
Citation: Oteng Mensah, F.; Alo,

C.A.; Ophori, D. Hydroclimatic

Trends and Streamflow Response to

Recent Climate Change: An

Application of Discrete Wavelet

Transform and Hydrological

Modeling in the Passaic River Basin,

New Jersey, USA. Hydrology 2024, 11,

43. https://doi.org/10.3390/

hydrology11040043

Academic Editor: Marco Delle Rose

Received: 13 February 2024

Revised: 14 March 2024

Accepted: 21 March 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

hydrology

Article

Hydroclimatic Trends and Streamflow Response to Recent Climate
Change: An Application of Discrete Wavelet Transform and
Hydrological Modeling in the Passaic River Basin,
New Jersey, USA
Felix Oteng Mensah *, Clement Aga Alo and Duke Ophori

Department of Earth and Environmental Studies, Montclair State University, 1 Normal Avenue,
Montclair, NJ 07043, USA; ophorid@montclair.edu (D.O.)
* Correspondence: otengf@montclair.edu

Abstract: The exigency of the current climate crisis demands a more comprehensive approach
to addressing location-specific climate impacts. In the Passaic River Basin (PRB), two bodies of
research—hydroclimatic trend detection and hydrological modeling—have been conducted with the
aim of revealing the basin’s hydroclimate patterns as well as the hydrologic response to recent climate
change. In a rather novel application of the wavelet transform tool, we sidelined the frequently
used Mann–Kendal (MK) trend test, to identify the hidden monotonic trends in the inherently noisy
hydroclimatic data. By this approach, the use of MK trend test directly on the raw data, whose
results are almost always ambiguous and statistically insignificant in respect of precipitation data,
for instance, no longer poses a challenge to the reliability of trend results. Our results showed that,
whereas trends in temperature and precipitation are increasing in the PRB, streamflow trends are
decreasing. Based on results from the hydrological modeling, streamflow is more sensitive to actual
evapotranspiration (ET) than it is to precipitation. In periods spanning decades with sufficient water
availability, energy governs actual evapotranspiration rates, rendering streamflow more sensitive to
increases in precipitation. Conversely, during meteorologically stressed decades, water availability
dictates actual evapotranspiration, consequently amplifying streamflow sensitivity to fluctuations in
actual evapotranspiration. We found that the choice of baseline condition constitutes an important
source of uncertainty in the sensitivities of streamflow to precipitation and evapotranspiration
changes and should routinely be considered in any climate impact assessment.

Keywords: hydroclimatic trends; discrete wavelet transform; climate change; Passaic River Basin;
hydrological modeling; Rockaway catchment

1. Introduction

Global climate change is expected to accelerate the global hydrologic cycle, which
will drive more intense floods and droughts leading to changes in streamflow and wa-
ter resource availability. An alteration of the discharge regime of rivers [1,2] is usually
the ultimate consequence. In the past decades, empirical evidence of warming-driven
intensification of the hydrologic cycle has led to an increasing interest in the linkage of
climatic variability or change to hydrological processes across space and time [3]. More
often than not, the literature is either rich in the detection and analysis of hydroclimatic
trends (e.g., [4–6]) or hydrological modeling studies (e.g., [7–9]), without considering both.
For instance, ref. [10] underscored the importance of understanding climate variability and
trends for the management and planning of water resources. Ref. [11] also investigated
monthly and annual trends in temperature and precipitation and evaluated the significance
of their variability for crop yields using multiple regression analysis. In another study,
ref. [12] used the Soil and Water Assessment Tool (SWAT) model combined with land use
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and global climate models to examine how climate and land use/land cover work together
to impact blue-green water in an arid basin. At a time when the global warming problem
has evolved into a crisis [13,14], it is important that hydrological impact assessments be
carried out from a holistic standpoint. Although the analysis and detection of trends can
provide useful insights in terms of a general estimate of the direction and changes in
magnitudes of hydrometeorological series, they lack the ability to predict unprecedented
future conditions. Process-based models, although only capable of representing processes
to the scope that they are quantitatively understood, can provide a robust framework for
assessing hydrological response to climate change [15]. More so, because the direction
and extent of changes in river flows are dependent on the relative balance between pre-
cipitation and the processes that govern evapotranspiration [15], the causes of discharge
changes—which oftentimes seem controversial [16,17]—can effectively be examined from
a hydrological modeling standpoint.

In studies that emphasize the detection and analysis of hydroclimatic trends
(e.g., [16–19]), one statistical tool that has commonly been used is the nonparametric
Mann–Kendall (MK) test and its modified forms. The MK trend test identifies changes
in hydroclimatic series by simply fitting a monotonic (e.g., linear) trend at a certain time-
period where a significant level is assigned by a statistical test. While the robustness of
this test is not in doubt, its application to hydroclimatic time-series can be particularly
challenging due to the nonmonotonic and nonuniform character of hydroclimatic variables.
In many of these studies, trends in hydroclimatic variables, especially, precipitation, is
found to be either not statistically significant or significant at a lower confidence level.
For instance, in studying trends in precipitation, temperature, and streamflow at 13, 12,
and 9 gauging stations, respectively, ref. [20] found that mean annual and seasonal pre-
cipitation trends were not statistically significant in all the gauging stations. In the entire
Swat River Basin of Pakistan, ref. [21] observed that annual precipitation time-series did
not show any statistically significant trends in all the subbasins examined. Ref. [6] also
found that no statistically significant monotonic trend was detected for annual rainfall,
although nonsignificant downward trends were dominant. Numerous studies with similar
findings abound in the literature, and are usually in the application of Mann–Kendal tests
to hydroclimatic time-series (e.g., [22–26]). Ref. [27] noted that, because the stochastic struc-
ture of time-series data has the tendency to assume trend-like features, analyzing trends in
nonstationary time-series can cause a purely stochastic behavior to appear deterministic,
leading to a likely erroneous interpretation of results. More so, because climatic phenomena
and events (e.g., precipitation, hurricanes) are products of various complex atmospheric
processes [28], noise is inevitably present, and this can affect the variability and trend in
the data series. In hydroclimatic times series where nonmonotonicity is more the rule
rather than the exception [29], identifying the hidden monotonic trend and assessing their
statistical significance subsequently provide more reliable results than those derived from
the direct trend analysis of the raw data [30].

Because the structure of hydroclimatic data is often hidden behind the noise, a precise
mathematical operation that looks at the data through the noise and quantifies the structure
present in the signal is needed. One such tool is the wavelet transform (WT). WT is a
relatively recent development in the field of signal processing [31,32], and has, in recent
times, emerged as an effective tool to analyze trends in hydroclimatic series especially in
the atmospheric and hydrological science space [29,33–38]. It can be thought of as a ‘mathe-
matical microscope’ with the ability to zoom in and out of the signal (or time series) to pull
out the patterns. In its application, a signal or time-series data are decomposed into their
low-frequency components and high-frequency components. The different decomposition
levels, representing different periodic time scales, are subsequently analyzed for trends.
The last decomposition level, which contains the lowest frequency component, usually
represents the trend component of the time series. Thus, among the methods presently
used in analyzing time-series data, the wavelet approach has the superior ability to han-
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dle the nonstationary characteristics of hydroclimatic time-series on multiple temporal
resolutions [39], making it well suited for identifying trends over a long period of time.

In light of understanding and quantifying the hydrological impacts of climate vari-
ability/change, different approaches (i.e., conceptual methods, analytical, experimental,
and hydrological modeling) have been used. Among these, process-based hydrological
models provide a means to examine the physical mechanisms and processes that drive hy-
drological changes and variations. Their primary purpose is to partition precipitation into
evapotranspiration and streamflow. They must, however, be thoroughly evaluated against
field observations that sufficiently represent the region and timeframe of interest [40,41].
By applying a rigorously calibrated and validated physically based hydrological model,
MIKE SHE, to the Rockaway catchment, a subbasin of the Passaic River Basin (PRB) in New
Jersey, USA, we explored the mechanisms underpinning streamflow changes through the
examination of MIKE SHE simulated water balance terms under various climate scenarios.

Thus, the novelty of this study lies in the application of advanced trend analysis tool
with a physically based hydrological model that simulates both surface and subsurface
flows in the land phase of the hydrological cycle. This combination will provide impor-
tant clues on the key underlying variables behind the trend as well as insights into how
hydroclimatic patterns may change into the future.

In the PRB and its surrounding areas, the lingering effects of a troubled history of
improper environmental practices from the industrial boom continue to be experienced.
According to [42], the Passaic River played a central role in the early development of New
Jersey. In the late 18th century, the river served as navigable routes connected by a system of
canals to the Delaware River. It was also an early source of hydroelectric power at the Great
Falls in Paterson, making the region a focal point for industrial mills. Consequently, the
lower Passaic experienced significant environmental contamination resulting from decades
of industrial activity in the vicinity. By 1970, issues pertaining to flooding had already
become apparent due to the presence of dams, and they continue to afflict the inhabitants
of the basin at present. Furthermore, the intricate network of river systems amidst the het-
erogeneous biophysical landscape within the basin presents a complex array of conflicting
interests and water-related challenges. In a region where increases in temperature [43,44]
accompanied by evapotranspiration and snowpack depletion [15,45] are both observed
and projected, the consequent impact on streamflow could be extensive. In light of these
circumstances, our study undertakes a comprehensive hydrological impacts assessment
in pursuit of establishing important foundations for the predictive understanding of the
impacts of climate change on water resources in the PRB and its environs.

To this end, this research endeavor embraces a dual-fold objective: (1) Identifying
shifts in hydrometeorological trends within the PRB spanning the period from 1979 to
2021; and (2) Investigating the responsiveness and sensitivities of hydrological systems to
climatic phenomena in the Rockaway River basin, a subcatchment of the PRB. The analysis
of hydroclimatic trends employs the discrete wavelet transform and Mann–Kendal test
methodologies, while the evaluation of climate change implications in the PRB employs a
hydrological modeling approach coupled with sensitivity analysis.

The remaining part of the paper is organized as follows. Section 2 describes the study
area and data source. Section 3 details the methodology used, which includes the discrete
wavelet transform, hydrological model evaluation, and hydrologic impacts assessment.
Results of the trend analysis and hydrological model performance, and model assess-
ment are presented under results and discussion in Section 4 followed by the conclusion
in Section 5.

2. Study Area and Data Source
2.1. Study Area

The nontidal portion of the PRB is elliptical in shape, draining approximately 2135 square
kilometers of Northern New Jersey (NJ) and Southern New York State (NY). It is bounded
by longitude 74◦1′1′′ and 74◦39′16′′ W and latitude 40◦35′23′′ and 41◦23′37′′ N, intersect-
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ing six (6) counties in NJ, two (2) in NY (Figure 1). The entire basin stretches across
three (3) Watershed Management Areas (WMA-03-04-06) with seven major tributaries:
Whippany River, Rockaway River, Pompton River, Pequannock River, Wanaque River,
Ramapo River, and Saddle River. Physiographically, the basin can be divided into three
main regions: the series of parallel ridges that trend northeast/southwest forming the
Highlands; the Central Basin, comprising large areas of swamps and meadows; and the
roughly flat Lower Valley. Winding through seven counties and 45 municipalities, the
Passaic River originates from near the Borough of Mendham (Morris County), and finally
empties into the Newark Bay. The nontidal part of the river is regulated by 10 major
reservoirs (Canister, Greenwood lake, Clinton, Oak Ridge, Charlotte-burg, Echo lake, Split
Rock, Monksville, Wanaque, and Boonton) to provide flood control and water supply,
among other things, to surrounding municipalities. Aggregated reservoir storage in the
basin is about 68,533 million gallons (MG). Of the reservoirs, Wanaque reservoir is the
largest, with storage capacity of 29,630 MG (43%) of the basin total (New Jersey Water
Science Center, 2018; Survey, 1964, 1970; Wells, 1960). A summary of the hydrometeoro-
logical conditions in the basin is given in Table 1. Mean annual flow at the outlet of the
basin is estimated at 402,088 m3/s for the 1983–2021 period. On average, the Rockaway
river (RA) contributes about 0.62 percent of flow to the Passaic river. The study basin lies
within the modified continental climate zone, characterized by hot summer and cold winter
(Paulson, 1991). Moving from north to south in New Jersey, the modified climate zone
comprises five (5) main divisions: North, Central, Southwest, Pine Barrens, and Coastal
zones with PRB located in the North and Central climate zones. For the period 1981–2010,
mean annual precipitation of 1281 mm (50.4 in) occurred over the PRB with higher val-
ues (1298 mm or 51.1 in) in the Ringwood catchment and the lower values (1269 mm or
49.96 in) in the Upper Passaic (UP) catchment. Mean temperature for same period in
the study basin is calculated as 10.59 ◦C. Colder temperatures are observed over the RW
and RA catchments whereas hotter temperatures occur in the UP area. Throughout the
PRB, mean annual actual evapotranspiration is estimated to be approximately 793 mm
or 31.2 in [46].

Table 1. Basic hydroclimatic information in the Passaic River Basin.

Drainage Area (sqkm) Area (% of PRB) Annual Flow (m3s) Temperature (◦C) Precipitation (mm)

Mean (Min–Max)

PRB 2135 - 402,088 (30,968–958,992) 10.59 1281

RA 300.4 14.07 2513 (611–4037) 9.52 1296

RW 46.4 2.17 337 (122–721) 9.74 1298

UP 356.3 16.67 1916 (344–2977) 11.11 1269

PRB (1983–2021 WY); RA (1971–2010 WY); RW (1986–2021 WY); UP (1971–2010 WY).

2.2. Hydrometeorological Data

For this study, the widely used gridded observations from Parameter-elevation Re-
gression on Independent Slopes Model (PRISM, Oregon State University, http://prism.
oregonstate.edu (accessed on 19 September 2022)) provided meteorological data. Flow
data for the Rockaway and Upper Passaic subcatchments were obtained from records
of reconstructed streamflow by [47] whereas data for the Ringwood catchment were
sourced from the United States Geological Survey (USGS) water data website (USGS,
https://waterdata.usgs.gov/nwis/ (accessed on 25 November 2022)).

The data used in this study spanned the periods 1979–2021 and 1981–2021 water years
(WY) for the trend analysis and hydrological modelling, respectively. Missing flow data, when
present, were handled based on streamflow outputs from a duly calibrated and validated
hydrological model of the subcatchment [Ringwood, correlation coefficient: 0.85 and Nash–
Sutcliffe: 0.71]. In all, seven (7) hydrometeorological variables (i.e., flow, m3/year, precipitation
[precip, mm/year], minimum temperature [Tmin, ◦C], mean temperature [Tmean, ◦C], maxi-
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mum temperature [Tmax, ◦C], number of days with precipitation greater that 10 mm [R10,
day], and consecutive dry days [CDD, day]) for the three (3) studied subcatchments were
processed and aggregated into annual time scales for the trend analysis.
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Figure 1. Location map of the study area showing available hydrometeorological stations.

2.3. Land-Use, Soil and Elevation Data

In hydrological processes, the combined effect of land cover, soil, elevation, and other
catchment characteristics are reflected in the flow dynamics of river systems in a basin.
The 2011 Land cover data were available from the National Land Cover Dataset (NLCD)
[https://www.mrlc.gov/viewer/ (accessed on 13 July 2022)], and simplified into six (6)
dominant land cover/vegetation classes (i.e., developed, forest, agricultural, wetlands, bare
land, and water). Soil information was accessed using the United States Department of
Agriculture (USDA) soil data viewer software [version 6.2]. The topography of the PRB was
defined by a digital elevation model (DEM) extracted from the USGS database at 10 m spatial
resolution (https://apps.nationalmap.gov/downloader/ (accessed on 15 May 2020)).

3. Methods

In line with the objectives of the study, two major tasks were carried out: 1) the analysis
of hydroclimatic trends via the discrete wavelet transform (DWT) approach; and 2) the de-
velopment of a hydrological model to assess the impacts of recent climate changes on water
balance terms (i.e., precipitation, evapotranspiration, and streamflow). The hydroclimatic

https://www.mrlc.gov/viewer/
https://apps.nationalmap.gov/downloader/
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trend detection was conducted for seven (7) indicator variables in three (3) subcatchments
because of their physiographically distinct locations. The hydrological modeling study was,
however, conducted for only the Rockaway sub-basin given its relatively large size, largely
representative characteristics to the PRB, and available groundwater data. Summary of
the steps involved in our analyses are outlined below and described in more detail in the
forthcoming sub-sections:

1. Seven (7) different hydroclimatic indicator variables used in the trend analysis were
derived from temperature, precipitation, and streamflow data series obtained for each
subcatchment. They were mean annual Tmin, Tmean, Tmax, Precip, Flow, R10, and
CDD spanning the period 1979–2021.

2. Each time series was decomposed via the DWT, having selected the Daubechies (db)
wavelet, deemed an appropriate mother wavelet in our study context, to split the series
into their high frequency detailed (D) and low frequency approximate (A) components.

3. The MK Z-values of the original signal and the approximation of each Daubechies
(db) wavelet form starting from db4–db10 (e.g., [48]) were computed to determine the
wavelet form that gives MK Z-value closer to that of the original signal. This was the
optimal trend from the approximation components of each analyzed time series.

4. Having selected the optimal monotonic trend, an MK test was subsequently applied
to determine the statistical significance of the DWT-based trend.

5. A hydrological model for the Rockaway subbasin was developed, calibrated, and
validated, and the performance of the model against the observed streamflow and
groundwater data was evaluated using standard statistical criterion. The water
balance module was run to obtain outputs of water-balance components for the
impacts assessment.

6. Change point analysis was carried out to divide data into the naturalized or baseline
periods, where minimum effects of human activity on streamflow is expected and im-
pacted periods. Subsequently, a climate elasticity exercise was undertaken to explore
sensitivities of climate variables to streamflow and corresponding contributions in the
Rockaway sub-basin.

3.1. Discrete Wavelet Transform

Wavelet transform (WT) is a mathematical tool that uses wave functions known as
wavelets—akin to the sine and cosine functions in Fourier transforms (FT), to convert
signals or time-series data into different frequency components. WT rides on the funda-
mental concept of Fourier transform, which operates on the idea that any function can be
decomposed into a sum of pure waves with different frequencies. Therefore, the frequency
domain represents the relative contributions of each frequency that comprises the function.
The major limitation with FT is that knowledge about frequency is accessed at the expense
of the temporal dynamics (i.e., there is no clue as to when certain frequencies begin or
end). As a result, wavelets come into play to resolve this inherent trade-off of information
between frequency and time in the FT [49]. Through the application of wavelet transform,
an optimal frequency–time balance is attained. The key feature about wavelets is that
the wave-like oscillations are short-lived and localized in time. It is worth noting that a
wavelet is not just a function, but a whole family of functions which all satisfy certain
requirements. The popular family of functions include Daubechies, Coiflet, Symlet, Haar,
Morlet, Gaussian, Shannon, Meyer, and Mexican Hat; each one of these is tuned for specific
applications. In general, to be considered a proper wavelet, a function must satisfy two
main constraints: (1) the admissibility condition of having a zero mean, and (2) the finite
energy condition of having a limited duration, from which a function attains its localized
nature in time. In short, wavelet analysis is a completely flexible windowing technique
that allows a function to change over time based on the shape and compactness of the
time-series signal [50]. By this very nature, different modes of variability that varies in time
can be extracted in the WT process, allowing the time-frequency characteristics of any kind
of signal to be analyzed (Wei et al., 2012). Recent years have seen a wide range of studies
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using WT, especially to analyze hydrometeorological time-series (e.g., [29,30,51–55]). While
the vast majority of these studies focused on trends, others emphasized the dominant
periodic time scale responsible for the trends.

In the WT process, as a mother wavelet moves across the signal, several coefficients
are generated according to the similarity between the signal and the mother wavelet at any
specific scale. Generally, WT is divided into two main types, the continuous wavelet transform
(CWT) and the discrete wavelet transform (DWT). The continuous type can generate quite
numerous and often redundant coefficients at every resolution level, making its application
and interpretation more complex and uncertain. The DWT is, however, considered a more
effective approach, having the ability to overcome the data redundancy issue by simplifying
the transformation process based on the dyadic (power of 2) scale [56]. Given a suitable
wavelet family and decomposition level, the DWT decomposes a series into several sub-series
during the transformation process (Whitcher et al., 2002). Following Equation (1) below
(reader is referred to [56] for details), the coefficients of DWT can be calculated:

Wϕ(a, b) =
1

(2)a/2 ∑N−1
t=0 X(t)ϕ

(
t

2a − b
)

(1)

where 2a denotes the dyadic scale of the DWT. Note that the resulting detail and approxi-
mation coefficients from the decomposition are merely intermediate coefficients, and has
to be reconstructed, first to their approximation and detail components and then to the
original signal. This readjustment to the original one-dimensional signal ensures that each
component has the same length as the original signal, thereby enabling proper investiga-
tions of their contribution to the signal [57–59]. In a simplified form, the reconstruction of
the detail and approximation components can be computed as:

S(t) = An(t) + ∑n
l=1 Dl(t) (2)

where S(t) is the original signal, and An(t) is the approximation component at level n, and
Dl(t) is the details component at different levels (where l = 1, 2, 3, . . ., n denotes index for
the levels). In MATLAB, computation of a perfect signal reconstruction is achieved using
the Inverse Discrete Wavelet Transform (IDWT).

Although nearly all hydroclimatic processes are continuous in nature, their available
time-series outputs are delivered in discrete formats (Wilks, 2011), making its use with DWT
more appropriate than that of CWT. In the application of DWT, the original time-series
signal is passed through low-pass and high-pass filters and emerge as Approximation (A)
and Detail (D) components, respectively. While component D represents the small scale,
high-frequency series, component A comprises the high scale, low-frequency series [34].
The decomposition process can continue iteratively, where component A from the first
decomposition is further divided into new A and D components [33,49,54,60]. In this study,
the Daubechies mother wavelet was chosen because of its characteristic orthogonality,
and compact support, which are very important properties for localizing events in signal
analysis, and deemed appropriate for hydrometeorological time-series [33,61].

Time-Series Decomposition via DWT

In our wavelet analysis, the one-dimensional flow signal (data series) and each of
the temperature and precipitation indicator variables served as inputs to the multi-level
1-D wavelet decomposition function in the MATLAB Wavelet Toolbox (MATLAB version
R2021a). With the db wavelet family as the mother wavelet, the operation produced a
wavelet transform of each input time-series signal at all dyadic scales. Three main parame-
ters were taken into account during the DWT process [33]: (1) the appropriate type of db
wavelet; (2) a suitable signal border extension method; and (3) the most appropriate number
of decomposition levels. First, several forms of db wavelet (e.g., db1–db10) exist, and the
appropriate type must be selected for the decomposition process [62]. As suggested by [33],
a useful method in selecting the appropriate db wavelet type is to calculate the relative
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error (RE) between the MK Z-values of the original signal and that of the approximation
(A) of the last decomposition level. RE is computed as follows:

RE =
|Za − Zo|
|Z0|

(3)

where Za and Zo are the MK Z-values of the approximation of the last decomposition level
and the original dataset, respectively. For each indicator variable and study catchment, the
appropriate db wavelet was selected to minimize RE. Because trends are supposed to be
gradual and slowly changing process, smoother db wavelets (i.e., db4–db10), considered
as better in detecting time varying behavior over the long term [33,63], was used in the
selection of the appropriate db wavelet in the study (Table 2). Second, border extension
is an important consideration due to the issue of border distortions in the DWT process,
arising because of the finite length of the signal. Thus, the decomposition process cannot
occur outside the two limits (i.e., the start and end points) of a signal as there is no available
information beyond the ends [64]. As suggested by [64], three different border extension
methods are employed to address the issue: zero-padding, symmetrization, and periodic
padding. In our analysis, symmetrization—which is the default mode in MATLAB, was
used. It assumes that signals beyond the original support can be retrieved by symmetric
boundary replication [54]. Finally, the relevant number of decomposition level must be
determined in order to avoid unnecessary levels of data decomposition especially, for larger
datasets (see [33,54]). This will, however, depend on the length of data points as well as the
type of mother wavelet used. According to [65], the maximum number of decomposition
level, L, can be calculated from Equation (4) below.

L =
Log

( n
2v−1

)
Log(2)

(4)

where n is the number or length of data points in the time series and v is the number of
vanishing moment of a db wavelet [34]. In MATLAB, the number of vanishing moments
(v) is equal to the db wavelet type number (i.e., 1–10). Note that the number of data
points (n) in a time series is not exactly in a dyadic format (as in the case of this study,
43 data points). Thus, the DWT computation in MATLAB is carried out using the nearest
upper dyadic arrangement. Therefore, the maximum decomposition level based on our
data points was calculated to be 6 in the study. Additionally, because data decomposition
via DWT assumes a dyadic format, each of the decomposed component represents a
different period of integer powers of two from the lowest scale. Therefore, D1, D2, and D3,
respectively, represents 2-, 4-, and 8-unit periodic component, in that order, according to
the time scale (e.g., seasonal, monthly, annual) used in the analysis. For example, D2 will
represents a 4-year or 4-month intervals in an annual or monthly data series, respectively,
but 12-month intervals for a seasonal data series since its time step is 3 months.

Table 2. Daubechies (db) wavelet type, minimum relative error (RE), Mann–Kendal test, and Sen’s
slope (SS) for each metric in each subcatchment (* denotes significant at p = 0.05).

Subcatchment Parameter Metrics

Precip Flow R10 CDD Tmin Tmean Tmax

Ringwood Wavelets db7 db6 db8 db5 db4 db4 db4

RE 3.75 0.03 4.86 5.72 3.93 4.48 13.46

MKSL 871 * −457 * −457 * −877 * 903 * 903 * 903 *

SS 0.723 −0.165 −0.024 −0.051 0.047 0.033 0.018
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Table 2. Cont.

Subcatchment Parameter Metrics

Precip Flow R10 CDD Tmin Tmean Tmax

Rockaway Wavelets db5 db6 db8 db4 db4 db4 db10

RE 7.29 4.18 2.91 3.02 4.43 4.29 10.33

MKSL 635 * −745 * 577 * 293 * 903 * 903 * 831 *

SS 0.129 −2.406 0.083 0.0042 0.059 0.035 0.0034

Upper Passaic Wavelets db4 db4 db7 db4 db4 db4 db4

RE 7.49 6.32 67.10 7.79 3.21 3.79 6.86

MKSL 903 * 903 * 433 * 213 * 903 * 903 * 903 *

SS 2.401 7.712 0.0134 0.0062 0.0375 0.0253 0.013

3.2. Trend and Change-Point Detection Tests

In this study, the Mann–Kendall (MK) test [26,35,66–68] was used to determine the
statistical significance of the DWT-based trend [48]. It is probably the most widely used
nonparametric statistical test for monotonic trend evaluation [69]; and well noted for its
simplicity, robustness, and resilience to missing values in a data series [63]. One key issue
that may arise when using the MK test is the presence of serial correlation or autocorrelation,
very common in precipitation and streamflow data [56]. It occurs when a variable and a
lagged version of itself is observed to be correlated between two successive time intervals.
If the lag-1 autocorrelation in a time series is found to be significant, the modified MK
test must be used [70]. Although autocorrelation issues are not common in annual data
series, we applied the modified version of the MK test in this study where significant lag-1
autocorrelation was detected in our data series.

Furthermore, a change-point analysis was performed to identify the most likely year(s)
in our streamflow data where significant changes could occur [71,72]. This was key in our
hydrological impacts analysis where we needed to explore naturalized periods when stream
flow experienced little or no disturbance as well as impacted periods. Various change-
point methods exist, including the sequential Mann–Kendal test [73], Pettit’s test [74], the
cumulative sum (CUSUM) test [75], and the Worsley Likelihood Ratio Test [76]. Using
the R packages changepoint and ecp [77], the distribution free CUSUM test [78] and the
complementary Permutation test [79] were used because they revealed similar break-point
years in our streamflow time-series. These methods detect significant changes in the mean
or distribution of a time series when the exact times of the changes are not known. For a
detailed description of these methods, we refer the reader to the relevant literature cited.

3.3. Hydrological Model Development for the Rockaway River Basin

In the present study, the numerical code used for our hydrological assessment studies is
MIKE SHE [80]. MIKE SHE is an integrated, fully distributed, physically based hydrological
modeling system [81,82], that simulates all the major hydrologic process in the land phase
of the hydrological cycle including evapotranspiration, overland flow, unsaturated flow,
saturated flow, and streamflow (Figure 2). It uses the hydrodynamic model MIKE 11/MIKE
Hydro to simulate channel flow and lakes (using flood code) in one dimension. For
a detailed description on the development and modelling structure of the MIKE SHE
hydrologic model the reader is referred to the MIKE Zero user manual by [81].
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Model Calibration and Validation

A distributed hydrologic model such as MIKE SHE typically requires large number
of model parameters to be assigned. Although these parameters have a clear physical
meaning and can be defined explicitly from field measurements, ref. [84] suggested that
the number of parameters subject to calibration should be as small as possible. For this
study, initial values as well as ranges of primary parameters from field data, the published
literature, and prior modelling experience guided the calibration process. The manual
“trial and error” procedure was first applied, which involved perturbing one parameter
while keeping all other parameters unchanged. This was carried out repeatedly within a
reasonable range of values for a series of model runs until a favorable agreement between
measured and simulated flow and groundwater level was achieved. Following the manual
approach, an automatic calibration was conducted. Finally, validation was carried out to
ensure that model parameters derived from calibration were generally valid.

Prior to the model calibration, change point analysis was performed on the streamflow
data for the time span of 1981–2022 to find likely break-point year(s). Accordingly, the data
were divided into baseline periods (1982–1991, 1992–2001, and 1982–2001) and impacted
periods (2002–2011 and 2012–2021), as mentioned earlier. The calibration and validation of the
model was carried out within the baseline period for 1982–1986 and 1986–1991, respectively.
Typically, the simulation period includes the first few months of warm-up period to stabilize
the model; as well as the calibration and validation periods. The adequacy of the model was
evaluated based on four standard statistical criteria used in MIKE SHE: mean error (ME), root
mean square error (RMSE), correlation coefficient (R), and the widely used Nash–Sutcliffe
coefficient (NSE). These indicators detect system errors and the goodness of fit between
simulated and observed monitoring observations in the form:

MEi =
∑t(Obsi,t − Calci,t)

n
(5)
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RMSE =

√
∑t(Obsi,t − Calci,t)

2

n
(6)

R =

√√√√√√∑t

(
Calci,t −Obsi

)2

∑t

(
Obsi,t −Obsi

)2 (7)

NSE = 1− ∑t(Obsi,t − Calci,t)
2

∑t

(
Obsi,t −Obsi

)2 (8)

where t is the simulation time in day; n is the total simulation days; i is the calibration
point i; Obsi,t is the observed daily discharge at location i at day t; Obsi is the mean of
the observed discharge at location i for the simulation period, and Calci,t is the simulated
discharge at location i at day t.

3.4. Hydrological Impacts Assessment

After successfully calibrating and validating the hydrologic model for the period
(1982–1991) considered to be within the naturalized undisturbed periods, the model was
run with climatic inputs to simulate discharge for both the naturalized periods and the
impacted periods identified by the change point analysis. In all, discharge for five (5)
different periods were simulated, and a water balance output obtained for precipitation (P),
streamflow (Q), and actual evapotranspiration (ET). Further, we assessed the hydrological
impacts by computing changes between the baseline periods and impacted periods for
the water balance components. Finally, the concept of elasticity as proposed by [85] was
employed to evaluate the sensitivities of streamflow to changes in climate. According
to this concept, climate elasticity of streamflow is the proportional change in streamflow
divided by the proportional change in a climate variable. For instance, the precipitation
elasticity of streamflow is defined as:

εp =
dQ/Q
dP/P

=
dQ
dP
· P
Q

(9)

Likewise, the actual evapotranspiration elasticity of streamflow is:

εET =
dQ/Q

dET/ET
=

dQ
dET
·ET

Q
(10)

In applying Equations (9) and (10) to the water balance outputs obtained for the
Rockaway catchment model, the relative contributions of precipitation and actual ET
changes to streamflow changes can be quantified. Over the long term, the water balance
model can be expressed as [86]:

Q = P− ET (11)

where Q, P, and ET denote long term mean values. In Equation (11), there is an implicit
assumption that groundwater flow into and out of the Rockaway subcatchment cancels out
and storage change over the long term is negligible.

For a largely undisturbed catchment, the changes in streamflow between two periods
(dQ) based on Equation (11) can be estimated as:

dQ = dQP + dQET (12)
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with dQP and dQET denoting the contribution to streamflow from precipitation and actual
ET, respectively. Combining Equations (9), (10) and (12), dQ can be rewritten as:

dQ = dQP + dQET = (εP·dP/P + εET·dET/ET)Q (13)

where dP and dET are changes in precipitation and actual evapotranspiration between two
periods. εp and εET are precipitation elasticity and actual evapotranspiration elasticity of
streamflow, respectively. According to [87], a 1% change in P or ET triggers an εp or εET percent
change in Q.

Note that flow data used in this analysis form part of the reconstructed streamflow
records by [47] for selected watersheds in the PRB, and therefore the Rockaway subcatch-
ment is assumed to be largely undisturbed for the purpose of this study. Being mindful of
the fact that climate elasticity to streamflow varies depending on the location and reference
period [88], we explored the sensitivities of flow relative to different baseline periods. Thus,
Equation (13) was set up for the two impacted periods (2002–2011 and 2012–2021) relative
to three baseline periods (i.e., 1982–1991, 1992–2001, and 1982–2001). The values of εp and
εET were then computed simultaneously from two equations to obtain the contributions of
P and ET changes to streamflow change in the Rockaway subbasin.

4. Results and Discussion
4.1. Decomposition of Time-Series Data via DWT

According to Equation (3), the types of db mother wavelet that produced the optimal
parameters for the decomposition process for each dataset are presented in Table 2. Figure 3
illustrates an example of the decomposition results for the flow data in the Rockaway
subcatchment. The original time series or signal (S) can be reconstructed by summation
of all the detailed components (D1–D6) and the approximation component of the last
decomposition level (A6). It can be seen that at higher decomposition levels, the frequency
of the D components decreases. The last decomposition level of the A component (A6)
shows the trend of streamflow in the Rockaway catchment. On a dyadic scale, D1 depicts
the time series of a 2-year mode, D2 shows a 4-year mode, D3 is in an 8-year mode, D4,
a 16-year mode, D5 corresponds to a 32-year mode, and 64-year mode for D6. These
modes are the time scales at which those cycles are revealed, implying that for a dataset
spanning a period of 42 years, the trend as revealed by the DWT for stream flow in the
Rockaway catchment could only emerge over a 64-year cycle. It was thus impossible to
see this trend just by applying the MK trend test on the raw dataset. The same process
was replicated in all three subcatchments for each hydroclimatic indicator variable, as
depicted by Figures 4–6. At a confidence level of 95% (i.e., p-value = 0.05), MK statistics
were subsequently applied to the decomposed times series.

4.1.1. DWT Trend Analysis of Hydroclimatic Indicators

Results from the trend analysis using the discrete wavelet transform for Precip, Flow,
R10, CDD, Tmin, Tmean, and Tmax from the Ringwood, Rockaway, and Upper Passaic
catchments are shown in Figures 4–6. Mann–Kendall statistics (i.e., significant level (SL)
and Sen’s slope (SS)) applied on the DWT trend results are also summarized in Table 2. The
positive and negative MK values indicate significantly increasing and decreasing trends,
respectively, and the magnitude of the trends is described by the SS values. All the analyzed
hydroclimatic signals were significant at p = 0.05, identified by the asterisk.

4.1.2. Hydroclimatic Trends in the Ringwood, Rockaway, and Upper Passaic Subcatchments

DWT trend results for all hydroclimatic variables in the Ringwood subcatchment
are shown in Figure 4. Precipitation shows a significant increasing signal at a rate of
0.723 mm/year. However, this increase does not reflect in the streamflow trend in the
Ringwood subcatchment. Flow is rather showing a significant downward trend beginning
from 1996 through to 2021 at a rate of 0.165 m3yr−1. It does appear that the downward trend
observed for streamflow largely tracks with heavy precipitation (R10) rather than mean
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precipitation, and corroborated by the decreasing trend in consecutive dry days (CDD). The
observed significantly increasing trend in minimum, mean, and maximum temperatures
suggest that temperature drives the flow dynamics in the Ringwood subcatchment with
minimum temperature having the highest magnitude at 0.047 ◦Cyr−1 and maximum
temperature having the least at 0.018 ◦Cyr−1.
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Passaic subcatchment from 1979–2021. Units of flow is in m3/year, precip in mm/year], Tmin, Tmean,
and Tmax in ◦C, and R10, CDD in days.

Long-term trends in hydroclimatic indicator variables in the Rockaway catchment
are illustrated in Figure 5. Similar to the Ringwood subcatchment, precipitation and
streamflow are trending in opposite directions. As precipitation trends upward, flow
is trending downward at rates of 0.129 mmyr−1 and 2.406 cmyr−1, respectively. Quite
interestingly, a significantly upward trend is observed for heavy precipitation, in line with
mean precipitation, yet these increases do not reflect in the observed flow trend. Given
that consecutive dry days show a significantly increasing trend in tandem with minimum,
mean, and maximum temperatures, there is a likelihood that precipitation is overwhelmed
by relatively high temperatures in the Rockaway subcatchment, thereby translating in the
observed downward trend in streamflow.
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Figure 6 shows the hydroclimatic trends in indicator variables for the Upper Passaic
subcatchment. All the metrics showed significantly increasing trends over the period. The
observed upward trend in mean and heavy precipitation in the same direction as flow and
temperatures indicate that the hydrology of the Upper Passaic subcatchment is largely
driven by precipitation rather than temperature. Precipitation and flow are increasing at a
rate of 2.401 mmyr−1 and 7.712 cmyr−1, respectively. In the case of temperature, the rate
is higher in the minimum temperature (0.038 ◦Cyr−1), followed by the mean temperature
(0.025 ◦Cyr−1) and maximum temperature (0.013 ◦Cyr−1) (Table 2).

4.1.3. Comparison of Hydroclimatic Trends by Catchment

Trending from north to south of the PRB, the results suggest that hydroclimatic in-
dicator variables are spatially nonuniform in terms of magnitude and direction. Over
the analyzed period (1979–2021), precipitation is observed to show increasing signals in
all subcatchments. Relatively, the rate of change is observed to be rapid in the Upper
Passaic subcatchment at 2.401 mmyr−1 and smooth in the Rockaway subcatchment at
0.129 mmyr−1. Likewise, temperatures also show significantly upward trends in all sub-
catchments, with mean temperature displaying the highest rate of change in the Rockaway
subcatchment, followed by Ringwood, and Upper Passaic subcatchments. The observed
long-term increasing trend in precipitation and temperature in the PRB is indicative of a
changing climate in the basin, consistent with the dominant trends in the broader Northeast
United States region (e.g., [89,90]). In terms of extremes, precipitation intensity (R10) and
consecutive dry days (CDD) point towards an upward trend from north to south in the
PRB, beginning from Ringwood subcatchment with a decreasing signal to increases in
the Rockaway and Upper Passaic subcatchments. This observed increasing trend is also
consistent with patterns in rainfall intensity in the Northeast (e.g., [91,92]), and provides
further evidence to the linkage between extreme weather events and climate change.

In the case of streamflow, the results suggest that flow patterns appear to be influenced
both by surface characteristics and climate in the PRB. Although trends in precipitation and
temperature are observed to increase throughout the basin, the dynamics on streamflow is
different, with downward trends observed in the Ringwood and Rockaway subcatchments
and an upward trend seen in the Upper Passaic subcatchment. Given that Ringwood
and Rockaway subcatchments lie in the mountainous heavily forested Highlands region
as against the Upper Passaic in the densely populated, highly industrialized urban belt,
the observed trends are not surprising. With regards to attributing causes of streamflow
changes in the PRB, the sections that follow, involving the hydrological modeling study
using the Rockaway subbasin as a case study, is expected to provide sufficient clues on the
driving mechanism behind the flow dynamics in the study basin.

4.2. Change Point Analysis and Calibration and Validation of MIKE SHE Model
Change Point Detection

For the purpose of the hydrological impact assessment, change point detection was
carried out to determine approximate years of abrupt changes in hydroclimatic time-series.

As presented in Table 3, precipitation and streamflow time-series were explored in
the Rockaway subcatchment using the CUSUM test as well as the permutation test, and
were significant at α = 0.05. Given that river flow in the PRB is largely regulated, the
similarities as revealed by the break point years for both precipitation and streamflow seem
to corroborate the findings by [93] that climate change signals are apparent in both regulated
and natural river systems. Following from this, the causes of streamflow were explored by
examining outputs of water balance terms from the hydrological model developed for the
Rockaway subcatchment. Accordingly, we performed decadal changes in water balance
terms in line with the break point years given in Table 3. Over the study period (1979–2021),
decades 1 and 2 spanned the periods 1982–1991 and 1992–2001, respectively, representing
baseline periods 1 (BLP I) and 2 (BLP II). The overall period from 1982–2001 was also
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considered, denoting baseline period 3 (BLP III). For the impacted periods, 2002–2011, and
2012–2021, respectively, represents decades 3 (D III) and 4 (D IV).

Table 3. Estimated break point years in precipitation and streamflow in the Rockaway subcatchment
(α = 0.05).

Cumulative Sum Test Permutation Test

Variables Break Point Break Point

Precipitation 1980 1979

1990 1991

2002 2003

2011 2012

Streamflow 1980 1979

1990 1991

2002 2003

2011 2012

4.3. Calibration and Validation of Rockaway Model

The Rockaway model was calibrated using both streamflow and groundwater level
data. The full model simulation spanned the period 1981–1991 for streamflow and
2005–2016 for groundwater flow. Observed streamflow was calibrated and validated
at the outlet of the Rockaway catchment along with two (2) groundwater observation
wells (located in the catchment. These two wells are approximately 2.6 km apart with
Berkshire Valley well having elevation of 222 m and that of Morris Maint well, 203.4 m.
As shown in Table 4 and Figure 7, the performance of the model was assessed using a
combination of statistical indicators and graphical representation, respectively. Generally,
the model can be said to have captured the evolution of the observed flow sufficiently well,
with few mismatches in peak flows likely due to the gridded structure of the forcing data.
Rising limbs of hydrographs and baseflow were also reasonably simulated. The resulting
correlation coefficient (R), Nash–Sutcliffe (NSE), mean error (ME), and RMSE values for
both calibration and validation periods are shown in Table 4. In respect of coefficient (R),
Nash–Sutcliffe (NSE), the performance of the Rockaway model can be judged according to
the general performance ratings as recommended by [94] (Table 5).

Table 4. Performance criterion of calibrated and validated MIKE SHE model at the Rockaway
subcatchment.

Streamflow Groundwater

Statistics Calibration Validation Full Simulation Berkshire Obs Well Morris Obs Well

1982–1986 1987–1991 1982–1991 2011–2016 2007–2012

Correlation coefficient (R) 0.85 0.87 0.85 0.83 0.28

Nash efficiency (R2) 0.72 0.71 0.72 - -

ME 0.57 1.34 0.96 6.01 −1.86

RMSE 4.78 3.89 0.85 6.07 1.91

Table 5. General range of model performance statistics [94].

Performance Indicator Excellent Good Fair Poor

Nash-coefficient (NSE) >0.85 0.65–0.85 0.5–0.65 <0.5
Correlation coefficient (R) >0.95 0.85–0.95 0.85–0.75 <0.75
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Figure 7. Simulated and observed daily streamflow at the Rockaway subcatchment for the calibration
(1982–1986), validation (1986–1991), and the full simulation (1981–1991).

In the groundwater level simulation, the transient dynamics of water level were satisfac-
torily simulated for the Berkshire Valley well, but poor in the Morris Maint well (Figure 8).
Aside from possible errors from the DEM, the observed bias could be linked to bound-
ary conditions at the border that favored the Berkshire Valley well more than the Morris
Maint well. Although individual biases such as this are inevitable, the multiple mode of
calibration (i.e., using both streamflow and groundwater data) in this study allows for simulta-
neous optimization of model parameters to ensure proper balance between the two solutions
(i.e., simulated hydrograph and groundwater level dynamics). Thus, in general, the MIKE
SHE performed reasonably well in capturing the observed streamflow and groundwater
levels in the Rockaway subcatchment. On the basis of these results, we explore and quantify
the possible mechanisms behind the observed streamflow changes in the sub-basin.
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Relative to the three different naturalized and baseline periods (i.e., 1982–1991,
1992–2001, and 1982–2001), decadal changes in hydrometeorological variables were com-
puted from the impacted periods (i.e., 2002–2011 and 2012–2021) (Table 6).

Table 6. Mean annual changes in climatic and streamflow variables of the Rockaway subbasin for the
baseline (BLP) and impacted periods (D).

Period Tmin (◦C) Tmean (◦C) Tmax (◦C) Precip (mm) Evapo (mm) Flow (m3)

BLP I: 1982~1991 2.76 9.27 15.78 1306 805 2244
BLP II: 1992~2001 2.99 9.40 15.82 1208 777 1898
BLP III: 1982~2001 2.87 9.34 15.80 1257 791 2071

D III: 2002~2011 4.31 10.09 15.89 1427 826 2277
D IV: 2012~2021 5.24 10.56 15.88 1282 837 1947

D III minus BLP I 1.55 0.82 0.11 9.29% 2.58% 1.46%
D IV minus BLP I 2.49 1.29 0.11 −1.83% 3.98% −13.22%
D III minus BLP II 1.32 0.69 0.07 18.13% 6.25% 19.94%
D IV minus BLP II 2.25 1.16 0.07 6.11% 7.71% 2.59%
D III minus BLP III 1.44 0.75 0.09 13.54% 4.38% 9.93%
D IV minus BLP III 2.37 1.23 0.09 1.99% 5.81% −5.97%

4.3.1. Hydroclimatic Response to Changes Relative to 1982–1991 Baseline, BLP I

Decadal changes (i.e., 2002–2011 and 2012–2021) in Tmin, Tmean, and Tmax for
the impacted periods relative to the reference showed increase in both decades, with
the recent decade (D IV) being the warmest (Table 6). Compared to mean and maxi-
mum temperatures, minimum temperature is observed to have a higher increasing rate
(2.49 ◦C/decade), and is indicative of a rapidly warming climate in the basin. Along
with the increasing temperatures, actual ET is also observed to increase in both decades
(2.58% and 3.98% for D III and D IV resp.). However, precipitation is observed to increase
in D III but decreased in D IV. This decrease in precipitation, though marginal, suggests
that the recent decade (D IV) experienced meteorological stressed conditions with respect
to the baseline and as compared to D III. Typically, evapotranspiration is limited in such
water stress conditions, and is therefore expected to decline in D IV. However, a decreased
precipitation not resulting in a decreased ET for D IV suggests that the rapid warming
observed in the area somewhat played a key role in the increased actual evapotranspiration.
This partly explains why streamflow declined disproportionately in the recent decade.

4.3.2. Decadal Changes in Hydrometeorological Variables

At a glance, the observed increase in precipitation in D III by 9.29% resulting in an
increase in flow by 1.46%, and a decrease in precipitation in D IV by 1.83% leading to a
decrease in streamflow by 13.22% may lead one to conclude that precipitation is the main
climatic factor for streamflow changes in the basin. However, recourse to the elasticity of
climate variables to streamflow in the basin will lead to a different conclusion. In Table 7,
we find that elasticities of precipitation and actual ET are 0.96 and −2.88, respectively.
This suggests that a 10% increase in precipitation results in a 9.6% increase in streamflow,
while a 10% increase in actual ET leads to a 28.8% decrease in streamflow. Thus generally,
streamflow is less sensitive to precipitation for the reference period. These elasticities
also explain the relatively modest (1.46%) increase in streamflow for the 9.29% increase in
precipitation in D III, and likewise the 13.22% decrease in flow for an only 1.83% decrease
in precipitation in D IV with respect to the 1982–1991 baseline period. Thus, it can be
concluded from the above results that actual evapotranspiration is the main climatic factor
responsible for streamflow dynamics in the Rockaway sub-basin for this reference period.
Although this conclusion holds true, in respect of the actual contribution to the observed
streamflow changes for D III, precipitation was entirely responsible with 100% contribution.
This means that the amount of precipitation was more than sufficient to satisfy evaporative
demands, with the left over going into streamflow generation. For D IV, the impact of
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actual ET sensitivity to streamflow was largely felt. Such that, while actual ET contributed
to approximately 87% of streamflow, precipitation contributed only 13%.

Table 7. Annual streamflow elasticities and contribution of precipitation and actual ET to streamflow
changes for respective baseline periods.

Elasticity (ε)

Period Contribution to Q Change Precip Evapo Equation

I: 2002~2011

0.96 −2.88

relative to BLP I 100% ~ 9.29εp + 2.58εE = 1.46

1.35 −0.74

relative to BLP II 100% ~ 18.13εp + 6.25εE = 19.94

1.19 −1.44 ~

relative to BLP III 55% −30% 13.54εp + 4.38εE = 9.93

II: 2012~2021

0.96 −2.88

relative to BLP I 13.28% 86.62% 1.83εp − 3.98εE = 13.22

1.35 −0.74

relative to BLP II 100 ~ 6.11εp + 7.71εE = 2.59

1.19 −1.44

relative to BLP III ~ 100% 1.99εp + 5.81εE = −5.97

4.3.3. Hydroclimatic Response to Changes Relative to 1992–2001 Baseline, BLP II

Relative to the 1992–2001 reference period, all temperature variables in the basin
saw increases consistent with global trends [44,95], with minimum temperature show-
ing the largest increase in D IV (2.25 ◦C/decade). Unsurprisingly, actual ET followed
along with temperature, with increases of 6.25% and 7.71% for D III and IV, respectively.
However, these increases were overwhelmed by the respective 18.13% and 6.11% increase
in precipitation, leading to a rise in streamflow by 19.94% and 2.59% for D III and IV,
respectively (Table 6). Here D III, having precipitation increase by 18.13% can be con-
sidered as a meteorologically wet decade compared to D IV and relative to the baseline
period. While water limits ET values in dry conditions, energy limits ET values in wet
conditions [96,97]. Similarly, actual evapotranspiration in D III was largely energy-limited,
leading to a considerable streamflow generation by 19.94%.

In terms of sensitivity to streamflow, Table 7 shows that streamflow elasticity to
precipitation is 1.35, indicating that a 10% rise in mean annual precipitation results in a
13.5% increase in streamflow. On the other hand, streamflow elasticity to actual ET is −0.74,
which suggests a 7.4% decline in streamflow for a 10% increase in actual ET. This indicates
that streamflow is more sensitive to precipitation than actual ET for this reference period
and that evaporative demand was overcome by the relative increases in precipitation for D
III and IV. As such, the observed increases in streamflow for both decades can be entirely
attributed to precipitation as revealed in Table 7.

4.3.4. Hydroclimatic Response to Changes Relative to 1982–2001 Baseline, BLP III

Minimum, mean, and maximum temperatures showed increases in both decades
(D III and D IV) relative to the baseline (Table 6). With the recent decade being the
warmest in the basin, minimum temperature is observed to have the highest increasing rate
(2.37 ◦C/decade), followed by mean temperature (1.23 ◦C/decade), and then maximum
temperature (0.09 ◦C/decade). Similarly, precipitation was observed to increase in both
decades, with the largest increase in D III, having 170 mm (13.54%) more than in the
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baseline period. Consistent with temperature, actual evapotranspiration was observed to
increase in both decades compared to the baseline. Although the results in Table 6 show
that both precipitation and evapotranspiration are increasing for all decades relative to the
baseline, they induced varied signal and strength in streamflow. Whereas precipitation was
the dominant contributor to streamflow in D III (55%) leading to an increased flow, actual
ET entirely overwhelmed precipitation in D IV causing a decrease in flow. The reason for
this is that in D III, water was sufficient, and energy becomes the more important control of
evapotranspiration whereas in D IV, water was limited, and evapotranspiration, largely
driven by energy, went into further decreasing streamflow (−5.97%).

This is confirmed by sensitivity results in Table 7. It reveals that, elasticity of stream-
flow in relation to precipitation (εp) and actual ET (εET) for the Rockaway sub-basin are
1.19 and −1.44, respectively. This indicates that 10% increase in precipitation results in
11.9% increase in streamflow while 10% increase in actual ET would lead to 14.4% decrease
in streamflow. Thus, annual streamflow was generally more sensitive to the change in
actual ET than the change in precipitation, although in D III, precipitation contributed 55%
to streamflow changes whereas evapotranspiration contributed 30%.

5. Summary and Conclusions

At a time when the climate change problem has evolved into a crisis, the piece-meal
approach to carrying out hydrological impact analysis at a single study location may no
longer suffice. At best, a comprehensive study that combines the detection and analysis
of trends along with hydrological modelling study will provide important foundations
for understanding the hydroclimatic patterns in an area and the driving mechanisms
behind these trends in the wake of a changing climate. In this study, we used long-term
meteorological and hydrologic observations to identify trends in hydroclimatic indicator
variables in the PRB. We also modelled streamflow and groundwater elevation using the
Rockaway sub-basin as a case study to understand the impacts of recent climate changes to
streamflow in the study basin. Recognizing that hydroclimatic variables, by their nature, are
nonmonotonic, we employed the wavelet transform—an advanced trend analysis tool—as
against the frequently used MK trend test, to detect and identify patterns in hydroclimatic
variables in the PRB. Rather than using the MK trend test directly on the raw data whose
results tend to be largely statistically insignificant in respect of precipitation data, for
instance, the wavelet transform approach was applied to identify the hidden monotonic
trends in the characteristically noisy hydroclimatic time-series. For the hydrological impact
assessments, the physically based distributed MIKE SHE hydrologic model provided the
platform to successfully simulate the hydrologic conditions of the Rockaway catchment.
Based on the model’s water balance outputs, the impacts of recent climate were assessed
from changes in naturalized or baseline periods against impacted periods. Further analysis
was carried out using climate elasticities to determine the sensitivities and contributions
of climatic variables to streamflow changes in the sub-basin to three different baseline
conditions. By this, we demonstrated that the time perspective or baseline condition used
to assess climate change impacts can also substantially influence results.

Major sources of uncertainty in this study may be that which pertains to hydrological
modelling such as input, output, structural, and parametric uncertainties [98,99]. Because
streamflow observations used in calibrating and validating the MIKE SHE hydrological
model was based on reconstructed data, it is likely that errors emanating from the methods
and data used in estimating daily reconstructed streamflow for the Rockaway catchment
(refer to [47]) may be propagated in this study. Howbeit, conscious effort was made in
minimizing uncertainties in our analyses first by the use of multiple objective function
(i.e., observed streamflow and groundwater-level data) that allowed for simultaneous
optimization of model parameters. The model’s ability to reasonably simulate both surface
and subsurface flows as evidenced in the satisfactory performance criterion give credence
to the findings in the study. In addition, one uncertainty that has almost been universally
overlooked in climate impact studies is the choice of baseline condition. In our study,
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we assessed the hydrologic response to changes in climate using three different baseline
climates against two recent future periods (i.e., 2002–2011, 2012–2021). We found that
the choice of baseline condition constitutes an important source of uncertainty in the
sensitivities of streamflow to precipitation and evapotranspiration changes and should
routinely be considered in any climate impact assessment. Against this background, we
present the key findings from our results below:

(1) Over the period 1979–2021, minimum, mean, and maximum temperatures showed
significantly upward trend in all studied subcatchments of the PRB with minimum
temperature having the highest rate of change at 0.059 ◦Cyr−1 in the Rockaway sub-
basin. In contrast, maximum temperatures experienced the slowest rate of change at
0.0034 ◦Cyr−1. Across the PRB, the rate of change in mean temperature ranges from
0.025–0.035 ◦Cyr−1.

(2) Overall, precipitation showed a significant increasing signal in all analyzed sub-basins
with the fastest rate of 0.72 mm/yr in the Ringwood catchment and the slowest
rate at 0.13 mm/yr in the Rockaway catchment. This observed long-term increasing
trend in precipitation and temperature in the PRB is indicative of a changing climate,
consistent with the dominant trends in the broader Northeastern region. Spatially,
trends in both precipitation intensity (R10) and consecutive dry days (CDD) were
observed to decrease in the uppermost portion of the PRB at the Ringwood catchment
but increases towards the south in the Rockaway and Upper Passaic sub-basins. This
pattern is also dominant in the wider Northeast, and provide further evidence of the
connection between extreme weather events and climate change.

(3) In two out of the three analyzed sub-basins, streamflow displayed significantly down-
ward trends with an increasing trend in the Upper Passaic subcatchment. This is in
spite of the increasing trends in both precipitation and temperature in all the three
subcatchments. Although it is well established that precipitation amounts and inten-
sity directly affect streamflow [100], the present results rather show that an increase
in precipitation does not always lead to an increase in streamflow. From a hydro-
logical modeling standpoint, attempt was therefore made to examine the causes of
streamflow in the PRB using the Rockaway subcatchment as a case study.

(4) Decadal changes in climate revealed that the recent decade (2012–2021) was both the
warmest and driest period relative to all baseline periods, and compared with the
2001–2011 decade. It showed a mean temperature increase ranging from 1.16 ◦C in
BLP II and 1.29 ◦C in BLP I. Being the driest period, the recent decade also showed
precipitation changing from −1.83% to 6.11% relative to the 1982–1991 and 1992–2001
baselines, respectively. In contrast, the wettest decade was 2002–2011 relative to all
baseline periods with precipitation increase ranging from 9.29% in the 1982–1991
baseline to 18.13% in the 1992–2001 baseline.

(5) Relative to the overall baseline period (BLP III), the warmest and the driest decade
(2012–2021), having a mean temperature increase of 1.23 ◦C induced an actual evapo-
transpiration increase of 5.81% and a marginal precipitation increase of 1.99%, result-
ing in a 5.97% decrease in streamflow. Similarly, the wettest decade (2002–2011), with
mean temperature increase of 0.75 ◦C relative to the overall baseline period (BPL III),
induced an actual evapotranspiration increase of 4.38% and a precipitation of 13.54%,
which resulted in a streamflow increase of 9.93%.

(6) Across the three baseline periods, we found that precipitation elasticity to streamflow
ranged from 0.96 to 1.35 suggesting that a 10% rise in precipitation will result in
between 9.6% to 13.5% increase in streamflow in the study basin. Similarly, evapotran-
spiration elasticity to streamflow ranged from −2.88 to −0.74 indicating that, a 10%
increase in actual ET will lead to between 28.8% to 7.4% decrease in streamflow. The
relatively pronounced negative ET elasticity value also reflects the effect of warming
climate in the basin. Generally, as temperature increases, ET increases and streamflow
decreases. With streamflow showing high sensitivity to actual ET increases more than
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precipitation, it is safe to conclude that, to a large extent, actual evapotranspiration is
more important in the flow dynamics of the PRB in the wake of a warming climate.

(7) The general observation therefore is that in decades where water is available, energy
limits actual evapotranspiration which makes streamflow more sensitive to precipitation
increase. However, in meteorologically stressed or dry decades, water limits actual ET
thereby making streamflow more sensitive to increases in actual evapotranspiration.

The application of discrete wavelet-transform analysis and process-based hydrological
modeling in this study adequately captured the hydroclimatic signatures as well as hydro-
logic response to climate change in the PRB. A broader study in the future that incorporates
how hydrologic sensitivities vary spatially across the PRB will help in further minimizing
the uncertainties in climate impact assessments for the basin.
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