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Abstract: The potential impacts resulting from climate change will cause significant global problems,
particularly in underdeveloped nations where the effects are felt the most. Techniques for harvesting
water such as small dams provide an alternative supply of water and are adaptive solutions to deal
with water scarcity in the context of future climate change. However, it is difficult to determine
how rainwater harvesting (dams) may be impacted by climate change since general circulation
models (GCMs), widely utilized for predicting potential future climate change scenarios, work on an
extremely large scale. The primary aim of this research was to quantify the effect of climate change
on water availability at the catchment scale by statistically downscaling temperature and rainfall
from the GCMs. Then, using a water harvesting model, the performance of the Abila Dam in Iraq’s
western desert was evaluated in both the current climate (1990–2020) and various future climate
change scenarios (2020–2100). Precipitation generally decreases as the annual temperature increases.
To simulate future water availability, these changes in meteorological factors were incorporated into
the water harvesting model. In total, 15% or less of net storage might fulfil the whole storage capacity
during the baseline period, whereas it is 10% in RCP 2.6 in 2011–2040 for future scenarios. In contrast,
RCP 8.5 will be able to meet water needs at a pace of 6% in 2011–2040. The findings of this study
proved that the Al Abila dam will be unable to supply the necessary water for the area surrounding
the Al Abila dam in the future scenarios.

Keywords: Al Abila dam; Iraq; climate change; GCM model; representative concentration pathways
(RCPs)

1. Introduction

Water availability is a major issue for arid and semi-arid areas (ASARs) all over the
world. Iraq’s western desert faces a serious water shortage due to extremely low annual
rainfall, averaging 120 mm, and highly variable rainfall distribution. In recent years, global
awareness of climate change has increased significantly, particularly in poor nations that
are most severely impacted by its effects. Natural systems, particularly water resources,
face short- and long-term threats from climate change. In all scenarios that have been
examined, fluctuations in streamflow and timing are expected to receive a detrimental
effect on freshwater in several catchments in the mid-to-long term [1]. Under the United
Nations Framework Convention on Climate Change, climate change is defined as “a
change of climate which is attributed directly or indirectly to human activity that alters the
composition of the global atmosphere and which is in addition to natural climate variability
observed over comparable time periods” [2]. As stated by the Intergovernmental Panel on
Climate Change [3], the mean global temperature is predicted to increase around 0.3 to
0.7 degrees Celsius from 2016 to 2035 and between 2.6 and 4.8 degrees Celsius from 2081 to
2100. The Netherlands Ministry of Foreign Affairs (MoFAN) has predicted that Iraq will

Hydrology 2023, 10, 183. https://doi.org/10.3390/hydrology10090183 https://www.mdpi.com/journal/hydrology

https://doi.org/10.3390/hydrology10090183
https://doi.org/10.3390/hydrology10090183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0000-0003-0947-8564
https://doi.org/10.3390/hydrology10090183
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com/article/10.3390/hydrology10090183?type=check_update&version=1


Hydrology 2023, 10, 183 2 of 14

experience an increase in mean annual temperature of 2 degrees Celsius, a 9% decrease in
rainfall, particularly in winter, and a 22% decrease in the average runoff by the year 2050.
MoFAN further stated that climate change will have an influence on protracted drought
periods, increased flood occurrences, and increased desertification [4]. To curtail the effects
of climate change and meet growing water demands, rainwater harvesting (RWH) systems
are being modified by ASAR residents [5]. RWH provides a unique adaptable method to
deal with climate change and a water shortage [6]. To make sure that RWH procedures are
successfully and sustainably adapted to modulate the impacts of climate change, regional
climate variables and scenarios must be determined [7]. To obtain these values, estimate
variables of climatic change can be “downscaled” from general circulation model (GCM)
results, which entails translating the predictions from large-resolution GCMs to smaller
resolutions, whether using dynamic or statistical approaches [8]. Climate change projections
for hydrology are connected to climate change estimation methods such as greenhouse
emission scenarios, downscaling methods, and GCMs. Using different emission scenarios,
GCMs, and downscaling approaches, some of the uncertainties brought on by climate
change could be reduced [9–11].

During the last several decades, several studies have evaluated the climate change im-
pacts on surface water [12,13]. Although several investigations have concentrated on small
watersheds, most have evaluated the climate change influence on dams, RWH performance,
water availability, and water budget in large watersheds [14]. Al-Ansari et al. [15] used data
from global climatic projections produced by the HadCM3 GCM to assess the applicability
of RWH systems in the Sulaimaniyah area of Iraq. Mohammad [16] estimated that the
consequences of climate change scenarios A2 and B2 will be a rise in temperature, a dip in
rainfall, and a reduction in runoff in the Qarasu basin in Iran. Climate change may modify
the hydrological regime, and runoff in the 21st century will probably vary dramatically
due to changed precipitation patterns and increasing temperatures. The simulation also
revealed how hydrological conditions in regions with low and moderate latitudes will be
affected by climate change.

Adamo et al. [17] used GCMs in the SWAT model to examine how the Tigris River
might respond to three future climate change scenarios, A2, A1B, and B1. They concluded
that rainfall would decline in all five branches of the Tigris River Basin, implying that
a reduction in surface and groundwater due to temperature increases and a decline in
precipitation would occur.

Using the SWAT model, which is based on the medium emission scenario (A1B) and
five climate projection models, Hilo et al. studied [18] the effect of climate change on
streamflow at the Dokan Dam in the north of Iraq until the year 2050. A monthly time step
was used to calibrate and validate meteorological input data from SWAT that was acquired
using a Climatic Forecasting System Reanalysis (CFSR) during the years of 1980 and 2013.
The estimated streamflow until 2050 showed a considerable drop in waterflow. Also, the
study revealed that 65% of the total simulated runoff originated from the Iranian portion
of the Dokan Dam Watershed. To address the anticipated water scarcity, it is strongly
advised to increase the water consumption efficiency for both present and potential water
projects [18].

Visweshwaran [19] examined the effects of climate change on the Indian Bharatha-
puzha River Basin (BRB). Five downscaled GCMs were employed to comprehend the
climate change impacts on the hydrological variables in the BRB. These GCMs were de-
veloped for two representative concentration pathway (RCP) scenarios, 4.5 for the normal
condition and 8.5 indicating the worst-case scenario for predicted carbon and greenhouse
gas concentrations in the lower atmosphere. In this work, researchers used the SWAT
hydrological model to obtain a continuous simulation of hydrological data. The outcomes
indicated that evapotranspiration and soil moisture will increase in modest to large amounts
in the coming years and rainfall patterns will change.

In the Iranian Shazand plain, Soltani et al. [20] evaluated the climate change impacts
on groundwater and surface water as well as their interactions. They applied the integrated
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hydrological model MODFLOW-OWHM to forecast future climate data and used the HEC-
HMS model to forecast future river discharge. According to the findings, river discharges
might be reduced due to future climatic circumstances and the average groundwater level
may be much lower in 2060. The outcomes of this research demonstrated climate change’s
anticipated negative effects on the region’s water supplies and highlighted the necessity of
sustainable management to reduce these potential negative consequences.

The efficiency of RWH in ASARs has not been improved by incorporating adaptive
techniques in climatic and hydrological models [2]. Therefore, it is vital to evaluate the
effectiveness of rainwater harvesting systems utilizing the limited water available. More
research is essential to see whether RWH constructions could be modified to better suit
future conditions. To evaluate the effectiveness of current RWH procedures and enhance
the RWH’s structure design, a new tool was created [21].

The main objective of this study was to quantify the effect of climate change on water
availability at the catchment scale by statistically downscaling temperature and rainfall
from the GCMs. Then, using a water harvesting model, the performance of the Abila Dam
in Iraq’s western desert was evaluated in both the current climate (1990–2020) and various
future climate change scenarios (2020–2100).

2. Materials and Methods
2.1. Study Area and Data Used

Wadi Horan is a significant valley situated in the Iraqi’s western desert with a catch-
ment area that is 13,107.83 square kilometers. It originates at the Iraqi–Saudi border and
flows northeast before going crossing Al Rutba city and ending close to Euphrates River
near the city of Al Baghdadi south of Haditha [22]. The Al Abila dam is one of the four
existing dams on the Wadi Horan and it is situated 15 kilometers north of the city of Rutba
as shown in Figure 1. Winter and spring are typically the wet seasons, whereas summer is
the dry season.
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The mean yearly precipitation in the research area is around 120 mm, with around
50% of the total rain falling in the winter months, 15% in autumn, and 35% in spring. A
temperature of 21 ◦C is the annual mean temperature. Dry conditions and high temper-
atures lead to a high probable evaporation rate of roughly 3000 mm per year. There are
vast differences in temperatures throughout the year; the hottest month is July, while the
coldest month is January [23].
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For our investigation, two different sorts of data were needed. The first kind were
employed in downscaling and climate change modeling. Data on daily precipitation, the
highest and lowest temperatures, and their ranges were gathered from the Al Rutbah
meteorological stations. By reanalyzing the data from the National Centers for Environ-
mental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR),
daily data for large-scale predictor variables characterizing contemporary climatic con-
ditions (1961–2005) were obtained. The Canadian Climate Data and Scenarios website
(http://ccds-dscc.ec.gc.ca (accessed on 1 March 2023) was used to obtain the NCEP data.

The input data for the water harvesting model (WHCatch) made up the second
category of data [5]. The Al Abila dam’s physical properties were measured to obtain these
statistics. In each sub-catchment, soil texture was collected using sample collection, and
the region’s slope was calculated using a DEM and a GIS. A double ring infiltrometer was
used to assess infiltration rates in the field, and runoff coefficients from earlier research
were applied.

2.2. Methodology Overview

The following methods were used to evaluate how climate change may affect the
effectiveness of RWH techniques:

• Using GCMs to evaluate climate variables on a large scale.
• Applying GCMs to downscale the climatic variables to local scales.
• Simulating the influence of climate change on the Al Abila dam utilizing the WHCatch

model.

2.2.1. Climate Variable Simulation and GCMs

Beginning in 2011, the Coupled Model Intercomparison Project’s fifth phase (CMIP5)
began publishing GCM climate change data [2]. The atmosphere, sea ice, earth surface,
and oceans are all represented using numerically coupled models known as GCMs. Typi-
cally, GCMs are used to estimate future climatic conditions brought on with forcing from
aerosols and greenhouse gases and to simulate the current climate [24]. The GCMs were
initially created in 1956 to mimic synoptic-scale air circulation patterns, but since then,
various GCMs have been developed and enhanced for weather prediction, climatology,
and the identification of impending climatic changes [25]. The Canadian Earth System
Model, second-generation (CanESM2) was the only model we utilized in the current study.
CanESM2 has been widely utilized in numerous locations. CanESM2 was created by the
Canadian Centre for Climate Modelling and Analysis (CCCma). Only the CanESM2 model
produces daily predictor variables that may be utilized directly in the statistical downscal-
ing model (SDSM). Also, this model was used in the earlier study [2] and is consistent with
the SDSM model. Essentially as an addition to the IPCC’s Fifth Assessment Report (AR5),
CanESM2 was created for CMIP5 [26]. During the same time (1961–2005), along with the
large-scale atmospheric data from CanESM2, CCCma also provided the NCEP/NCAR
predictor variables. The website of the Canadian Climate Data (http://ccds-dscc.ec.gc.ca
(accessed on 1 March 2023)) was utilized to retrieve the CanESM2 and NCEP/NCAR
data. The three representative concentration pathways (RCPs), 2.6, 4.5, and 8.5, which
were analyses, were imported as CanESM2 outcomes. These hypothetical scenarios were
created and employed to prepare AR5. Climate scenarios are pictures of the future or the
possible future that describe likely future climatic conditions [27]. Climate scenarios are
now a crucial component of studying climate change and outline conceivable future climate
pathways. The WHCatch model was utilized to assess the effects of climate change on
the Al Abila dam for the three scenarios RCP 2.6, 4.5, and 8.5 using daily rainfall, max.
temperature, and min. temperature values obtained from CanESM2.

2.2.2. Downscaling Methods

GCMs lack critical sub-grid-scale characteristics like topography and land use because
of their coarse resolution [28]. GCMs were not created to analyze the climate change

http://ccds-dscc.ec.gc.ca
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impacts at the local level or to produce precise projections of how hydrological systems
will respond to these changes [24]. Therefore, to analyze how climate change is affecting
sub-grid scales, a hydrological model is required. The strategies used to convert GCM
results to the regional meteorological variables required for accurate hydrological modeling
are known as “downscaling” procedures [24]. The statistical method applied in this work
demonstrates practical correlations relating local-scale predictands and global predictors.
Statistical downscaling was used to modify scenarios for particular geographies, scales,
and issues while being computationally less expensive and less technically challenging
than dynamic models [27].

Using the Statistical Downscaling Model (SDSM 4.2)

The statistical downscaling model (SDSM) is frequently used in climate change inves-
tigations [2,16,29]. A decision support method for statistical downscaling was created by
Wilby et al. in 2000 to evaluate the effects of regional climate change. The co-public/SDSM
website was utilized to download this model. The SDSM model is divided into four basic
components: identifying the predictors/predictands, calibrating, generating weather, and
creating a future climatic variable. In the prior article [2], specifics regarding these four
components, variables, and the primary SDSM values that were used were discussed.

Predictor Variable Selection

In the process of developing statistical downscaling, choosing the right predictor
variables is an essential issue. In SDSM, the screening option helps in selecting the right pre-
dictor variables for downscaling. To determine the proportion of variation explained with
each predictand–predictor combination, the predictors of the reconstructed NCEP/NCAR
(1961–2005) data were used. The final group of predictor variables were chosen, and each
one was picked because it had the best correlation (r) and lowest significance level (p)
value for each of the predictands (Table 1). The p-variable had a value of 0.00 for each
combination of predictor and predictand.

Table 1. Shows how each predictor was chosen according to its significance level (p) and correlation
(r) values for each predictand. The p-variable is 0.00 for each combination of predictor and predictand.

Predictand Predictor Predictor Description Partial r

precipitation p5_ugl 500 hPa Zonal wind component −0.095
shumgl 1000 hPa Specific humidity 0.192
tempgl Air temperature at 2 m −0.117

p1zhgl 1000 hPa Divergence of true wind 0.185
T_MAX p500gl 500 hPa Geopotential 0.341

shumgl 1000 hPa Specific humidity 0.104
tempgl Air temperature at 2 m 0.709

p1zhgl 1000 hPa Divergence of true wind 0.152
T_MIN p500gl 500 hPa Geopotential 0.160

shumgl 1000 hPa Specific humidity 0.364
tempgl Air temperature at 2 m 0.659

The air temperature two meters above the ground is the most significant predictor
of maximum and minimum temperatures (Table 1). Total precipitation served as the
primary indicator of precipitation. The reason they were chosen, even though certain
predictor variables (p1zhgl) had a weak relationship with precipitation (r = 0.185), was
because groupings of one or more may indicate the conditional process for rainfall. It was
easier to select the predictors for minimum and maximum temperature since rainfall is a
conditioning procedure.



Hydrology 2023, 10, 183 6 of 14

2.2.3. Water Harvesting Model (WHCatch)

A watershed’s runoff volume can be calculated using mathematical formulas called
“hydrological models” based on the amount of rainfall the watershed has received. To
assess the effectiveness of the Al Abila dam based on the present and projected climate
variables, we used the water harvesting model (WHCatch), which was created and applied
in [2,21].

The volume fluctuation in water storage was calculated using the variations in input
and output flow amounts. Therefore, the water-balance model could be expressed as
follows [30]:

∆S = I − Q (1)

where ∆S represents the change of storage during a predetermined period, I represents the
inflow, and Q is the outflow, all expressed in m3.

∆S = Qruno f f + Qrain f all + Qin − Qout − Qloss (2)

where Qrunoff is the runoff volume from the catchment area, Qrainfall is the rainfall in the
dam reservoir, Qin is the upstream inflow volume, Qout is the reservoir overflow volume,
and Qloss is the infiltration losses and evapotranspiration. More details for each parameter
can be found in the earlier study [2].

3. Results and Discussion
3.1. Statistical Downscaling

SDSM 4.2 was used to analyze the effect of zonal climate change. The predictor
variables were chosen, the SDSM was calibrated and validated, and a set of potential
climatic variables was produced.

3.1.1. Performance of SDSM

SDSM performance was assessed by downscaling the rainfall and temperature of the
research region. The calibration module of the SDSM (1961–1990) was used to automatically
assess the performance of the SDSM using R2 over the first 30 years. The R2 values for
maximum and minimum temperature (Tmax and Tmin) and precipitation (Prcp) were 0.99,
0.98, and 0.60, respectively. These findings showed that the SDSM functioned moderately
for precipitation, which was more complicated than temperature, and functioned effectively
for downscaling maximum and minimum temperatures. The conditional process of the
rainfall makes downscaling rainfall more difficult.

Validation was performed using the weather-generator module of the SDSM. Follow-
ing that, a frequency analysis for 1991–2005 was employed to contrast the collected data
and the outcomes of the climate simulation (Figure 2).

The outputs of observed and simulated maximum and minimum temperatures were
quite close and demonstrated a strong link between the monthly mean Tmax, Tmin, and
Prcp. For Tmax, Tmin, and precipitation, the R2 values were 0.99, 0.98, and 0.75, respectively.
According to these findings, SDSM performed poorly for the calibration of precipitation,
and performed well for validation, possibly as a result of missing rainfall data (observed),
which had a detrimental impact on the SDSM’s performance. Overall, there was a rea-
sonable level of consistency amongst the simulated and observed monthly maximum and
minimum temperature and precipitation.



Hydrology 2023, 10, 183 7 of 14
Hydrology 2023, 10, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 2. SDSM’s performance validation for maximum and minimum temperature (Tmax and 
Tmin) and precipitation (Prcp). 

3.1.2. Temperature and Precipitation Projection 
Following validation, the future climate change scenario that the GCM predicted was 

downscaled using the SDSM 4.2. Predictors for this study’s usage were supplied with 
CanESM2’s output, as previously mentioned. The variables of the future for three RCPs, 
2.6, 4.5, and 8.5, were calculated using the average of 20 ensembles for every 30-year pe-
riod, i.e., the 2020s (2011–2040), 2050s (2041–2070), and 2080s (2071–2100). The baseline 
data (1990–2020) were compared to the projected values. In all future periods and for three 
scenarios, the downscaled Tmax and Tmin clearly showed an increase in the average 
monthly temperature (Figure 3). 
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and precipitation (Prcp).

3.1.2. Temperature and Precipitation Projection

Following validation, the future climate change scenario that the GCM predicted was
downscaled using the SDSM 4.2. Predictors for this study’s usage were supplied with
CanESM2’s output, as previously mentioned. The variables of the future for three RCPs,
2.6, 4.5, and 8.5, were calculated using the average of 20 ensembles for every 30-year period,
i.e., the 2020s (2011–2040), 2050s (2041–2070), and 2080s (2071–2100). The baseline data
(1990–2020) were compared to the projected values. In all future periods and for three
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scenarios, the downscaled Tmax and Tmin clearly showed an increase in the average
monthly temperature (Figure 3).
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periods (2020s (2011–2040), 2050s (2041–2070), and 2080s (2071–2100)).

According to the RCP 2.6 scenario, the mean maximum temperature increased by
1.5 ◦C during the 2020s period (from 2011 to 2040), by 2.2 ◦C during the 2050s period (from
2041 to 2070), and by 3.4 ◦C during the 2080s period (from 2071 to 2100). The months of
July and August reported the greatest temperature readings during this period, which
were higher than all other months of the year. In the scenario RCP 4.5, there was a rise in
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the yearly average temperature in each of the three time periods, with the 2080s showing
the largest increase of 4.9 ◦C. Under the scenario RCP 8.5, we saw the scenario’s highest
temperature increase, averaging 4.5 ◦C throughout the 2020s period. It progressively
increased, reaching 6.3 ◦C for the 2050s until it peaked in the 2080s. Even though the
rate of increase was 9.3 ◦C, RCP 2.6 was generally expected to have the lowest emission
owing to mitigating measures, whereas RCP 4.5 and RCP 8.5 forecasted higher greenhouse
gas emissions. The yearly averages for Tmax, Tmin, and precipitation for each of the three
scenarios during each of the three time periods are shown in Table 2 (the 2020s, 2050s,
and 2080s).

Table 2. The yearly averages of precipitation and minimum and maximum temperature for each of
the three scenarios and time periods (2020s, 2050s, and 2080s).

Tmax Tmin Precipitation (%)

2080s 3.4 4.9 9.3 3.9 5.2 9.2 −29 −29.2 −27.2
2050s 2.2 3.7 6.3 2.7 4.1 6.5 −30 −28 −29
2020s 1.5 3.2 4.5 2.02 3.7 5.04 −30.2 −29 −32
Rcps 2.6 4.5 8.5 2.6 4.5 8.5 2.6 4.5 8.5

The maximum and minimum temperatures tended to increase across all future scenar-
ios (RCPs) and all periods. Precipitation, however, tended to decrease.

The annual mean minimum temperature will rise in the coming years as well, with
the increase occurring gradually throughout the three scenarios and future periods. In the
scenario RCP 2.6, for example, the increase reached 2.02 ◦C in the 2020s and the temperature
started to rise after that to 2.7 ◦C in the 2050s. The greatest average temperature for the
following years was recorded in July and August when it reached 3.9 ◦C during the 2080s
period as shown in Table 2 and Figure 3. Also, the RCP 4.5 scenario showed an increase in
intermediate future temperatures of 3.7 ◦C during the 2020s. The 2050s period had a rise of
4.1 ◦C, while the 2080s period saw the largest increase of 5.2 ◦C. The greatest temperatures
were recorded for July and August. The predicted annual average temperatures increased
under the RCP 8.5 scenario, with increases of 5.04 ◦C, 6.5 ◦C, and 9.2 ◦C during the 2020s,
2050s, and 2080s time periods, respectively, particularly in August and September.

According to rainfall predictions, the average annual precipitation will drop for each of
the three scenarios and each of the three time periods, as illustrated in Figure 4 and Table 2.

With an RCP of 8.5, the average daily precipitation dropped annually by around 27.2%
in the 2080s, 29% in the 2050s, and 32% in the 2020s. The amount of precipitation varied
every month. Rainfall drops by 29.2% in the 2080s period and by 28% in the 2050s period
under the RCP 4.5 scenario. The maximum rainfall was observed for all three periods and
situations from March to November.

3.2. Water Harvesting Model (WHCatch)

The water availability at Al Abila dam was determined using the WHCatch. The
volume of precipitation in the Al Abila dam and the real evapotranspiration are two key
factors that will determine how much water the dam will be able to hold. As a result,
changes in temperature and precipitation will directly affect the amount of water available
and the overall functionality of the Al Abila dam.

The data depends on the greatest depth of daily precipitation recorded at the Al-Rutba
station between 1990 and 2020. These data were analyzed utilizing the WHCatch in the
Abila dam under Microsoft Excel to determine the variation in water storage volume. The
design capacity of the Abila dam is 4 × 106 cubic meters. The reservoir of the dam only
reached its target level once, in 1994, as seen in Figure 5. In addition, there was not much
runoff between 2000 and 2009, which made the dam’s storage dry and rendered it unusable.
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According to the research, 5.2% of the years from 1990 to 2020 had enough surface
runoff to enable the water to reach the dam reservoir and allow it to hold all of its 4 × 106 m3

planned capacity. Actually, the results show that the dam’s reservoir has a larger storage
capacity than anticipated. The Abila dam often faces seepage along its body because the
trench’s foundation has not been winded to access the strata layers. A back trench (toe
drain) located downstream of the dam is also missing.

The amount of surface runoff was determined differently in each of the three future
scenarios. Figure 6 compares the simulations for the Al Abila dam for RCP 2.6, 4.5, and
8.5 during the 2020s, 2050s, and 2080s with the baseline period (1990–2020). The 2020s
period, indicated using the year 2035, had the greatest surface runoff of 1,875,681.8 m3. In
the 2050s, the surface runoff in the year 2070 was 1,335,167.9 m3, while in the 2080s, the
surface runoff in the year 2090 under the RCP 2.6 scenario was 1,506,788.98 m3.
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The amount of water that can be held in a dam reservoir relies on the surface runoff that
is collected, and the water required. The Al Abila dam’s current reliability and sustainability
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have already been evaluated and discussed in previous studies [31,32]. Under RCP 2.6,
4.5, and 8.5, the reservoir of the Al Abila dam will hold less water in the future scenarios
(Figure 7). WHCatch findings matched projected precipitation estimates exactly (Figure 4).
During the baseline period, 15% or less of net storage was able to satisfy the total storage
capacity. Regarding future scenarios under RCP 2.6, 10% of the possible storage capacity
would be met in the 2020s, 8% in the 2050s, and 3% in the 2080s. Under RCP 4.5 for the
2020s, 2050s, and 2080s, there will be a decrease of 8%, 5%, and 2%, respectively, whereas
for RCP 8.5, the rates will be 6% in the 2020s, 3% in the 2050s, and 1% in the 2080s (Figure 7).
These findings, however, demonstrate that the Al Abila dam will be unable to provide
the required water. Due to evaporation from soil surfaces and reservoirs, as well as the
previously mentioned technical issues, the water availability is incredibly limited in these
light-rain locations. Hence, there is minimal water productivity [2].
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4. Conclusions

This study showed that rainwater harvesting (RWH) might be used as a tool for adap-
tation to reduce water shortages due to climate change and ultimately increase availability
of water both today and in the future. According to the results, the Al Abila dam will be
unable to supply the necessary water. The climate change impact on the water availability
of the Abila dam in the western desert of Iraq was evaluated under both the current climate
and various future climate change scenarios. During the baseline period, only 15% or less
of the net storage might fulfil the whole storage capacity and that number goes to 10% for
RCP 2.6 in the 2020s for future scenarios. RCP 8.5 can provide for water needs at a pace
of 6% in the 2020s. As a result, by modifying the storage capacity to be able to store the
volume of water lost through runoff, the Al Abila dam’s performance might be enhanced.

The minimum and maximum temperatures increased in all future greenhouse gas
emission scenarios, while rainfall tended to fall more frequently in the 2020s, 2050s, and
2080s. In general, the increases in mean maximum and minimum temperatures found
in this analysis were like those seen in other studies projecting growing trends into the
twenty-first century. Potential evapotranspiration is also expected to rise because of the
rising temperatures.

Due to the requirement of local meteorological data in the hydrological models used
for impact studies, downscaling was required; consequently, the statistical downscaling
model (SDSM) model was utilized. An SDSM can tailor scenarios for particular regions,
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scales, and issues while requiring less technical expertise than other modeling and costing
less to compute.

The findings may be crucial for planners, decision makers, and farmers as they attempt
to prepare for changing climatic conditions and/or mitigate their negative effects on water
supplies. To fully realize the influence of climate change on water availability, future
research is needed to incorporate different GCMs, downscaling models, and land use/cover
changes into simulation models under CMIP5.

The key limitations of this study include the challenges in obtaining reliable informa-
tion on temperature and rainfall in the study region, as well as the challenges in obtaining
access to that location owing to security concerns.

Author Contributions: Conceptualization, A.A. and R.A.; methodology, A.A.; software, A.A. and
R.A.; validation, A.A. and M.F.A.; formal analysis, A.A. and M.F.A.; investigation, A.A. and R.A.;
resources, A.A. and C.R.; data curation, R.A.; writing—original draft preparation, A.A. and R.A.;
writing—review and editing, C.R.; visualization, A.A. and M.F.A.; supervision, C.R.; project adminis-
tration, C.R. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Some data in this manuscript were obtained from the Ministry of
Agriculture and the Ministry of Water Resources, small dam management in the Western Desert. The
other data were gathered from fieldwork and previous studies.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of

the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A.,
Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022; In Press.

2. Adham, A.; Wesseling, J.G.; Abed, R.; Riksen, M.; Ouessar, M.; Ritsema, C.J. Assessing the impact of climate change on rainwater
harvesting in the Oum Zessar watershed in Southeastern Tunisia. Agric. Water Manag. 2019, 221, 131–140. [CrossRef]

3. IPCC. Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E.,
Chatterjee, M., EBI, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY,
USA, 2014.

4. Ministry of Foreign Affairs. Climate Change Profile, Iraq; Governmental Report; MoFAN: Den Haag, The Netherland, 2019.
5. Ammar, A.; Riksen, M.; Ouessar, M.; Ritsema, C.J. Identification of suitable sites for rainwater harvesting structures in arid and

semi-arid regions: A review. Int. Soil Water Conserv. Res. 2016, 4, 108–120. [CrossRef]
6. Mukheibir, P. Water resources management strategies for adaptation to climate-induced impacts in South Africa. Water Resour.

Manag. 2008, 22, 1259–1276. [CrossRef]
7. Wilby, R.L.; Wigley, T.M.L. Precipitation predictors for downscaling: Observed and general circulation model relationships. Int. J.

Climatol. 2000, 20, 641–661. [CrossRef]
8. Ipcc-Tgic, A. General Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 2. 2007.

Available online: http://www.ipcc-data.org/guidelines/TGICA_guidance_sdciaa_v2_final.pdf (accessed on 1 March 2023).
9. Chen, J.; Brissette, F.P.; Poulin, A.; Leconte, R. Overall Uncertainty Study of the Hydrological Impacts of Climate Change for a

Canadian Watershed. Water Resour. Res. 2011, 47, W12509. [CrossRef]
10. Kingston, D.G.; Taylor, R.G. Sources of Uncertainty in Climate Change Impacts on River Discharge and Groundwater in a

Headwater Catchment of the Upper Nile Basin, Uganda. Hydrol. Earth Syst. Sci. 2010, 14, 1297–1308. [CrossRef]
11. Wilby, R.L.; Harris, I. A Framework for Assessing Uncertainties in Climate Change Impacts: Low-Flow Scenarios for the River

Thames, UK. Water Resour. Res. 2006, 42, W02419. [CrossRef]
12. Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change

impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 104082. [CrossRef]
13. Chaemiso, S.E.; Abebe, A.; Pingale, S.M. Assessment of the impact of climate change on surface hydrological processes using

SWAT: A case study of Omo-Gibe River basin, Ethiopia. Model. Earth Syst. Environ. 2016, 2, 1–15. [CrossRef]
14. Chiew, F.H.S.; Whetton, P.H.; McMahon, T.; Pittock, B. Simulation of the impacts of climate change on runoff and soil moisture in

Australian catchments. J. Hydrol. 1995, 167, 121–147. [CrossRef]
15. Al-Ansari, N.; Abdellatif, M.; Ali, S.S.; Knutsson, S. Long term effect of climate change on rainfall in northwest Iraq. Cent. Eur. J.

Eng. 2014, 4, 250–263. [CrossRef]

https://doi.org/10.1016/j.agwat.2019.05.006
https://doi.org/10.1016/j.iswcr.2016.03.001
https://doi.org/10.1007/s11269-007-9224-6
https://doi.org/10.1002/(SICI)1097-0088(200005)20:6%3C641::AID-JOC501%3E3.0.CO;2-1
http://www.ipcc-data.org/guidelines/TGICA_guidance_sdciaa_v2_final.pdf
https://doi.org/10.1029/2011WR010602
https://doi.org/10.5194/hess-14-1297-2010
https://doi.org/10.1029/2005WR004065
https://doi.org/10.1016/j.catena.2019.104082
https://doi.org/10.1007/s40808-016-0257-9
https://doi.org/10.1016/0022-1694(94)02649-V
https://doi.org/10.2478/s13531-013-0151-4


Hydrology 2023, 10, 183 14 of 14

16. Mohammad Reza Pour, O. The effect of climate change on stream flow used Statistical downscaling of HADCM3 model and
Artificial Neural Networks. J. Water Soil Conserv. 2016, 23, 317–326.

17. Adamo, N.; Al-Ansari, N.; Sissakian, V.K.; Knutsson, S.; Laue, J. Climate Change: Consequences on Iraq’s Environment. J. Earth
Sci. Geotech. Eng. 2018, 8, 43–58.

18. Hilo, A.N.; Saeed, F.H.; Al-Ansari, N. Impact of climate change on water resources of Dokan Dam Watershed. Engineering 2019,
11, 464–474. [CrossRef]

19. Visweshwaran, R.; Ramsankaran, R.A.A.J.; Eldho, T.I.; Jha, M.K. Hydrological Impact Assessment of Future Climate Change on a
Complex River Basin of Western Ghats, India. Water 2022, 14, 3571. [CrossRef]

20. Soltani, F.; Javadi, S.; Roozbahani, A.; Massah Bavani, A.R.; Golmohammadi, G.; Berndtsson, R.; Ghordoyee Milan, S.; Maghsoudi,
R. Assessing Climate Change Impact on Water Balance Components Using Integrated Groundwater–Surface Water Models (Case
Study: Shazand Plain, Iran). Water 2023, 15, 813. [CrossRef]

21. Adham, A.; Wesseling, J.G.; Riksen, M.; Ouessar, M.; Ritsema, C.J. A water harvesting model for optimizing rainwater harvesting
in the wadi Oum Zessar watershed, Tunisia. Agric. Water Manag. 2016, 176, 191–202. [CrossRef]

22. Adham, A.; Riksen, M.; Ouessar, M.; Ritsema, C.J. A Methodology to Assess and Evaluate Rainwater Harvesting Techniques in
(Semi-) Arid Regions. Water 2016, 8, 198. [CrossRef]

23. Kamel, A.; Sulaiman, S.; Sayl, K. Hydrologic study for Iraqi western desert to assessment of water harvesting projects. Iraqi J. Civ.
Eng. 2012, 7, 2.

24. Dibike, Y.B.; Coulibaly, P. Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods
and hydrologic models. J. Hydrol. 2005, 307, 145–163. [CrossRef]

25. Xu, C. Climate change and hydrologic models: A review of existing gaps and recent research developments. Water Resour. Manag.
1999, 13, 369–382. [CrossRef]

26. Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93,
485–498. [CrossRef]

27. Setegn, S.G.; Rayner, D.; Melesse, A.M. Climate change impact on agricultural water resources variability in the Northern High-
lands of Ethiopia. In Nile River Basin: Hydrology, Climate and Water Use, 1st ed.; Melesse, A.M., Ed.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 241–265. [CrossRef]

28. Grotch, S.L.; MacCracken, M.C. The use of general circulation models to predict regional climatic change. J. Clim. 1991, 4, 286–303.
[CrossRef]

29. Hassan, Z.; Shamsudin, S.; Harun, S. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and
temperature. Theor. Appl. Climatol. 2014, 116, 243–257. [CrossRef]

30. Boers, T.M.; Zondervan, K.; Ben-Asher, J. Micro-Catchment-Water-Harvesting (MCWH) for arid zone development. Agric. Water
Manag. 1986, 12, 21–39. [CrossRef]

31. Adham, A.; Seeyan, S.; Abed, R.; Mahdi, K.; Riksen, M.; Ritsema, C. Sustainability of the Al-Abila Dam in the Western Desert of
Iraq. Water 2022, 14, 586. [CrossRef]

32. Adham, A.; Abed, R.; Mahdi, K.; Hassan, W.H.; Riksen, M.; Ritsema, C. Rainwater Catchment System Reliability Analysis for Al
Abila Dam in Iraq’s Western Desert. Water 2023, 15, 944. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4236/eng.2019.118033
https://doi.org/10.3390/w14213571
https://doi.org/10.3390/w15040813
https://doi.org/10.1016/j.agwat.2016.06.003
https://doi.org/10.3390/w8050198
https://doi.org/10.1016/j.jhydrol.2004.10.012
https://doi.org/10.1023/A:1008190900459
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1007/978-94-007-0689-7_12
https://doi.org/10.1175/1520-0442(1991)004%3C0286:TUOGCM%3E2.0.CO;2
https://doi.org/10.1007/s00704-013-0951-8
https://doi.org/10.1016/0378-3774(86)90003-X
https://doi.org/10.3390/w14040586
https://doi.org/10.3390/w15050944

	Introduction 
	Materials and Methods 
	Study Area and Data Used 
	Methodology Overview 
	Climate Variable Simulation and GCMs 
	Downscaling Methods 
	Water Harvesting Model (WHCatch) 


	Results and Discussion 
	Statistical Downscaling 
	Performance of SDSM 
	Temperature and Precipitation Projection 

	Water Harvesting Model (WHCatch) 

	Conclusions 
	References

