Appendix B: Figure A6). In such years, people
are informed about the lower water resource capacities and are asked to decrease their
water consumption.
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A decreasing trend in spring yields has also been confirmed in the Czech Republic.
There it was also concluded that there is no direct connection between groundwater with-
drawal and spring yield [31]. The current capacity of the springs is sufficient to meet the
present needs of water users. Nevertheless, the downward trend in abundance, the increas-
ing trend in population connectivity, and the current poor state of infrastructure point to an
early tipping point, i.e., equivalence of spring abundance and water demands. Especially
the summer months can be more affected by the drought, which was also concluded by
several other authors [4,20,26,31]. Of course, the variability in the spring yield during
the decades is high, but in general, decreasing trends are more common than increasing
trends [31,32]. Therefore, increased awareness in the population and improvements in the
technical water supply system conditions must be the main focus for sustainable water use
in the future.
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5. Conclusions
In the forthcoming years, a decline in the yield and quantity of springs is to be

anticipated, which will result in reductions in water availability for the population. This
phenomenon will be particularly pronounced during the summer and autumn months,
resulting in significant alterations to the demand patterns of water users.

The springs studied here exhibit a high correlation with the development of the flow
in the river, indicating that they are valley springs more influenced by the flow in the
watercourse than by rainfall events in the catchment. All three springs are thus dependent
on the flow regime of the Bebrava River which also tends to dry in the summer and autumn
months. Considering the strict rules related to protected areas for land use in the spring’s
basins, the only human impact on the spring’s water availability is water withdrawal.

Our analysis of the current status and future security of water resources has identified
a need to improve the protection, monitoring and, above all, efficiency of water use. This is
to ensure sufficient and clean drinking water for present and future generations. It is also
important to take measures to protect water resources from pollution and the impacts of
climate change, and to increase investment in infrastructure to ensure sufficient capacity
with minimal water losses in the distribution network. Effective communication with the
public and collaboration with neighboring communities are recognized as pivotal to the
successful implementation of these measures.
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Appendix A

Table A1. Selected statistics of spring yields in L/s for the period 2000–2023.

Statistics Pri Moste Pri Mlyne Vrchoviste

Mean 82.40 38.64 221.58
Standard Error 0.80 0.06 2.21

Mode 45.7 37.9 198
Standard Deviation 57.13 4.37 156.85

Sample Variance 3263.95 19.11 24,600.76
Kurtosis 7.90 5.19 21.75

Skewness 2.10 1.27 3.50
Range 541.9 50.6 2057.2

Minimum 16.1 22.6 42.8
Maximum 558 73.2 2100
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Table A2. Selected statistics of water withdrawal in m3 for the period 2000–2023.

Statistics Pri Moste Pri Mlyne Vrchoviste

Mean 103,927.84 35,246.78 285,010.26
Standard Error 1280.04 629.29 3445.36

Median 103,512 33,597 283,613
Standard Deviation 21,722.97 10,679.44 58,469.74

Sample Variance 471,887,509.4 1.14 × 108 3,418,710,896
Kurtosis 0.75 4.07 0.18

Skewness −0.20 1.73 0.31
Range 142,048 62,615 300,458

Minimum 19,544 17,602 147,420
Maximum 161,592 80,217 447,878
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15. Šuba, J.; Bujalka, P.; Cibulka, L’.; Frankovič, J.; Hanzel, V.; Kuliman, E.; Porubský, A.; Pospišil, P.; Škvarka, L.; Šubová, A.; et al.
Hydrofond 14. Hydrogeologická Rajonizácia Slovenska, 2nd ed.; SHMÚ: Bratislava, Slovakia, 1984; 308p.

16. Kullman, E.; Malík, P.; Patschová, A.; Bodiš, D. Vymedzenie útvarov podzemných vôd na Slovensku v zmysle rámcovej smernice
o vodách 2000/60/ES. Podzemn. Voda 2005, 1, 5–18.
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