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Abstract

Most existing multispecies transport analytical models primarily focus on inlet boundary
sources, limiting their applicability in real-world contaminated sites where contaminants of-
ten arise from multiple internal sources. This study presents a novel semi-analytical model
for simulating multispecies contaminant transport driven by multiple time-dependent
internal sources. The model incorporates key transport mechanisms, including advection,
dispersion, rate-limited sorption, and first-order degradation. In particular, the inclusion of
rate-limited sorption addresses limitations in traditional equilibrium-based models, which
often underestimate pollutant concentrations for degradable species. The derivation of
this semi-analytical model utilizes the Laplace transform, finite cosine Fourier transform,
generalized integral transform, and a sequence of inverse transformations. Results indicate
that the concentrations of contaminants and their degradation products are highly sensitive
to the variations in time-dependent sources. The model’s most significant contribution
lies in its capability to simulate the contaminant transport from multiple internal pollution
sources at a contaminated site under the influence of rate-limited sorption. By enabling the
representation of multiple time-varying sources, this model fills a critical gap in analytical
approaches and provides a necessary tool for accurately assessing contaminant transport
in complex, realistic pollution scenarios.

Keywords: multiple contaminant sources; multi-species transport; rate-limited sorption;
semi-analytical solution

1. Introduction

Improperly managed waste from industrial processes, agricultural practices, and
other human activities can lead to severe environmental consequences. These pollutants
may infiltrate the soil and percolate into groundwater systems through surface pathways,
triggering regional contamination events that pose serious risks to drinking water safety.
Understanding the transport behavior of contaminants in groundwater is therefore essential
for effective pollution control and for selecting remediation strategies suited to the specific
conditions of each site.

To better understand the movement and transformation of contaminants in groundwa-
ter systems, various mathematical models describing solute transport have been developed
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over the past decades. Both analytical and numerical solution models have been proven
effective in simulating contaminant transport in groundwater systems. Although analytical
models rely on simplifying assumptions, they are easier to implement when data avail-
ability is limited. The selection between analytical and numerical approaches depends
on the modeling objectives, data availability, site complexity, and budgetary constraints.
When extensive field data are available, three-dimensional numerical models provide
powerful simulation capabilities. However, for most practical applications, data are often
scarce. In such cases, analytical models offer a valuable means for obtaining preliminary
estimates of contaminant plume migration. For example, the BBOCHLOR model developed
by Aziz et al. (2000) [1], a widely used and publicly accessible analytical tool, simulates
three-dimensional multispecies transport and is particularly effective in modeling natural
attenuation at chlorinated solvent-contaminated sites. McGuire et al. (2004) [2] reported
that among 45 such sites, 60% employed mathematical models, with BIOCHLOR being the
most commonly used. Accordingly, many analytical models have been developed over the
past decades to simulate one-, two-, and three-dimensional contaminant transport based
on advection-dispersion equations (ADEs). Numerous models focusing on single-species
transport processes have been documented in the literature [3-9].

The models developed in the aforementioned studies primarily focus on simulating
the transport behavior of single-species solutes. However, certain pollutants—such as chlo-
rinated solvents, radionuclides, and nitrogen compounds—often degrade under favorable
environmental conditions, producing secondary compounds known as daughter products.
These transformations typically follow a sequential first-order decay process, governed
by first-order reaction kinetics, resulting in dynamic changes in the concentrations of both
parent and daughter species. Since each compound in the degradation chain is interde-
pendent, the concentration of a daughter product may increase or decrease depending on
the reaction rate constant of its parent compound [10]. As a result, single-species solute
transport models are inherently incapable of capturing the mass transformation processes
associated with degradable contaminants. In contrast, multispecies transport models are
essential for accurately representing the mass conversion from parent to daughter species
in reactive transport systems.

Over the past decades, numerous models have been developed to simulate the trans-
port behavior of multiple contaminants in groundwater systems and have been widely ap-
plied in environmental studies [11-18]. Most existing analytical models assume linear equi-
librium sorption, where the sorption rate between dissolved and solid phases is significantly
faster than the advective transport of pollutants through porous media. However, this
assumption can lead to inaccurate predictions of contaminant concentrations—particularly
under conditions of rapid groundwater flow—resulting in significant underestimation of
pollutant levels and associated health risks [19-21]. Such models fail to accurately capture
transport dynamics at sites where sorption does not reach equilibrium instantaneously [22].
Although developing analytical solutions that incorporate rate-limited (nonequilibrium)
sorption is more complex, such models provide more realistic representations of contami-
nant behavior and are better suited for addressing practical field conditions.

Most existing analytical models treat the contaminant source as an inlet boundary
condition [23], which often oversimplifies real-world scenarios. In practice, many contami-
nated sites involve multiple distributed sources within the domain, such as leakage points
from pipelines, tanks, or subsurface waste deposits. To realistically represent such complex
systems, it is essential to formulate the advection—dispersion equation with source/sink
terms that explicitly account for internal and multiple pollution sources. These source/sink
terms serve as crucial components in capturing the spatial and temporal variability of
contaminant inputs across the domain. Despite their importance, analytical solutions
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incorporating multiple internal sources remain scarce due to the increased mathematical
complexity compared to traditional boundary-driven models. The development of such
models is thus urgently needed to improve the applicability and accuracy of analytical
solutions in real-world groundwater contamination assessments.

Chen et al. [24] developed analytical models to simulate the transport of a single
contaminant with arbitrary one-, two-, and three-dimensional source geometries, enabling
the placement of pollution sources at any location within the domain. However, these
models are limited to a single internal source. In real-world scenarios, multiple pollution
sources are frequently encountered, such as leaks from sewage pipes, leachate from landfill
liners, and oil spills from storage tanks—often resulting from structural defects or failures
in pipelines and containment systems. To address this complexity, Ding et al. [25] proposed
a two-dimensional analytical solution for single-species solute transport that incorporates
multiple time-varying internal point sources within a finite domain. While their model
accounts for internal source injection, it lacks the capacity to simulate the formation and
transport of degradation products.

This study introduces a novel semi-analytical model for simulating the transport of
multi-species contaminants in groundwater systems, explicitly accounting for rate-limited
sorption and multiple time-dependent internal sources distributed arbitrarily within the
domain. Unlike conventional analytical models that typically assume boundary-driven
inputs, the proposed model incorporates source/sink terms into the coupled ADEs to
better reflect real-world scenarios involving spatially distributed contamination events. To
derive the solution efficiently, the governing equations are transformed into a system of
algebraic equations using the Laplace transform in the time domain and integral transforms
in the spatial dimensions. This modeling framework enables more realistic simulation of
contaminant plume migration and transformation, particularly for degradable pollutants
and their daughter products in complex subsurface environments.

2. Mathematical Model

This study presents a semi-analytical two-dimensional model for evaluating the trans-
port of contaminants and their degradation products in groundwater, incorporating first-
order reaction kinetics and the effects of rate-limited sorption. The model accounts for mul-
tiple contaminant sources distributed arbitrarily within the domain. Transport processes
include advection, hydrodynamic dispersion, first-order degradation, and reversible sorp-
tion kinetics. The primary contaminant is subject to rate-limited sorption, modeled using
first-order reversible kinetics, while its degradation products follow sequential first-order
decay reactions. These processes are critical for accurately capturing the transformation
and migration of degradable contaminants in subsurface environments. As illustrated
in Figure 1, the model describes multispecies contaminant transport in a homogeneous
aquifer with unidirectional groundwater flow along the x-axis. Contaminant sources are
represented as horizontally oriented rectangles positioned at arbitrary locations. Dispersion
occurs in both the longitudinal (x) and transverse (y) directions.

The governing equations characterize the coupled transport of the parent contaminant
and its daughter products, incorporating multiple source terms and first-order reversible
sorption in two spatial dimensions as
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In the governing equation, C;(x,y,t) denotes the concentration of the ith species in
the aqueous phase (M/ L3). S;(x,y,t) is the concentration of the ith species adsorbed to the
solid phase (M/M) and t denotes time (T). Dy, and Dr are the longitudinal and lateral
dispersion coefficients (L?/T), while v is the average pore-water velocity (L/T). k; is the
decay/degradation rate constant of the ith species (T~!). The parameter 3 represents the
kinetic sorption rate constant (T~1). Porosity is denoted by 0 (-), and pj, is the bulk density
of the geological material (M/L?). The distribution of the ith species between the aqueous
and solid phase is characterized by the partition coefficient Kj; (L3/M). The source/sink

NS
m=1

term is expressed as ) %;pf’i(x)p;'fi(y)qf(t) , NS is the total number of contaminant
sources, M; is the mass of species 7 introduced at source and p7’;(x) and p;”,i (y) are the
spatial distribution functions for the x and y directions, respectively. These spatial functions
are typically represented by unit step functions. /" (t) defines the temporal variation in
species i at source m. In this study, two types of time-dependent contaminant sources
are considered: (1) instantaneous Dirac delta function and (2) finite pulse function, as

summarized in Table 1.
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Figure 1. Schematic of the model domain for a multi-source system. Green squares (sources a—c)
denote source zones; for each source, the footprint is defined by the corner coordinates (x1, y1),
(x2, v1), (x1, y2), and (X2, y2). This schematic shows three sources for readability; the formulation
supports an arbitrary number of sources.

Table 1. Responding functions of source/sink terms and their definitions.

Source Function Response Function Definition of Response Function

Indicates that contaminant source

) m is in the region xZ’l <x< x;”z in the x direction
" (y) . - Indicates that contaminant source

Pyily H(y - y;ﬂ) - H(y - yﬂ) m is in the region yi; <y <y}, iny direction

pii(x) H(xfo‘l) 7H<xfx;"2

1 Indicates that contaminant source m is
7 (b) continuously injected
! HE — H(f— Indicates that contaminant source
(t) ( q ) m is injected during the time interval 0 < ¢ < ¢

It is assumed that no contaminant mass is present initially within the domain, as
expressed by the following initial condition:

Ci(x,y,t=0)=0 i=1,2,...,N 3)
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Si(x,y,t=0)=0 i=1,2,...,N (4)
The following boundary conditions are imposed to ensure a unique solution to
Equation (1):
aCi(x =0,y,t ,
—DL% +0Ci(x=0,y,t) = vf()[Hy —y1) —H(y—y2)] i=1,2,..,N 5)
oCi(x =L,y,t) .

T—O 1=1,2,...,N (6)
wzo i=1,2,...,N )

9%y
Mzo i=1,2,...,N (8)

9%y

1 9*Ci(xpyp.tp)

where L and W are the length and width of the transport system, respectively.
The nondimensional form of Equations (1) through (8) is given as follows:
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Based on the governing equations, initial conditions, and boundary conditions defined
above, this study employs a series of mathematical transformations to derive a semi-
analytical solution for the two-dimensional multi-species advection-dispersion equation
with internal sources. Specifically, the Laplace transform is applied to the temporal variable
t, the finite Fourier cosine transform is used for the transverse spatial variable y, and the
generalized integral transform is applied to the longitudinal spatial variable x. Through
these transformations and subsequent inverse operations, the final semi-analytical solution—
presented as Equation (A23)—is obtained. A detailed derivation process is provided in
Appendix A.

3. Results and Discussion
3.1. Verification of the Novel Semi-Analytical Model

In developing the proposed semi-analytical model for multispecies contaminant trans-
port, it is essential not only to derive the solution to the governing equations but also to
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verify the model’s accuracy to ensure its applicability to a wide range of real-world scenarios.
For this purpose, a representative case study involving chlorinated solvents is employed as
a verification example. Chlorinated solvents are widely recognized as typical multispecies
contaminants, with perchloroethylene (PCE) serving as the parent compound that sequentially
degrades under anaerobic conditions into trichloroethylene (TCE), dichloroethylene (DCE),
vinyl chloride (VC), and eventually ethene (ETH). To validate the accuracy of the developed
model, simulation results are compared against those obtained from the Laplace Transform
Finite Difference (LTFD) method—a well-established numerical approach for solving transient
reactive transport problems in porous media, as described by Moridis and Reddell [26] and
Chen et al. [27]. The simulation scenario is adapted from the illustrative example provided
in the BIOCHLOR user manual [1], ensuring that the model is tested against a benchmark
problem representative of multispecies degradation behavior.

The model is verified using two scenarios involving multiple contaminant sources. In
the first scenario, the sources release contaminants continuously at a constant rate. In the
second scenario, contaminant injection occurs over discrete time intervals, represented by a
unit step function: solutes are steadily introduced during a one-year period from ¢ = 0 to
t =1 year. This dual-scenario design allows the model to capture both continuous and time-
dependent contaminant input conditions. In both cases, the initial condition assumes a zero
concentration throughout the domain, and no inlet boundary sources are considered. Each
internal source releases perchloroethylene (PCE) at a concentration of 10 mg/L, serving
as the parent compound in a sequential biodegradation chain. The degradation process
follows first-order kinetics, producing trichloroethylene (TCE), dichloroethylene (DCE),
vinyl chloride (VC), and ethene (ETH) as intermediate and final products. Model outputs
are evaluated at = 2 years, with the sorption rate uniformly set to 0.5 year ! for verification.
The spatial distribution of contaminant sources is illustrated in Figure 2, and the complete
set of model parameters is provided in Table 2.

L=330.7m
(100,190)  (110,190) (300,190) __ (310,190)
(100,180)  (110,190) (300,180)  (310,180)
—
X
(150,110)  (160,110) [
)
(150,100) " (160,100) o
N
(50,40) (60,40) Groundwater flow 3
Y (5030)" (60,30) (250,20)  (260,20)

(250,10)  (260,10)

X

Figure 2. The conceptual model for verification includes five pollution sources located at arbitrary
positions.
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Table 2. Transport parameters used for model verification transport tetrachloroethene (PCE)
and daughter products formed through natural degradation, including trichloroethylene (TCE),
dichloroethane (DCE) isomers (1,1-DCE, cis 1, 2-DCE, and trans 1,2-DCE), vinyl chloride (VC), and
ethene (ETH) in groundwater.

Parameters Value
Length, L [m] 330.7
Width, W [m] 213.4
Seepage velocity, v [m year™!] 10
Longitudinal dispersion coefficient, D; [m? year—'] 2000
Transverse dispersion coefficient, Dt [m? year’l] 200
Effective porosity, ¢ [-] 0.2
Bulk density, p; [kg/L] 1.6
Simulation time, t [year] 2

PCE TCE DCE VC ETH

Distribution coefficient, ky; [kg m~3] 0.784 0239 0.230 0.0545 0.556
First-order degradation reaction rate, k; [yearfl] 2 1 0.7 04 0
Sorption rate constant, j3; [year’l] 0.5 0.5 0.5 0.5 0.5
Contaminant Injected mass of sources, M [mg/L] 10 0 0 0 0

Figure 3 illustrates the spatial concentration distributions of all contaminants in the
chlorinated solvent biodegradation chain for Scenario 1, while Figure 4 presents the cor-
responding results for Scenario 2. In both scenarios, the proposed semi-analytical model
shows excellent agreement with the numerical model, demonstrating its accuracy in cap-
turing multispecies transport behavior. These verification results confirm the model’s
capability to simulate the migration of both parent compounds and their degradation
products from multiple contaminant sources simultaneously. Moreover, the consistency
observed across scenarios underscores the robustness and practical applicability of the
computer code developed to implement the semi-analytical solution.

PCE TCE
200 @ C@ 200 @ @

150 150
£

=100 ) ,45'3’ %100 gf_?;))
50| .1 50 /*";“’:‘0.1
Q@) R @ {”@m«\

%S0 100 150 200 230 300 %o 50 100 130 z00 280 300
x [m] X [m]
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200 a5 ~= @% 200 @_'M 01
150+ ' — 1500 M

02 012

o Z i =0
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50| m 50 018
2D 025 Jrmee Lerers) 01—y m&m
S e a@m A
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o
=
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150+ .

New semi-analytical model

seeeecee LTFD

=Y
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X [m]

Figure 3. Comparison of the transport process of chlorinated solvent pollutants and their degradation
products from multiple contaminant sources with constant injection between the new semi-analytical
model and the corresponding numerical model.
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Figure 4. Comparison of the transport process of chlorinated solvents and their degradation products
from multiple contaminant sources with pulse injection between the new semi-analytical model and
the corresponding numerical model.

3.2. Effect of Sorption Rate on Dissolve Phase Concentration

This study investigates two scenarios involving different transport parameters for
multiple contaminant sources. The inlet boundary source is assumed to remain constant
over time and is spatially distributed between y; and y, (Figure 5). It contains all five
species in the chlorinated solvent biodegradation chain, with an initial concentration of
1 mg/L assigned to each compound. Contaminant concentration profiles are analyzed
along the longitudinal direction at an observation cross-section located at y = 106.7 m.
This transect intersects both the upstream inlet boundary source and the internal injection
sources positioned at coordinates (150, 100), (150, 110), (160, 100), and (160, 110), respectively.
Figures 6 and 7 illustrate the concentration distributions of the parent compound and its
degradation products under varying sorption rates, considering both continuous and short-
term injection scenarios. All simulation results correspond to t = 2 years after the initiation
of contaminant release into the groundwater system.

In the first scenario, concentration profiles for PCE, TCE, DCE, VC, and ETH are
presented. The simulation results indicate that two years of continuous injection source,
coupled with increasing sorption rates, leads to a gradual reduction in dissolved-phase
contaminant concentrations. Sorption plays a significant role in limiting contaminant
mobility and availability in the aqueous phase. As the sorption rate increases—from
0.05 year~! to 50 year!—a larger fraction of each contaminant becomes sorbed onto the
solid matrix, resulting in lower concentrations in the dissolved phase. This behavior is
clearly illustrated in Figure 6, where higher sorption rates (3) correspond to reduced peak
concentrations and more rapid attenuation of contaminant levels with distance.



Hydrology 2025, 12, 249 9of 18

(0,213.4) (330.7,213.4)
(100,190)  (110,190) (300,190) __(310,190)
(100,180)  (110,190) (300,180)  (310,180)
Y2 —
_______ (30.119) U019 _ gbservation profile_
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(50,30)"(60,30) (250,20)_ (260,20)
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(0, 0) (330.7, 0)

B Pollution source
X

Figure 5. The conceptual model includes one main upstream source and five injected contami-
nant sources located at different locations. The red line indicates a one-dimensional concentration

distribution observation profile.

PCE TCE
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Figure 6. Observation profile at y = 106.7 m for the pollutants PCE, TCE, DCE, VC, and ETH, with
both the main pollution source and injection sources continuous, under different sorption rates (3)

over a simulation period of 2 years.



Hydrology 2025, 12, 249

10 of 18

PCE TCE
0 100 200 300 0 100 200 300
0.4 : : : : 04 0.6 — : 0.6
— B=0.05 year! \ — B=0.05 year!
1 B=0.5 year! |- \ 5
\ p=5 year! ! \\ [

—03

\ p=50 year!

p=50 year!

DCE vc
0 100 200 300 0 100 200 300
0.8 : . : : 08 0.8 : ! : o8
B=0.05 year! — p=0.05 year!
1 — p=0.5 yeall"1 r 1 ——— B=0.5 year! |
—— B=5 year B=5 year!
0.6 \ B=50 year! 0.6 0.6 *\;\ p=50 year! | 0.6
A\\\
\
\
04\ 0.4
0.2 - 0.2
0 =———19
0 100 200 300 0 300
X [m]
ETH
0 100 200 300
0.8 L 1 L 1 L 1 0.8
— p=0.05 year!
1 p=0.5 year! [
P=5 year!
0.6 1 B=50 year! | 0.6
0.4 =04
0.2 -] AN 0.2
N\
0 : : —0

0 100 300

Figure 7. Observation profile at y = 106.7 m for the pollutants PCE, TCE, DCE, VC, and ETH,
considering the primary contaminated source being continuous and other sources being pulse
injected with an injection period of 1 year into the groundwater, under different sorption rates (f3)
over a simulation period of 2 years.

In the second scenario illustrated in Figure 7, short-term contaminant sources are
represented using a Heaviside step function, simulating contaminant injection over a one-
year period, while the inlet boundary sources are treated as continuous. As the sorption
rate increases, the concentrations of both parent and daughter species generally decline
downstream from the continuous upstream source, consistent with the expected effect of
sorption in retarding contaminant migration. However, a contrasting trend is observed
near the short-term injection source, particularly for PCE and TCE. At higher sorption
rates (B = 5 and 50 year!), significantly elevated concentrations are predicted in the
vicinity of the injection point. This phenomenon suggests that high sorption capacity
may result in local accumulation due to rapid desorption, leading to pronounced peak
concentrations near the source. For DCE, the impact of sorption is less pronounced but still
evident, with slightly higher concentrations near the injection site observed at increased
sorption rates. These results highlight the complex interplay between sorption kinetics and
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contaminant transport behavior, especially under pulse-loading conditions. The emergence
of local concentration peaks for PCE and TCE underscores the importance of accurately
characterizing sorption—desorption dynamics when assessing and managing groundwater
contamination from transient pollutant sources.

To better understand this behavior, the concentration of the sorbed phase at a fixed
location is analyzed for the first species in the degradation chain, as shown in Figure 8.
This figure compares the temporal variations in the concentrations of five species under
two conditions: a continuous pollution source and a short-term injection source, both
simulated at the same sorption rate of 50 year~!. Under continuous source conditions, the
concentrations of all species in the dissolved phase steadily increase over time, reflecting
the sustained input of contaminants. In contrast, for the short-term injection scenario, PCE
and TCE exhibit a rapid increase in concentration following the start of injection, followed
by a sharp decline after the source is removed at ¢ = 1 year. This pattern suggests that
desorption plays a key role in sustaining elevated concentrations temporarily, even after

the cessation of contaminant input.
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Figure 8. Comparison of concentration changes over time of pollutants belonging to the biodegra-
dation chain of chlorinated solvents in the sorbed phase between pulse injection and continuous
injection source with sorption rate, 3 = 50 years™".
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In the continuous injection scenario, a sustained supply of PCE leads to the steady
formation of degradation products. Over time, the exchange between the sorbed and
dissolved phases approaches equilibrium, resulting in stabilized concentrations of these
compounds in both phases. In contrast, the finite pulse injection scenario shows that when
dissolved-phase concentrations decline due to the termination of the contaminant source,
previously sorbed contaminants desorb back into the dissolved phase. This includes in-
termediate products such as DCE and VC, as well as the final product, ETH. However,
due to the low concentrations of these compounds and the short simulation period, the
desorption effect is less pronounced. Understanding these dynamics is essential for accu-
rately predicting contaminant behavior and designing effective remediation strategies that
address both the parent compound and its degradation products to ensure comprehensive
environmental protection.

4. Conclusions

This study develops a semi-analytical model for simulating multispecies contami-
nant transport in groundwater systems with multiple internal sources under rate-limited
sorption conditions. The model accounts for key transport processes, including advection,
dispersion, first-order degradation, and rate-limited sorption. To solve the governing
equations, a hybrid analytical approach combining the Laplace transform, finite cosine
Fourier transform, and generalized integral transform is employed, followed by inverse
transformations to obtain time-domain solutions. This solution framework enables efficient
and accurate simulation of two-dimensional multispecies transport driven by complex,
time-dependent internal sources. Model validation was carried out through scenarios
involving five internal pollution sources under both continuous and pulse injection modes.
The contaminant chain consists of chlorinated solvents, beginning with the parent com-
pound PCE and sequentially degrading to TCE, DCE, VC, and finally ETH. The high
consistency between the semi-analytical and numerical results confirms the model’s accu-
racy and computational efficiency. The study further explores the effects of rate-limited
sorption on the migration and distribution of both parent and daughter species. For con-
tinuously injected sources, higher sorption rates reduce dissolved-phase concentrations
due to increased retention in the solid phase. Conversely, for pulse-injected sources, des-
orption becomes dominant after source cessation, leading to elevated dissolved-phase
concentrations—especially for PCE.

This 2-D semi-analytical model is computationally efficient and easy to apply. It suc-
cessfully handles multiple contaminant sources under rate-limited sorption conditions and
demonstrates strong agreement with a standard numerical solver. However, it is designed for
systems with uniform, steady flow and simple boundaries. Cases with strong heterogeneity
or complex boundary conditions fall outside its intended scope. By integrating a rigorous
semi-analytical solution method with realistic sorption kinetics and internal source configura-
tions, the proposed model offers a robust and flexible framework for predicting multispecies
contaminant transport. It facilitates the evaluation of diverse pollution scenarios and supports
the development of more effective, site-specific remediation strategies.
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Appendix A

In the development of analytical solution models, the Laplace transform has been
commonly employed to eliminate the time-dependent differential term. The Laplace
transform of the concentration C;(xp, yp, tp) is defined as

Ci(xD/yD/s) - L[Ci(xD/yD/ tD)] = /0 eistDCi(xD/yD/ tD)dtD

where s is the Laplace conversion parameter of t. The Laplace inverse transformation
formula can be expressed as

= 1 a—+ico -
Ci(xp,yp,tp) = L [Ci(xp,yp,s)] = T/ &' Ci(xp,yp,s)ds
7Tl Ja—ioo
where « is the abscissa value of the convergence interval of the function.
By applying the Laplace transform to Equations (9)—(16) using the definitions above,
the equations can be reformulated as follows:

1 *Ci(xpyp.s) _ 9Ci(xp.yp.5) 7* 9°Ci(xp,yp.s)

Pe; — oxp? 9xp Per  oyp? _
—(s+A)Ci(xp,yp,s) + Ai-1Ci_1(xp, YD, 5) — %(C‘(XD,]/D,S) - S’(xﬁigp’s)) (A1)
= -yNs, OFpY(xp)py;(yp)Qi'(s)  i=1,2,..,N

_ _ S:(xp,yp,s )
spri(xD,yD,s) :Bi (Ci(XD,yD,S>—I(DyD)> Z=1,2,...,N (AZ)

Kgi
C‘(XDAVD,S:O) =0 E(XD/yDISZO):O i=1’2'“',N (A3)
1 86 Xp = 0/ ,S ai Ci ]
_ 1 9Gxp =0,yp,s) +Ci(xp =0,yp,s) = —=[H(yp —yp1) — Hlyp —yp2)]  i=1,2..,N (B4
Pe;, dxp s

Cilp =1yp:S) _ g ;_1, .. N (A5)

dxp
aCi(xD,yD:O,S) :0 i=1/2/"'/N (A6)

ayD
aCi(XD,yDzl,S) =0 i:1/2/-~-/N (A7)

E)yD

Here, Q" (s) is the function after Laplace transformation of g}" (tp), expressed as follows:

m « —stp ,m — %,qu:n(tp) =1
QN®=A€ qﬂwﬂ%—{g@—eﬁyywmﬁ:Hm—Hwﬁw

Substituting the Laplace-converted rate-limited sorption relationship in Equation (A2)
into the governing Equation (A1), it can be expressed as

1 *Ci(xpyps) _ 3C(xpyps) | > 9*Ci(xpyp,s) Ieh _
P ot T awm o TP gyt — @i(s)Ci(xp,yp,s) + AiaCia(xp, ¥, s) =

NS, QU (xp) (D) QU (s)  i=1,2,..., N

(A8)

B; Ky
where ©;(s) = s+ A; + ?st;gﬁBi

The following is the definition of finite Fourier cosine conversion:

1_
H;(xp,n,s) = /0 Ci(xp,yp,s)cos(nmyp)dyp i=1,2,...,,N (A9)
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Here H;(xp,n,s) is the dissolved-phase concentration after finite Fourier cosine conversion;
n is the finite Fourier cosine conversion parameter of y.
The inverse conversion formula of finite Fourier cosine can be expressed as

Ci(xp,yp,s) = Hi(xp,n =0,s) +ZZZ°:1 Hi(xp,n,s)cos(nmyp) i=1,2,...,N (Al0)

Through the finite Fourier cosine transformation of Equations (A4)—-(A8) through the
above definitions, the governing equations and boundary conditions can be rewritten as

277, .
L dHi(pns) _ dHi(xpms) (@,(S) + 721?€2T"2)Hi(xp, n, S) +A;_1H; 4 (XD, 7’1,) =

Pep — dxp? N (A11)
Y1 Qrpzi(xD)Py”fi(n)QT(s) i=12,..,N
1 0H;(xp =0,n,s) Cio .
PeL aXD + l(xD 0, n, S) s (n> 1 i IN ( )
aHl'(xDzl,?’l,S) —0 i=1,2,...,N (A13)
axD

®(n) in boundary condition Equation (A12) is a function of H(yp — yp1) — H(yp — yp2)
after finite Fourier cosine transformation, and its value is expressed as follows:

Yp2—yp1n =0
(I)(n) = { sin(nmypy)—sin(nmypy)
nm

n=123..

In the past, Pérez Guerrero et al. [18] established a method: using variable transforma-
tion to homogenize the boundary conditions and eliminate the first-order space differential
term in the x direction in the control equation, to facilitate subsequent generalized Integral
transformations that can directly convert governing equations into algebraic equations.
This study defines the variable transformation function as follows, based on the derivation
steps of [20]:

Cio Pep
H;(xp,n,s) = T’CID(n) +e 2 *Pg;(xp,n,s)
Here, ¢;(xp, n,s) is the dissolved phase concentration after variable transformation.

By transforming Equations (A11)—~(A13), the governing equations and boundary conditions
can be rewritten as

1 d%gi(xp,mns) Y2n’m? | Pep
PigL IdeZ - ®Z(S)+ Per +T q’i(xD/”/S)

. Pe . Pe
= (®I(S) 4 727127[2)%@(7’1)6_%)(1) _ Ai—l (lel,oq)(n)e_TLXD + (pi—l(xD/ Tl,S)) (Al4)

Per s

Pep

~ Ly QP (ap) P (n)Qf (s)e” 2 i=1,2,...,N

—dq)i(xD:O/”'S)+&q0i(x1):0,n,s):0 i=1,2,...,N (A15)
de 2

dei(xp =1,n,s) +&§0i(xD=1,n,S):0 i=1,2,..,N (A16)
de 2

This study employs a generalized integral conversion method based on the approach
of [15], focusing on a structured four-step process. First, the eigenvalue problem is ad-
dressed by determining the eigenvalues, eigenfunctions, norms, and normalized eigen-
functions (kernel function). Next, a generalized integral transformation and its inverse
are defined, facilitating the conversion of ordinary differential equations (ODEs) into alge-
braic equations. The transformed ODEs are then solved in this simplified algebraic form.
Finally, the solution is reverted to the original domain using the inverse transformation
and accumulation process, allowing the recovery of the unknown function in the original



Hydrology 2025, 12, 249 15 of 18

problem. This method streamlines the process of solving complex differential equations by
transforming them into a more manageable form.

The eigenvalue problem can be defined as follows, according to the governing Equa-
tion (A14) and boundary conditions (A15) and (A16):

d*K(xp)

dxp? +¢&°K(xp) =0

dK(XD = 0) PEL - -
P 5 K(xp=0)=0

dK(xD = 1) PeL o o
T_'—TK(XD_l) =0

Here, K(xp) is the characteristic function and ¢; is the generalized integral transfor-
mation parameter.

Solving the selected eigenvalue problem can obtain the normalized eigenfunction
required for generalized integral transformation, which is expressed as follows:

K(&,xp) = %Sin(ﬁzm) + &cos(§1xp)

¢; can be defined by the following formula: ¢;cot¢; — I%ZL + % =0
The generalized integral defined by the above normalized characteristic function is

transformed into:

1
@(gll I’Z,S) = A K(glr XD)QDZ'(XD, n,s)de i=12,..,N (A17)

where @;({;, n, s) is the dissolved phase concentration after generalized integral conversion.
The generalized integral inverse transformation is defined as
Where N(¢) represents the reciprocal of the norm, which is defined as follows:

2

N@) = 57—
Py 1 ey + 22

By applying a generalized integral transformation to the governing Equation (A14), it
can be reduced to an algebraic equation for further solution. The transformed equation is
expressed as follows:

2,22 2,22

—(@ifs) + T + B B Vi@, s) = (©4(s) + Tl ) La(m)¥ (@) — Asa (S D(m) ¥ (E1)+
Fra(ELms) — IS QPR (@) P (mQN(s)  i=1,2,..., N

(A18)

m

where P";(¢;) and ¥ (¢;) is the function after generalized integral transformation of p;(xp)

,1

Pe
and e” TL"D, which are defined as follows:

1

: Pe
P,?fi(éz)z/o K(&, xp)pti(xp)e” 2 *dxp  i=1,2,..,N (A19)
1 Pe P
Y(¢1) :/0 K(&j,xp)e” 2 *Pdxp = quef;z i=1,2,..,N (A20)
I

To organize complex equations, let a;(¢;, s) and 5(&;) be

V?n®r?  Pey | &
PET 4 PEL

@;(G1,8) = O;(s) +
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Per | &’
0@ =+ Pe;

Arrange Equation (A18) and rewrite it as follows:

Fi(@n,s) = — SN S0 (n) ¥ (g)) + 4k (LM ¥(@) + i@ s) )+

. (A21)
NS QP (@) Py () 2 =12, N

Solving the algebraic Equation (A21) yields the dissolved phase concentrations of
individual species, from which a general solution applicable to any number of species can
be formulated:

— Ci_ I1 Aikey - 5(5)
?i(81,m,8) = QOO‘I@IT + ] 0 2 ]S = (Hkkz1 J+1,X lk 1(21 5) PF )+
1 2 7t
Qi
| e P£i<”)ai s | (A22)
Lt | gia Thiohonst g i (aypn () Q) t=12,...N
le kal 5 (E15) i—k—1"x,i—k—1\51) " yik—1 a;_r—1(81,9)

j2=0

This study applies the generalized integral inverse transformation, variable trans-
formation, and finite Fourier cosine inverse transformation to derive a semi-analytical
solution of the algebraic Equation (A22) in the transform domain, resulting in the final
form presented in Equation (A23) withi=1,2,3,..., N.

PeL
— Ci 5 D 2
Ci(xD/]/D/S) = T'OCD(TI = 0) +e 2 Dl§1K<§l/xD)N(CZ)
r ky=j |
. (IT Aicky—1)d(s)
(E1,5) = 8(5) |, 152 Cinjorg o
I ———+ T P D(n)¥(G1)
s a;(81,8) = s 1_][+ ki1 (E05)
O '
mpm m Q;n S
NS =
+ Z k=i—2 I_:I /\17]171 "
m=ll 4+ y »]:10—01 k— 1sz k—1(C) Pk 1(”)M
R v #i-1(81,5)
IT aij,(G1rs)

L L J2=0 - -
Cio &xo o (A23)
—S®(n) +e 2 lglK(Cl/xD)N(gl)

ky=j
. ( H Ai* 1— )5(5)
Cio@i(@,s) = 8(s) | 757 Cinjap =0 (n)¥ (&)
. ; ko=j
. R T
+ 2
n=1 i mpm m Q:n(s) ]
X Q) Px,i(gl)P,i(n) i(glrs)
NS n=
+ L | e AL A Qlials
F o a0 2
I @iy (81,9)
L J2= -

x cos(nmyp)
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A computer program to simulate multi-species pollutant transport and predict con-
taminant concentrations is developed in the FORTRAN language, based on the general
Equation (A23).
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