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Abstract: Glacial retreat is a major global challenge, particularly in arid and semi-arid
regions where glaciers serve as critical water sources. This research focuses on glacial
retreat and its impact on land cover and land use changes (LULC) in the Barroso Mountain
range, Tacna, Peru, which is a critical area for water resources in the hyperarid Atacama
Desert. Employing advanced remote sensing techniques through the Google Earth Engine
(GEE) cloud computing platform, we analyzed historical trends (1985-2022) using Landsat
satellite imagery. A normalized index classification was carried out to generate LULC maps
for the years 1986, 2001, 2012, and 2022. Future projections until 2042 were developed using
Cellular Automata—Markov (CA-Markov) modeling in QGIS, incorporating six predictive
environmental variables. The resulting maps presented an overall accuracy (OA) greater
than 83%. Historical analysis revealed a dramatic glacier reduction from 44.7 km? in
1986 to 7.4 km? in 2022. In contrast, wetlands expanded substantially from 5.70 km? to
12.14 km?, indicating ecosystem shifts potentially driven by glacier meltwater availability.
CA-Markov chain modeling projected further glacier loss to 3.07 km? by 2042, while
wetlands are expected to expand to 18.8 km? and bodies of water will reach 4.63 km?. These
future projections (with accuracies above 84%) underline urgent implications for water
management, environmental sustainability, and climate adaptation strategies, particularly
with regard to downstream hydrological risks and ecosystem resilience.

Keywords: water surfaces; land change modeler; spatio-temporal analysis; Ca—Markov
model; Google Earth Engine

1. Introduction

Over the past century, glaciers around the world have retreated at an unprecedented
rate, threatening freshwater supplies in many arid and semi-arid regions. The Barroso

Hydrology 2025, 12, 64

https://doi.org/10.3390/hydrology12030064


https://doi.org/10.3390/hydrology12030064
https://doi.org/10.3390/hydrology12030064
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0000-0002-4518-1023
https://orcid.org/0000-0001-7432-4364
https://orcid.org/0000-0003-2236-8335
https://orcid.org/0009-0000-2713-535X
https://orcid.org/0000-0003-3946-7188
https://orcid.org/0000-0003-1872-9062
https://orcid.org/0000-0002-0421-399X
https://doi.org/10.3390/hydrology12030064
https://www.mdpi.com/article/10.3390/hydrology12030064?type=check_update&version=1

Hydrology 2025, 12, 64

2 of 26

mountain range, located within the hyperarid Atacama Desert, is experiencing rapid glacier
loss with potential consequences for wetlands, water resources, and local communities.
However, limited research has been conducted to quantify these changes and predict future
trends. This study addresses this gap by integrating multi-temporal remote sensing analysis
with predictive modeling to assess the impacts of glacial retreat on land use and hydrology
in the region.

The Atacama Desert, in northern Chile, is a hyperarid non-polar coastal region almost
1000 km long located in South America [1]. Paleoclimatic records from the region are rare
and mostly discontinuous, primarily capturing runoff from the eastern Precordillera rather
than local precipitation [2]. Despite these extreme conditions, desert plants have evolved to
survive in this environment [3]. However, changes in hydrological processes, including
glacier retreat and groundwater depletion, may impact water availability and ecosystem
resilience in this fragile landscape.

The Barroso mountain range, located in southern Peru and northern Chile, exhibits
climatic conditions consistent with a hyperarid environment, with significant precipitation
fluctuations between summer and winter [4,5]. In addition, groundwater plays a crucial role
in sustaining various water-dependent sectors, but overexploitation and marine intrusion
threaten the sustainability of key aquifers, such as the Caplina coastal aquifer [6,7]. Over
the past century, this aquifer has been severely exploited, resulting in increasing salinization
and minimal recharge, with fossil water now being the primary source of extraction [8].
The continued retreat of glaciers in the region may further reduce groundwater recharge,
exacerbating water scarcity concerns. As glaciers shrink, meltwater contributes to the
expansion of Wetlands (high-altitude wetlands). However, as glacier volume continues to
decline, the long-term sustainability of these wetlands remains uncertain.

Wetlands are vital buffers in hydrological systems, regulating water flow and support-
ing biodiversity. In the Barroso region, glacial meltwater has historically contributed to the
expansion of Wetlands (high-altitude wetlands). However, as glaciers continue to retreat,
the balance between meltwater supply and wetland persistence is changing, with potential
consequences for water retention and local biodiversity [9]. The wetlands and salt flats
of the Atacama Desert were once freshwater lakes and shallow wet areas during the last
glacial period [10]. The formation of salt crusts, primarily from groundwater evaporation,
has given rise to dynamic halite layers, which help regulate humidity variations [10,11].
The continental salt flats of the Miocene are scattered in the Central Valley of the Atacama
Desert, one of the driest areas on the planet. While some of these salt flats remain hydrolog-
ically inactive [10], high-altitude wetlands in the Barroso mountain range continue to play a
crucial role in water retention and biodiversity conservation. However, glacial retreat may
alter the balance between meltwater supply and wetland persistence, leading to uncertain
future dynamics.

Traditional approaches to modeling glacier and wetland changes have been limited by
data availability and computational constraints. The integration of Google Earth Engine
(GEE) and the Ca-Markov model provides a robust framework for analyzing historical
trends and forecasting future changes with high spatial and temporal resolution. Ca—
Markov is a combined cellular automata/Markov chain/multicriteria/multiobjective land
allocation (MOLA) LULC prediction procedure that adds an element of spatial contiguity as
well as a knowledge base of the likely spatial distribution of transitions to the Markov chain
analysis [12,13]. This method has been successfully applied to forecast wetland evolution
over time [9], and to optimize the classification of multi-temporal land cover changes in
various ecosystems [14]. Likewise, it is possible to use the integration of remote sensing
data and the Ca—Markov model to analyze the dynamics of land use change and its future
prediction [12,13].
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In recent years, the availability, accessibility, and temporal and spatial continuity of
satellite data (such as Landsat and Sentinel) [15-17] and the development of cloud comput-
ing platforms, such as Google Earth Engine (GEE) [18], have created an opportunity to map
the historical evolution of land cover change, such as bodies of water and glaciers [19].

The implementation of advanced time series analysis methods and dynamic predictive
models, combined with satellite data, significantly improves the accuracy of glacial retreat
projections. This, in turn, allows for a better understanding of spatial patterns of change
and contributes to more effective environmental management and water resource planning
in the face of climate change. The impacts of these changes extend across the entire basin
and are particularly evident in the lower reaches, such as the Seco River ravine in Tacna,
Peru, a region located at the northern edge of the hyperarid core of the Atacama Desert.

This study aims to analyze the historical changes in glacier extent, wetlands, and
lagoons in the Barroso mountain range from 1985 to 2022 using satellite imagery. Addition-
ally, it seeks to predict future land cover transformations up to 2042 through the application
of the Ca-Markov model. Furthermore, the research evaluates the hydrological implica-
tions of these landscape changes, with a particular focus on their impact on discharges in
the Seco River ravine near Tacna, Peru. By addressing these objectives, this study provides
critical insights for water resource management, climate adaptation strategies, and the
preservation of fragile ecosystems in this hyperarid Andean region.

2. Materials and Methods
2.1. The Study Area

The study area is located at the headwaters of the Caplina River, covering altitudes
from 500 to 4600 m above sea level. The climate is classified as semi-arid to hyperarid, with
an average temperature range from 18.1 °C to 13.4 °C and extreme values reaching —15 °C
in winter months. Annual precipitation averages 360 mm, with 78% of rainfall occurring
between December and March (Figure 1). Hydrologically, the region is dominated by
glacial melt contributions to the Caplina River, which serves as a major freshwater source
for Tacna, Peru. However, glacial retreat in the Barroso Mountain range has significantly
altered recharge processes, contributing to increasing water scarcity and wetland expansion.
These dynamics highlight the critical need for predictive modeling of land cover changes in
the region. Figure 2 shows the location of the study area; it is also located on the northern
edge of the hyperarid core of the Atacama Desert.
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Figure 1. Climatic variables in the study region.
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Figure 2. Location of the study area. (a) Barroso mountain in the Andes mountain range. (b) Scheme
of the glacier zone to the arid region, Seco River area, City of Tacna.

2.2. Selection of Satellite Images

The main material used in this study consists of images from the LANDSAT-5 TM and
LANDSAT-8 OLI software, with Landsat sensors: Thematic Mapper (TM) and Operational
Land Imager (OLI) [20]. On board the Landsat 5 and Landsat 8 satellites, the image
collections used were accessed through the GEE platform [18] “https:/ /earthengine.google.
com (accessed on 22 January 2025), respectively, they cover the multi-year analysis periods
from 1985 to 2022 (Table 1).

Table 1. Imédgenes de reflectancia TOA del programa Landsat.

Collection Sensor Periods

LANDSAT/LT05/C02/T1_TOA ™ 1984-03-2012-05
LANDSAT/LE07/C02/T1_TOA ETM+ 1999-05-2022-04
LANDSAT/LC08/C02/T1_TOA OLI/TIRS 2013-03—present

The top-of-the-atmosphere (TOA) images available in the GEE catalog were used to
collect data, which offers access to a vast amount of preprocessed satellite images. These
TOA images are ideal for reflectance analysis studies, as they provide radiation reflected by
the Earth’s surface without interference from the atmosphere [21] with orthorectification
and a spatial resolution of 30 m in the spectral bands [22].

The selection of satellite images was based on data availability, cloud cover constraints,
and key hydrological periods identified in the study area. The years were chosen to
capture multi-decadal trends in glacial retreat and wetland expansion. The Landsat TOA
reflectance product was selected due to its pre-processing advantages and radiometric
consistency across multiple sensors. However, potential limitations, such as seasonal cloud
contamination and spectral mixing in mountainous terrain, were accounted for using
cloud-masking algorithms and visual inspections.


https://earthengine.google.com
https://earthengine.google.com

Hydrology 2025, 12, 64

50f26

2.3. Cloud-Based Processing

This study used the free cloud computing platform Google Earth Engine (GEE). GEE is
a cloud-based tool designed for geospatial analysis on a planetary scale [18]. The processing
power of Google’s supercomputer is used to address problems of global relevance [23].
This platform provides online access to quickly and efficiently pre-processed data, avail-
able through the Google Earth Engine APL. It also uses client libraries in programming
languages, such as JavaScript ECMAScript 6.0 and Python 3.13.2, to facilitate the analysis
and visualization of geospatial data [24].

The data processing included the selection of Landsat scenes (TM and OLI) available
in GEE, corresponding to the period of Julian days 135 to 227, which covers the dry season
in the study area. Then, an algorithm was applied to obtain an image without clouds or
shadows. Subsequently, normalized indices were used for analysis. Finally, the types of
land cover (glaciers, lakes, and wetlands) were identified using thresholds in the indices
Table...... Results of glacier surface, wetlands and bodies of water in (km?) in the Barroso
mountain range to calculate the surface extensions of the last 37 years. Figure 3 shows the
methodological diagram of this work.
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Figure 3. Flowchart of the methodology used, modified from Turpo-Cayo (2022) [19].

2.4. Image Collection Reduction

To simplify the collection of images (Image Collection), the imageCollection.reduce()
tool in GEE was used; this allowed for transforming the collection of images into a single
one. In particular, the calculation is performed at the pixel level, so that each pixel in the
resulting image reflects the median value of all images corresponding to the selected period
and location within the collection [19].
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2.5. Glacier Identification

The methodology used consists of 5 processes: (1) selection and masking of clouds in
satellite images, (2) calculation of the Normalized Difference Snow Index (NDSI), (3) gener-
ation of annual Landsat mosaics, (4) annual classification of glaciers, and (5) evaluation of
the model accuracy.

This work is focused on glacial surfaces that are mostly clean or only slightly contami-
nated. Glaciers covered by debris have an extremely low representativeness, representing
approximately 5.4% of the total glacial areas in tropical regions [25].

Glacier extent was classified using the Normalized Difference Snow Index (NDSI)
with an empirically determined threshold of 0.20, based on historical spectral profiles
of glacier surfaces in the study region. Since debris-covered glaciers may lead to classi-
fication errors, visual inspections and manual corrections were applied to reduce false
positives. The wetland classification method integrated NDVI (threshold > 0.43) and NDII
(0.02 < NDII < 0.76), leveraging elevation data (SRTM DEM > 3700 m) to refine wetland
boundaries.

2.6. Normalized Difference Snow Index

The normalized difference snow index (NDSI) is used to identify snow in comparison
to other cover characteristics and estimate the area covered by snow in satellite images [26].
In this way, it can also be used to identify glacial coverage. The NDSI was previously
calculated sectioned and masked, the expression of the equation is as follows:

(GREEN — SWIR)

NDSI =
1= (GREEN + SWIR)’

(1)

where GREEN is the reflectance of the green band and SWIR is the reflectance of the
shortwave infrared band. To classify annual glaciers, an empirical decision tree with
thresholds «, 3, and 'y was used that has varied depending on the year and type of sensor
(TM and OLI), with average values of the thresholds « = 0.20 3 = 0.11, and vy = 0.10,
respectively. The thresholds have been adjusted with visual monitoring of the classification
and year [19].

2.7. Lagoon Identification

Lagoon identification is an NDWI-based extraction method that completely and accu-
rately extracts water from remote sensing images with superior performance compared
to other methods [27], offering a more accurate assessment of water availability [28]. The
NDWTI index was previously calculated, sectioned, and masked. The expression of the
equation is as follows:

_ (GREEN — NIR)
NDWI(MCFeeters) - (GREEN + NIR)" ?

The Western mountain range generates shadows in satellite images due to its moun-
tainous terrain and low solar angles, especially outside of summer. Terrain modeling
was used to identify areas in Landsat scenes affected by shadows, which complicate the
detection of water bodies in the NDWI index.

Digital elevation models (DEM) are essential to calculate the angle of solar incidence
and the shadow produced by the relief [29]. In this analysis, the DEM SRTM (Shuttle
Radar Topography Mission) was used with a resolution of 1 arc second, available on the



Hydrology 2025, 12, 64

7 of 26

GEE platform with the ID (USGS/SRTMGL1_003) [30]. The angle of solar incidence is
determined using the following equation [31].

i = arcos(cos(0)cos(e) + sin(0)sin(e)cos(pm — ¢s)), (3)

where i represents the angle of solar incidence, 0 is the solar zenith angle, e is the inclination,
¢@m aspect, and @s solar azimuth.
The algorithm for calculating the shading value is described in the following equation:

Hillshade = cos(0)cos(e) + sin(0) *sin (e) * cos(¢gm — @s). 4)

On the GEE platform, the Hillshade was calculated using the “ee.Terrain.hillshade”
tool, and the HillShadow was calculated using the “ee.Algorithms.HillShadow” tool. To
obtain a shadow map for each period of the year and each collection of images, the
minimum values calculated in the Hillshade and the maximum values of the HillShadow
were combined.

To obtain the lake raster, the NDWI index was classified with the threshold
(NDWI > 0.2) and, in order not to be confused with mountain shadow, additional re-
strictions were applied (hillShade < 0.2 or hillShadow > 0.5) [32].

2.8. Identification of Wetlands

The classification of the wetlands was carried out using two normalized indices.
NDVI is used to map and monitor wetlands and to classify contents within wetland
boundaries [33-35]. The second normalized difference infrared index, NDII, was used to
identify soil moisture and vegetation, allowing a more precise evaluation of wet and dry
areas within wetlands (Table 2) [36-38].

Table 2. Normalized spectral indices used for the classification of wetlands.

Index Formula Reference
. . . __ (NIR — RED)
Normalized Difference Vegetation Index NDVI = (m [39]
. . NIR — SWIR
Infrared Normalized Difference Index NDII = (NIR 7 SWIR) [40]

In addition to the NDVI and NDII indices, wetland classification was refined using
elevation, land cover, and slope data. The digital elevation model SRTM was used to obtain
information on altitude, considering areas located above 3700 m above sea level. To obtain
the wetland raster, two indices were classified, namely NDVI and NDII with the conditional
(and) and with the following thresholds: (NDVI > 0.43) and (0.02 < NDII < 0.76) [41].

3. Results
3.1. Regression Analysis on Coverage Influenced by Glaciers

Figure 4 shows the variation in different area-related variables over time in glaciers,
lakes, and wetlands. Regression lines help visualize the data’s trend, while 95% confidence
bands indicate the variability and certainty of these trends. The data show a negative trend
in glaciers and a positive trend in wetlands and lagoons of glacial origin.

Table 3 and Figure 5 show the area covered by glaciers, with a complex polynomial
trend indicating variations in the surface over time. From the fluctuations and shape of the
curve, there were periods of decrease and increase in the glacier surface, but it maintained
a negative trend.

A fluctuating trend is observed in the surface of the lakes with a slight decrease in
some periods, but the positive trend remains. In the wetlands, it is similar to the glaciers,
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and the wetlands also show considerable variability in their area over time, maintaining a
positive trend.
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Figure 4. Regression analysis in the cover classes. (a) Regression of glacier cover, (b) regression of
lake cover, and (c) regression of wetland cover of the study area.
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representation of the complex and non-linear trends observed. Glacier: —7.7 x 1072 x® + 6.2 x 107>
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Multi-temporal studies carried out by other researchers in the Cordillera Blanca,
Peru, indicate that the reduction in glaciers contributes to the increased water level in the
wetlands, which could be generating their expansion [42]. It could be stated that there is an
inverse correlation between glacial retreat and the increase in wetland coverage.
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Table 3. Results of glacier surface, wetlands, and bodies of water (in km?) in the Barroso moun-

tain range.
Afio Glacier Variation Wetland Variation Lagoon Variation
1984 38,149 3650 1667
1985 34,467 —3682 3795 0.146 2143 0.476
1986 44,642 10,175 5700 1904 3013 0.870
1987 4103 —40,539 6849 1149 2317 —0.696
1988 4011 —0.092 6343 —0.506 2979 0.662
1989 25,749 21,738 5052 —1291 2592 —0.387
1990 17,817 —7932 3848 —1205 2109 —0.483
1991 8725 —-9092 1773 —2074 1727 —0.382
1992 0.472 —8253 1188 —0.585 1269 —0.457
1993 11,938 11,467 3972 2784 2340 1.070
1994 7935 —4003 6777 2805 2808 0.468
1995 1912 —6023 6548 —0.230 2151 —0.657
1996 3312 1399 6154 —0.393 2510 0.359
1997 33,340 30,028 6004 —0.150 4180 1670
1998 2027 —31,312 7751 1748 3681 —0.499
1999 30,536 28,508 8974 1223 2997 —0.684
2000 22,592 —7943 5337 —3638 3646 0.649
2001 38,272 15,680 10,879 5543 3970 0.324
2002 31,558 —6714 11,878 0.999 4033 0.063
2003 18,504 —13,054 9106 —2772 3468 —0.565
2004 5613 —12,891 8407 —0.699 3232 —0.236
2005 5119 —0.494 6886 —1521 3572 0.340
2006 16,582 11,463 7862 0.976 4214 0.642
2007 5368 —11,215 7742 —0.120 3710 —0.504
2008 2255 —3113 6853 —0.889 3487 —0.223
2009 6125 3870 6173 —0.680 3288 —0.199
2010 1861 —4264 12,771 6599 2625 —0.663
2011 15,552 13,691 6901 —5871 3785 1160
2012 32,631 17,080 8759 1859 4301 0.516
2013 11,561 —21,070 14,609 5849 4315 0.014
2014 0.253 —11,308 10,974 —3635 2959 —1356
2015 19,884 19,631 14,216 3242 4399 1440
2016 1515 —18,369 13,601 —0.616 3629 —0.770
2017 12,576 11,061 11,962 —1638 4247 0.618
2018 22,482 9905 12,309 0.346 4267 0.020
2019 3953 —18,529 13,538 1229 4263 —0.004
2020 14,114 10,161 16,157 2619 4756 0.493
2021 9666 —4448 14,019 —2138 4635 —-0.121
2022 7413 —2253 12,067 —1953 4394 —0.241
Mean —0.809 0.2215 0.0718

The observed fluctuations in glacier surface (Figure 4) suggest that glacial retreat
is not linear but responds to interannual climate variability. For example, years with
increased glacier surface (1989, 1997, 2012) may be linked to anomalous precipitation or
cold periods, whereas rapid declines (2001, 2016) align with warm phases or droughts.
Studies in the Cordillera Blanca, Peru, have shown similar patterns, where ENSO phases
significantly influence glacial mass balance [42]. Further investigation into temperature
trends, precipitation shifts, and glacier mass balance records is recommended.

3.2. Historical Transformation of Glacial Cover, Lakes and Wetlands

In the work process, 250 points were selected randomly within the layers correspond-
ing to glaciers, wetlands, and lakes, to extract the reflectance associated with each type of
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coverage. Subsequently, spectral profile graphs were generated to analyze and contrast the
quality of the pixels in each coverage.

Figure 5 shows the relationship between reflectance (%) and wavelength in microme-
ters (um) of the glacier, wetlands, and lake, highlighting how this varies under different
conditions or scenarios. In case (a) glaciers, a reflectance peak is observed in the range of the
visible spectrum (approximately between 0.45 and 0.67 um), characteristic of clean and pure
ice. In case (b), the vegetation of the wetland cover, in the visible range (0.45-0.67 um) the
reflectance is low due to the absorption of light by the pigments, mainly chlorophyll [42,43].
At the green peak, approximately 0.56 um the vegetation reflects more light in the green
band, which gives it its characteristic color. In case (c), the spectral signature of water is
shown, characterized by a reflectance peak at 0.55 pm due to light scattering, followed by a
decrease between 0.65 and 0.86 pm due to high absorption in the red and near-infrared. At
SWIR 1.6 and 2.3 pum, the reflectance is almost zero due to the extreme absorption of water.

Overall, the observed expansion of wetlands (Figure 6) suggests that glacial meltwater
contributes directly to their growth. However, the exact hydrological mechanism remains
uncertain. Possible explanations include increased meltwater runoff recharging high-
altitude wetlands or a shift in the groundwater balance that favors wetland persistence.
Recent studies in the Andes of Peru have shown that deglaciation contributes to short-term
wetland expansion but may lead to long-term instability due to reduced baseflow [43].
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Figure 6. Spectral signature extracted from the 100 random points of (a) glacier, (b) wetlands and
(c) lake. The lines of different colors represent the mean values for each class.
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3.3. Precision of the Methodology in Coverage Mapping

The validation of the annual maps of glaciers, lakes of glacial origin, and wetlands
throughout the study years 1986, 2001, 2012, 2018, and 2022 is shown in Table 4. A random
sampling of 384 points in the study area was considered, considering a confidence level of
95%, with a normal distribution z = 1.96, with a correct proportion p = 95%. and maximum
tolerable error e = 1.4%. The review of each point was carried out with the QGIS 24.6
software and the AcATaMa thematic map accuracy evaluation plugin, based on which the
error matrix was generated [44].

Table 4. Evaluation of the accuracy of the LULC period 1986 to 2022.

Year

LULC OT BO GL CA Total Accuracy Omission Kappa

User Error Coefficient
Others (OT) 139 0 2 3 144 0.97 0.03
Wetlands (BO) 6 93 0 1 100 0.93 0.07
Glacier (GL) 1 0 97 2 100 0.97 0.03
1986 Body of water (CA) 2 0 0 38 40 0.95 0.05 0.94
Total 148 93 99 44 384
Producer accuracy 0.94 1.00 0.98 0.86
Omission error 0.06 0.00 0.02 0.14
Overall Accuracy 0.97
Others (OT) 159 19 17 2 197 0.81 0.19
Wetlands (BO) 2 78 1 0 81 0.96 0.04
Glacier (GL) 1 0 66 0 67 0.99 0.01
2001 Body of water (CA) 2 0 0 37 39 0.95 0.05 0.83
Total 164 97 84 39 384
Producer accuracy 0.97 0.80 0.79 0.95
Omission error 0.03 0.20 0.21 0.05
Overall Accuracy 0.89
Others (OT) 169 9 4 2 184 0.92 0.08
Wetlands (BO) 4 56 0 0 60 0.93 0.07
Glacier (GL) 1 0 79 0 80 0.99 0.01
2012 Body of water (CA) 1 0 0 59 60 0.98 0.02 0.92
Total 175 65 83 61 384
Producer accuracy 0.97 0.86 0.95 0.97
Omission error 0.03 0.14 0.05 0.03
Overall Accuracy 0.92
Others (OT) 133 20 1 0 154 0.86 0.14
Wetlands (BO) 1 89 0 0 90 0.99 0.01
Glacier (GL) 3 1 76 0 80 0.95 0.05
2022 Body of water (CA) 1 0 1 58 60 0.97 0.03 0.90
Total 138 110 78 58 384
Producer accuracy 0.96 0.81 0.97 1.00
Omission error 0.04 0.19 0.03 0.00
Overall Accuracy 0.87

3.4. Time Series Classification

Figure 7 shows the variation in the areas in the three elements analyzed in this work.
It can be observed that the lakes have not registered significant changes. In this sense, the
analysis of results focuses on the glaciers and wetlands.
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Figure 7. Temporal variation and future projection of the surfaces of the analyzed elements during
the period from 1986 to 2042.

Figure 8 shows the time series of the NDSI, which reveals a prevalence of high values in
the years 1985, 1986, 1989, 1997, 2000, 2001, 2002, and 2012, indicating greater snow coverage
in these periods. In contrast, in the other years low values predominate, reflecting less
snow coverage. The interannual variability shows that climatic factors, such as temperature
and winter precipitation, exert a determining influence on the coverage and altitude of the
snowline [45]. The analysis of the box plots shown in Figure 9 provides complementary
evidence to the time series images, confirming the fluctuations in snow coverage, depending
on the values of the NDSI. This correlation reinforces the interpretation that climatic

conditions and other environmental factors may have contributed to these declines.
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Figure 8. NDSI multi-year time series between 1985 and 2022 in the Barroso mountain range.
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Figure 9. Box plot, multi-year statistics of the NDSI glacier cover index.

Figure 10 shows the time series of the NDVI index, the color scale ranging between —1
and 0.71. Greener colors indicate a greater density of vegetation, while purple and yellow
represent less vegetation or areas without vegetation cover. Throughout the multi-year
series, the patterns of vegetation loss or gain cannot be identified; in this sense, we rely on
the box plots in Figure 11.
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Figure 10. NDVI multi-year time series between the years 1985 to 2022, in the Barroso mountain range.

A gradual increase in the average NDVI is observed throughout the period, which
could be interpreted as a general improvement in the vegetation density or in the ecological
conditions of the region. In recent years, since 2000, the boxes have been taller and shifted
towards higher NDVI values. Likewise, the whiskers show relatively low median values
in the years 1991 and 1992, with a correlation with the NDSI, which suggests possible
unfavorable conditions, such as droughts, deforestation, local fluctuations, or extreme
events that affected the vegetation cover.
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Figure 11. Boxplot, multi-year statistics of the NDVI vegetation cover index.

3.5. Scenarios, Future Projections
3.5.1. Evaluation of Spatial Predictor Variables

Spatial variables were processed in the MOLUSCE plugin of QGIS to analyze historical
trends in land use changes and project future changes in the study area. Altitude, aspect,
horizontal curvature, vertical curvature, shadow relief, and slope were included; these
variables directly affect the dynamics of land use coverage [19]. Figures 12 and 13 show the
variables used to predict the dynamics of glaciers, lakes of glacial origin, and wetlands.
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Figure 12. Correlation of predictor variables. Blue dots: Represent the individual data in each pair
of variables. Each point is an observation with its values in the two corresponding variables. Red
line: This is a linear regression line fitted to the data in each scatter plot. It shows the trend of the
relationship between the two variables in comparison. Shaded area around the red line: Represents
the confidence interval of the regression. Indicates the uncertainty in the estimate of the trend line;
the wider this region, the greater the variability in the relationship between the two variables.
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Figure 13. Prediction spatial component input variables. (a) Altitude. (b) Appearance. (c) Horizontal
Curvature. (d) Vertical curvature. (e) Highlight shadow. (f) Slope.

3.5.2. Modeling Transition Potential

The modeling of the transition potential in MOLUSCE-generated area changes statis-
tics and a transition probability matrix for the study area. The results show a percentage
decrease in glacier cover of 1.73% between 2012 and 2022. In contrast, there was a greater
gain for the wetland class at 0.22%, as well as a slight increase in the water bodies class
at 0.007%, and the other coverages class recorded an increase of 1.49%. Additionally, the
transition probability matrix also revealed that the wetland and water bodies classes were
the most stable and maintained their state during the 2012-2022 analysis period, reporting
a change probability of 0.84 and 0.94, respectively.
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3.5.3. Future Scenario Validation Model

The model was prepared for simulation using the land use maps of 2001 and 2012 to
predict the land use map of 2022. The result of the prediction was the simulated map for
2022 and was validated with the classified map for the same year, reporting an accuracy of
84%. The MOLUSCE model allowed a map comparison to be carried out. For the prediction
to 2032 and 2042, a total of 4000 stratified sampling points and a 3 x 3 neighborhood were
used for the ANN learning process. The following inputs were used to customize the
model: a learning rate of 0.001 pulse, 0.05 with 100 maximum iterations and 10 hidden
layers. The overall Kappa coefficient achieved after 100 iterations in MOLUSCE was 72%,
which can be considered an acceptable precision.

While the Ca-Markov model provides valuable insights into land cover transitions, its
accuracy depends on assumptions about historical trends that will continue into the future.
This model does not explicitly account for changing climate conditions, extreme weather
events, or changes in human activity, which can influence glacier retreat and wetland sta-
bility. Integrating regional climate models (RCMs) or hydrologic models could improve the
reliability of future projections by incorporating temperature and precipitation variability.

3.6. Estimation of Historical and Future Changes

The gain and loss metrics due to coverage of historical data (Figure 14) reveal that,
in the period from 1986 to 2001, the surface of the wetland class maintained the greatest
net change of 92.04%, followed by the bodies of water (30.96%) and glacier (14.42%), with
gains of 106.29%, 38.91%, and 16.63%.

lake - 1986-2001
O Glacier
5
— Wetland - B Loss (%)
Others | ™ Gain (%)
-100 80 -60 —40 -20 0 20 40 60 80 100 120
lake - 2001-2012
© Glacier -
=
— Wetland B Loss (%)
Others { HEM Gain (%)
-100 80 -60 —40 40 60 80 100 120
lake - 2012-2022
O Glacier -
=)
— Wetland 4 py [ 055 (%)
Others { HEM  Gain (%)
-100 -80 -60 —40 -20 0 20 40 60 80 100 120
lake - 1986-2022
© Glacier -
5
— Wetland - B 1oss (%)
Others | ™ Gain (%) —0.68

-100 -8 60 —40 20 0 20 40 60 80 100 120

Figure 14. Historical LULC gains and losses.
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In the second period (2001-2012), the greatest net change occurred in the class of
wetlands (BO) (19.52%), glaciers (GL) (15.18%), and bodies of water (CA) (8.13%) with
gains of 11.80%, 11.11%, and 7.67%, respectively. In the third period (2012-2022), the GL
and BO classes reported the largest net changes with 77.17 and 39.15%, and the gains were
0.37% and 55.96%. In the first period, classes GL, BO, and CA reported losses on their
surfaces between 7.95 and 31.05%. This could be related to climate change and being in an
arid area with accumulated annual precipitation of 400 mm [46]. In the second and third
periods, the patterns are repeated in the GL classes with surface losses of up to 77.54%. In
the case of CA and BO, it could be related to the dynamics of glacier coverage.

Figure 15 presents the gain and loss metrics corresponding to each land cover category,
obtained from the data predicted by the model, highlighting the most significant transfor-
mation patterns throughout the study period. In the period (2022-2032) the GL class shows
a significant decrease in surface area by 47.51% while the BO class experiences an increase
of 42.87%. This scenario is repeated in the period 2032-2042 with the additional loss of the
GL class by 29.64% and an increase of 40.18% in the BO class. Likewise, in the scenario
of the observed and predicted period 1986-2042, a drastic reduction of 93.24% in the GL
surface is observed, accompanied by a notable growth of 272.83% in BO and 69.38% in CA.
These results provide a solid basis for evaluating the potential impacts of such changes and
for designing strategies for sustainable management of natural resources.
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Figure 15. Projected future profits and losses of LULCs.

The reduction in glacial cover (Figure 15) suggests a potential decline in meltwater
contributions to the Caplina River system, which may lead to lower flows during the dry
season. However, wetland expansion could provide temporary water storage, mitigating
immediate losses but not compensating for long-term reductions in baseflow. Studies in
other Andean basins indicate that glacier-fed rivers experience a phase shift, where peak
flows shift earlier in the year due to reduced ice reserves [47].

Figures 16 and 17 show the historical and future distribution of the analyzed surfaces.
A decrease in glacial extension and redistribution of wetlands and bodies of water is
observed, which shows transformations in glacial systems due to the effects of climate
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change and its implications on the ecosystem services of the area. The estimate of future
changes in the surface of the glaciers indicates that by 2032, it will be 4.03 km?, while by
2042, it will decrease to 3.07 km?, which represents a total reduction of 0.96 km?. As for
wetlands, a significant increase is projected: by 2032, their surface area will increase by
15.47 km? and will continue to grow until reaching a cumulative increase of 18.80 km? in
2042. On the other hand, bodies of water will show a slight increase, moving to a surface
area of 4.52 km? in 2032 and reaching 4.63 km? by 2042.
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Figure 17. Historical percentage distribution of surfaces lakes, glaciers, and wetlands.
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These changes reflect a panorama of transformation in ecosystems due to the impact
of factors such as climate change. The reduction in glaciers could have repercussions
on the availability of water resources, while the growth of wetlands and bodies of water
suggests modifications in humidity and water storage patterns. These data underline the
need to implement sustainable management strategies to mitigate adverse effects and take
advantage of changes in a beneficial way.

Figure 18 presents a polar diagram that shows the loss of glacial coverage due to
historical and projected orientations. A marked Andean orientation stands out from
northwest to southeast, corresponding to the divortium aquarum, which divides the
Atlantic hydrographic unit to the northeast and the Pacific hydrographic unit to the south.
In the latter are the sources of the Caplina River basin, which flows predominantly in a
northeast—-southwest direction until it reaches the Pacific Ocean.
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Figure 18. Loss of Glacier coverage due to. (a) historical orientations. (b) projected.

In the study area, the Caplina River originates from the precipitation and melting of
snow-capped mountains associated with the Barroso mountain range. According to the
graph, the northeast orientation shows a decrease in glacial coverage from 2032 to 2042,
which suggests a loss of glacial mass that could reduce the surface flow of the Caplina River,
affecting its flow, especially in dry seasons, by reducing the contribution of the streams and
tributary rivers born in the snow-capped mountains of this mountain range.

4. Discussion

The results obtained show a significant reduction in glacial coverage, accompanied by
modifications in the extension of wetlands and bodies of water in the Barroso Mountain
Range. These changes reflect the interaction between climate change and anthropogenic
activities in the dynamics of high mountain ecosystems, highlighting the vulnerability of
these environments to environmental alterations and increasing human pressure.

The analysis of the NDSI and NDVI indices shows that snow and vegetation coverage
are being affected by climatic and environmental factors, which suggests a direct relation-
ship with the variability in winter temperature and precipitation [45]. The identification of
trends in both time series indicates that extreme events and long-term changes are altering
the water availability and stability of high Andean ecosystems. The reduction in snow not
only compromises the dynamics of wetlands and glacial lakes but could also modify the
biogeochemical cycles and energy balance in the region. Given this scenario, continuous
monitoring and the development of adaptation strategies are essential to mitigate impacts
on water resources and biodiversity.
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In this work, it was found that there is a sustained reduction in the glacier surface
between 1984 and 2022. Previous studies have identified similar trends in other Andean
regions, where glacial retreat has had an impact on water availability and ecosystem
stability [48-50]. This process has increased surface water flow in the short term [51].
However, this trend may not be sustainable in the long term, given that the continued
decline of glaciers would compromise the water supply in the region.

On the other hand, it is revealed that lower altitude areas have experienced the greatest
impact of glacial retreat, with a considerable loss of surface below 5150 m.a.s.l. This finding
is consistent with previous studies on the effects of climate change in glacial areas [52,53].
Likewise, the spatial distribution of glacial retreat suggests a more pronounced decrease
in the northern and eastern orientations. This trend indicates that the melting rate is
influenced by morphological and topographic factors and differential exposure to solar
radiation [54,55].

In contrast, an expansion of wetlands and bodies of water has been observed, possibly
related to the water supply from glacial melt. Previous research [55] has documented
that the reduction in glacial cover favors the increase in water levels in wetlands and
lakes, supporting the findings of the present study. However, this phenomenon could be
transitory: as the glaciers continue to retreat, water flow will decrease, which could affect
the sustainability of these ecosystems. The persistence of wetlands and bodies of water
will depend on the availability of alternative water sources and the adaptive capacity of
ecosystems in the face of these changes.

In the predictive analysis of changes in land use and cover (LULC), the hybrid CA-
MARKOV model is presented as a valuable tool. However, its performance largely depends
on the stability of historical LULC patterns [52]. Furthermore, its ability to generate accurate
spatial predictions may be limited in scenarios of high temporal and spatial variability.
Since land use changes are strongly influenced by human activity and regional planning
policies, the prediction of these phenomena cannot reach absolute accuracy.

The accuracy of the Ca—Markov model bases its predictions on transition probabili-
ties calculated from historical changes. The combination with hydrological and artificial
intelligence models would allow complex environmental dynamics to be captured [56].
Furthermore, the inclusion of socio-environmental variables, such as urban expansion and
land use policies, would more realistically reflect human influence on landscape changes,
while the incorporation of climate scenarios and extreme events would strengthen the
predictive capacity of the model.

To improve the reliability of projections, it is essential to complement these models
with updated data and interdisciplinary approaches that integrate climatic, ecological and
socioeconomic variables. Despite these limitations, dynamic models remain key tools in
formulating hypotheses and making strategic decisions about land cover evolution. LULC
projections have been widely recognized as fundamental instruments in the management
of natural resources, facilitating the design of mitigation and conservation strategies to
minimize environmental impacts and guarantee sustainable use of the territory [55,57-59].

Historically, the Caplina River has been susceptible to flash flooding, especially during
periods of rain [47,60]. Precipitation and melting of the glaciers of the Barroso mountain
range in the Andean zone cause an increase in the main flows of the basin [8,61,62]. The
Caplina and Uchusuma rivers converge, activating the Seco River, which crosses the
district of Gregorio Albarracin and flows into the Los Palos Spa in the Pacific Ocean.
Evapotranspiration is fundamental in hydrological processes and plays an important role
in water balances, which give rise to abrupt discharges from rivers, especially in arid areas,
such as the headland of the Atacama Desert [63].
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Given the evidence of the retreat of the glacial surface and its implications for water
availability, it is essential to comprehensively address the impacts in downstream areas.
Not only does it alter the balance of high Andean ecosystems but it also compromises the
supply of water for agricultural irrigation, regional supply, and the regulation of river flow,
increasing vulnerability to extreme events, such as droughts and flash floods.

In this context, it is recommended that local governments and water resources’ man-
agers strengthen real-time hydrometeorological monitoring systems to anticipate variations
in water availability. Likewise, it is essential to implement efficient water resource manage-
ment policies, optimize storage and distribution infrastructure, and promote innovative
technologies for water conservation. Additionally, the development of risk management
plans that integrate climate change adaptation strategies and specific measures for flood
mitigation in highly vulnerable regions is urged, thus guaranteeing water resilience and
sustainability of ecosystems and communities dependent on the resource.

The rapid glacial retreat in the Barroso Mountain Range is directly linked to the
sustained increase in temperatures in Peru, with an increase of 0.75 °C in the last century
and a more marked trend in recent decades [64]. This phenomenon has altered water
availability in high Andean ecosystems, generating a temporary increase in water bodies
due to the greater melt flow.

5. Conclusions

This study analyzed the historical and projected land cover transformations of glaciers,
wetlands, and lagoons in the Barroso mountain range, located within the hyperarid Ata-
cama Desert. Deming linear regressions highlighted a constant retreat of glaciers and a
progressive growth in wetlands and glacial lakes, supported by 95% confidence bands,
allowing trends and their variability to be accurately assessed. A sixth-degree polynomial
correlation complemented this analysis, capturing the complexity of temporal fluctuations
and providing a more detailed representation of ecosystem transformation processes.

Using geographic information systems and cloud processing techniques in combina-
tion with cellular automata, we evaluated glacier retreat and its influence on land cover and
land use changes. The analysis identified three land cover types: glaciers, wetlands, and
bodies of water. Over the last 36 years, glaciers experienced a drastic decline from 44.7 km?
to 7.4 km?, while bodies of water and wetlands expanded by 1.4 km? and 6.4 km?, respec-
tively. These dynamics reflect a substantial transformation of high mountain ecosystems,
probably influenced by glacial retreat and changes in precipitation patterns.

The accelerated retreat of glaciers in the Barroso range is consistent with broader global
trends of cryospheric change. Similar patterns have been documented in the Cordillera
Blanca, Peru, and the Bolivian Andes, where glacier loss is significantly altering regional
hydrological balances. These findings contribute to the growing body of research on glacier-
fed water systems in arid and semi-arid environments and highlight the urgent need for
sustainable water management strategies in the face of increasing climate variability. The
analysis of the glacier distribution coverage based on elevations reveals very clear patterns;
in 1986, most glacier coverage was between 4950 m.a.s.l. and 7750 m.a.s.l. Since 2001,
the reduction was most notable at lower elevations, with a total disappearance below
4950 m.a.s.l. in 2012. By 2022, the lowest elevations reached 5150 m.a.s.l., reflecting a loss
of approximately 200 m. This pattern highlights the greater vulnerability of glacial areas at
lower altitudes, highlighting the impact of climate change in these areas.

Orientation analysis of glacier loss indicates a decrease in 1986, the south and west
orientations concentrated most of the glacier mass. Beginning in 2001, the loss was most
pronounced in north and east orientations, with a complete disappearance of coverage
in those directions. By 2018, the glaciers disappeared from the west orientation, and in
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2022, only remnants remained on the south orientation. This pattern reflects the accelerated
reduction in glaciers.

The time series analysis of NDSI and NDVI indices shows fluctuations in snow and
vegetation coverage over time. Snow peaks occurred in 1985, 1986, 1989, 1997, 2000, 2001,
2002, and 2012, while periods of lower coverage were recorded in 1992, 1998, 2016, and
2024. Since 2000, the NDVI index has shown an increase in vegetation density, although
low values in 1991 and 1992 suggest adverse climatic events that affected both snow
and vegetation.

Analysis of observed coverage gains and losses between 1986 and 2022 shows that
wetlands (BO) experienced the largest increase, especially between 1986 and 2001, with an
increase of 92.04%. Glaciers (GL) and bodies of water (CA) also increased but to a lesser
extent. Between 2001 and 2012, glaciers began to reduce their surface, while the wetlands
continued to grow. From 2012 to 2022, glaciers lost 77.17% of their area, while wetlands
increased by 39.15%. These changes are linked to climate change and the arid conditions of
the region.

The modeling of future scenarios carried out from the land cover and use maps and
MOLUSCE showed that projections for the next few years indicate a drastic reduction in
glacier cover (GL), with an estimated loss of 93.24% between 1986 and 2042. This decrease
is accompanied by a notable growth of wetlands (BO), which could increase by 272.83% in
the same period. In addition, bodies of water (CA) will also experience growth, although
to a lesser extent of 69.38%.

The Caplina River demonstrates a transformative dynamic influenced by climatic
factors, such as exceptional rainfall in the Andean zone. These rains cause an increase
in the flow in the basin, activating dry channels and generating a risk of flash floods in
urbanized areas along their route. This phenomenon, similar to the glacial retreat observed
in other regions, reflects an alteration of natural patterns and a greater vulnerability of the
low areas of the Caplina basin, especially the Seco River ravine, which runs alongside the
city of Tacna, which highlights the need for greater attention to the effects of climate change
on the basins and surrounding ecosystems.

While the observed expansion of wetlands suggests a temporary increase in available
water from glacial melt, the long-term sustainability of these ecosystems remains uncertain.
As glaciers continue to retreat, meltwater contributions are likely to decrease, potentially
leading to a change in wetland hydrodynamics and a decrease in water storage capacity.
This could impact downstream hydrology, particularly in semiarid basins such as the
Quebrada del Rio Seco. Future studies should investigate the resilience of these wetlands
under scenarios of prolonged glacial loss.

The results of this study underscore the urgency of implementing adaptive water
management strategies in glacier-dependent watersheds. Given the projected decline in
glacier mass and potential changes in wetland dynamics, policymakers should prioritize
integrated water resources planning considering both short-term hydrological changes and
long-term sustainability challenges. Future efforts should focus on developing mitigation
strategies that balance ecosystem conservation with human water needs in a rapidly
changing climate.
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