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Abstract: Max-stable process (MSP) models can be fit to data collected over a spatial domain to
estimate areal-based exceedances while accounting for spatial dependence in extremes. They have
theoretical grounding within the framework of extreme value theory (EVT). In this work, we fit MSP
models to three-day duration cool season precipitation maxima in the Willamette River Basin (WRB)
of Oregon and to 48 h mid-latitude cyclone precipitation annual maxima in the Upper Trinity River
Basin (TRB) of Texas. In total, 14 MSP models were fit (seven based on the WRB data and seven based
on the TRB data). These MSP model fits were developed and applied to explore how user choices
of study area sampling density, gage extent, and model fitting method impact areal precipitation-
frequency calculations. The impacts of gage density were also evaluated. The development of
each MSP involved the application of a recently introduced trend surface modeling methodology.
Significant reductions in computing times were achieved, with little loss in accuracy, applying random
sample subsets rather than the entire grid when calculating areal exceedances for the Cougar dam
study area in the WRB. Explorations of gage extent revealed poor consistency among the TRB MSPs
with modeling the generalized extreme value (GEV) marginal distribution scale parameter. The gauge
density study revealed the robustness of the trend surface modeling methodology. Regardless of
the fitting method, the final GEV shape parameter estimates for all fourteen MSPs were greater than
their prescribed initial values which were obtained from spatial GEV fits that assumed independence
among the extremes. When two MSP models only differed by their selected fitting method, notable
differences were observed with their dependence and trend surface parameter estimates and resulting
areal exceedances calculations.

Keywords: max-stable process; spatial dependence; trend surface; areal exceedance; extreme value
theory; extreme precipitation; Willamette River Basin; Trinity River Basin

1. Introduction

Extreme precipitation frequency areal estimates over watersheds are a key component
in estimating flood hazards and hydrologic risk [1,2]. Flood frequency estimation within
the US Army Corps of Engineers (USACE) dam and levee safety program involves com-
bining limited at-site flood data with temporal information on historic and paleofloods,
spatial information on areal precipitation frequency, and causal information based on the
hydrologic modeling of rainfall-frequency events to enhance and expedite flood hazard as-
sessments [3–6]. Precipitation frequency estimates for dam and levee safety span a range of
annual exceedance probabilities (AEPs) typically from 10−2 to 10−7 and require credible ex-
trapolation and robust uncertainty estimates [7]. Current practice in precipitation frequency
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for dam safety uses GEV/L-moments and areal reduction factors [7]. Extreme precipitation
frequency estimates are also a necessary component for other risk assessments [8,9].

Advances from the field of extreme value theory (EVT) have demonstrated the ca-
pacity to efficiently, flexibly, and credibly model spatial extremes of pointwise maxima
using a max-stable process (MSP) [10–14], the infinite-dimensional analog of multivariate
extreme value distribution. The application of an MSP model enables the direct estimation
of areal-based exceedances within an EVT-based framework. MSP models explicitly ac-
count for the spatial dependence of the extreme data [13,14]. They do not depend upon
the subjective assumptions associated with a Regional Precipitation Frequency Analysis
(RFA) [15], for example, the definition of homogeneous subareas and the need to convert
point estimates into areal average depths using uncertain empirical regional depth-area
reduction factors [16,17]. They also do not share a disadvantage of an RFA which does not
construct an explicit spatial model for the marginal parameters [10]. With their application,
one can not only compute pointwise return level maps, but also more complex areal-based
assessments of risk such as Pr

{∫
B Y(x)dx > zcrit

}
, where Y(x), B, and zcrit denote the joint

distribution, any arbitrary area within the analysis domain, for example, a sub-basin of
interest, and a critical quantity greater than zero, respectively [13,18].

Several studies have fit MSPs to block maxima in order to model precipitation ex-
tremes [19–32]. This study differs from these previous studies in that it focused on four
unexplored issues of practical importance for the calculation of areal exceedances when
applying an MSP model for the analysis of extreme precipitation.

With an MSP model, areal exceedance estimates are obtained by simulating multiple
independent copies of the fitted process over an area of interest [12,13,33], using its fitted pa-
rameter estimates or random samples either gleaned from model calibration [10,13,18,26,34]
or application of the bootstrap method [35,36]. In practice, estimating areal exceedances in
this manner can be computationally intensive, particularly when large areas or rare AEPs
are of interest. This study examined the impact of using a random sample subset of the
entire grid composing an area of interest on the calculation of areal exceedances when
using an MSP model.

The spatial structure in marginal extreme precipitation behavior at all locations
throughout a study region can be effectively modeled at various scales [37]. This study
investigated the impact the spatial precipitation gage extent selected for an MSP model
deployment had on the calculation of areal exceedances. We also explored how well a
precipitation gauge network observed a spatial process of extreme precipitation.

Gage density and configuration are not uniformly distributed throughout most basins,
and these characteristics of a surface network impact the estimation of spatially varying pre-
cipitation [38,39]. This study explored the degree of agreement among areal precipitation-
frequency estimates calculated from distinct MSPs developed using a surface network of
rainfall gages of varying relative density.

MSP model fitting can be thought of as a two-step procedure involving trend surface
and simple MSP model selection, with each step assuming independence among the
extremes and fixed unit Fréchet margins, respectively [13,33]. Trend surfaces are functions
of geographical and/or climatological covariates that influence regional precipitation
extremes to model the spatial variation of the location, scale, and shape parameters of the
known generalized extreme value (GEV) marginal distributions [13,14,37]. Trend surface
parameterizations can potentially complicate dependence parameter estimation [13,34,40].
In this study, linear trend surfaces for the marginal parameters were estimated by applying
the methods described by Love et al. [37], which leveraged theory from spatial extremes
and recent advances for regularizing general linear models [41–43]. Despite the application
of a novel and effective trend surface modeling approach (Love et al. [37]; Ribatet [13]), this
study also examined the impact the selected general MSP model fitting method had on
areal exceedance estimation.

These four issues, relevant to the practical application of MSPs, were addressed using
a series of MSP model fits that were estimated based on the cool season (October to April)
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three-day duration and 48 h mid-latitude cyclone precipitation annual maxima in the
Willamette River Basin of Oregon and the Trinity River Basin in Texas, respectively.

2. Materials and Methods
2.1. Study Areas

The 29,728 square kilometer Willamette River basin (WRB) located in northwestern
Oregon is a major tributary of the Columbia River whose 301 km long main stem, the
Willamette River, flows northward between the Coastal and Cascade Ranges (Figure 1).
The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams in
the WRB. Within the WRB, areal exceedances were calculated for the 536 square kilometer
Cougar Dam project study area (Figure 1).
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Figure 1. (a) The 29,728 square kilometer Willamette River Basin (WRB), 301 km long Willamette 
River (WR), 536 square kilometer Cougar dam safety project contributing drainage area, and loca-
tions for the cities of Portland, Salem, and Eugene. (b) Digital elevation model (elevations in meters), 
including boundaries for the WRB and Cougar dam safety project contributing drainage area. Areal 
precipitation-frequency estimates were calculated for the 536 square kilometer Cougar Dam project 
study area. For each plot, the horizontal axis is in degrees longitude and the vertical axis is in degrees 
latitude. 

 
Figure 2. The state of Texas (TX), 47,000 square kilometre Trinity River Basin (TRB), 1140 kilometres 
long Trinity River (TR), 15,662 square kilometre project study area composed of the Upper West 
Fork Trinity (12030101; 5102 square kilometres), Lower West Fork Trinity (12030102; 3911 square 
kilometres), Elm Fork Trinity (12030103; 4766 square kilometres), and Denton (12030104; 1883 
square kilometres) United States Geological Survey 8-digit Hydrologic Unit Code sub-basins lo-
cated in the upper Trinity River Basin of Texas, and locations for the cities of Dallas, Forth Worth, 
and Houston. Areal precipitation-frequency estimates were calculated for the 15,662 square kilome-
tre project study area. The horizontal axis is in degrees longitude and the vertical axis is in degrees 
latitude. 

Figure 1. (a) The 29,728 square kilometer Willamette River Basin (WRB), 301 km long Willamette
River (WR), 536 square kilometer Cougar dam safety project contributing drainage area, and locations
for the cities of Portland, Salem, and Eugene. (b) Digital elevation model (elevations in meters),
including boundaries for the WRB and Cougar dam safety project contributing drainage area. Areal
precipitation-frequency estimates were calculated for the 536 square kilometer Cougar Dam project
study area. For each plot, the horizontal axis is in degrees longitude and the vertical axis is in
degrees latitude.

Strong atmospheric rivers typically impact the West Coast during the cool season
(November–April) [44]. Ralph and Dettinger [44] determined that an atmospheric river
(AR) struck the West Coast during all 3-day duration rainfall events from 1997–2005 west
of 115◦ W when totals from at least one weather station exceeded 300 mm. The North-
west Coast experiences the most ARs, with the greatest frequencies occurring between
43–46◦ N [45]. Extreme precipitation events over the western Cascades are mostly at-
tributed to anticyclonic wave breaking (AWB) ARs which generally occur at latitudes
greater than 43◦ N and strike the West Coast predominantly in a westerly direction [45].
Cyclonic wave breaking (CWB) ARs impinge the West Coast in a southwesterly direction
and to a lesser degree account for extreme precipitation in the western Cascades [45].

Extreme precipitation areal exceedances were calculated for a 15,662 square kilometer
project study area composed of the Upper West Fork Trinity (12030101; 5102 square kilometers),
Lower West Fork Trinity (12030102; 3911 square kilometers), Elm Fork Trinity (12030103;
4766 square kilometers), and Denton (12030104; 1883 square kilometers) United States
Geological Survey (USGS) 8-digit Hydrologic Unit Code (HUC) sub-basins located in the
upper Trinity River Basin of Texas (Figure 2). Five high-hazard dams located in the Upper
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Trinity River Basin provide flood protection for the city of Dallas, Texas. The areal ex-
ceedances were calculated for storms classified as 48 h extratropical cyclones. Precipitation
from extratropical cyclones causes most major floods in large river basins throughout the
conterminous United States [46]. In the southern United States, extratropical cyclones are
common in late winter and early spring (December through March) [46–48]. While their
intensity and frequency vary considerably [48], they can produce substantial rainfall [46].
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Figure 2. The state of Texas (TX), 47,000 square kilometre Trinity River Basin (TRB), 1140 kilo-
metres long Trinity River (TR), 15,662 square kilometre project study area composed of the Up-
per West Fork Trinity (12030101; 5102 square kilometres), Lower West Fork Trinity (12030102;
3911 square kilometres), Elm Fork Trinity (12030103; 4766 square kilometres), and Denton (12030104;
1883 square kilometres) United States Geological Survey 8-digit Hydrologic Unit Code sub-basins
located in the upper Trinity River Basin of Texas, and locations for the cities of Dallas, Forth Worth,
and Houston. Areal precipitation-frequency estimates were calculated for the 15,662 square kilo-
metre project study area. The horizontal axis is in degrees longitude and the vertical axis is in
degrees latitude.

2.2. Block Maxima Precipitation Datasets

For the WRB, this study used subsets of a cool season (October to April) 3-day du-
ration block maximum precipitation dataset that was compiled for the entire Columbia
River Basin [49]. A detailed description of the original extreme precipitation data collec-
tion and processing procedure was provided in Appendix B of Skahill et al. [49]. The
original seasonal maximum precipitation data collection ranged from the years 1867–2018
(152 years).

The first subset included the 140 gages from Skahill et al. [49] with at least 20 seasonal
maxima observations [50] that were located within the WRB and a 20-km buffer of the WRB
watershed boundary (Figure 3). A second subset involved the 286 precipitation gages from
Skahill et al. [49] with at least 20 seasonal maxima observations whose footprint intersected
with the 295 precipitation gages that were used for a relatively recent L-moments RFA
that was performed for the WRB [51] (Figure 3). The third precipitation gage dataset
was a subset of the first and it considered the 26 precipitation gages located within the
1-degree-by-1-degree box with north, south, east, and west extents of 44.75◦ N, 43.75◦ N,
−121.8◦ W, and −122.8◦ W, respectively (Figure 3). This study also considered three
additional randomly sampled subsets of the first, of sizes 35, 70, and 105 precipitation
gages, respectively (Figure 3). The total number of seasonal maxima observations for the
140, 286, 26, 35, 70, and 105 precipitation gages shown in Figure 3a–f were 7274, 14,747,
1260, 1973, 3518, and 5632, respectively.
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(a) 140, (b) 286, (c) 26, (d) 35, (e) 70, and (f) 105. For each plot, the background map is a digital
elevation model (elevations in meters). These precipitation gage datasets were prepared and used
to develop and apply distinct MSPs to model cool season (October to April) three-day duration
precipitation maxima in the Willamette River Basin of Oregon. For each plot, the horizontal axis is in
degrees longitude and the vertical axis is in degrees latitude.

For the TRB, this study used subsets of a 48 h duration mid-latitude cyclone (MLC)
annual maximum (July to June) precipitation dataset that was compiled for the 8-degree-
by-6-degree rectangular region with north, south, east, and west extents of approximately
29◦ N, 35◦ N, −101◦ W, and −93◦ W [52]. A detailed description of the original extreme
precipitation data collection and processing procedure was provided by Martin et al. [52]
and Martin et al. [53]. The original dataset included 931 precipitation gages.

Four subsets of the original 48 h duration MLC annual maximum precipitation dataset
included the 85, 151, 360, and 610 gages located within 0.5-, 1-, 2-, and 3-degree buffers of
the project study area, respectively (Figure 4). This study also considered three additional
randomly sampled subsets of the 610 gages located within a three-degree buffer of the
project study area of sizes 153, 305, and 458 precipitation gages, respectively (Figure 4). The
total number of annual maxima observations for the 85, 151, 360, and 610 precipitation
gages located within 0.5, 1, 2, and 3-degree buffers of the project study area, as shown in
Figure 4a, were 5625, 10,347, 24,209, and 41,395, respectively. The total number of annual
maxima observations for the 153, 305, and 458 precipitation gages shown in Figure 4b–d
were 10,171, 20,829, and 31,154, respectively.

2.3. Gridded Covariate Data

Selected gridded covariate data included longitude (X), latitude (Y), elevation (Z),
their products (XY, XZ, YZ), and climatological information extracted from the Parameter-
elevation Relationships on Independent Slopes Model (PRISM) long-term mean monthly
gridded data sets at a 30 arc-second resolution [54] for all gaged sites within each study
region. MSP model deployments for the WRB study region applied the PRISM Norm81m
long-term (1981–2010) mean monthly gridded data sets (seasonal precipitation, maxi-
mum/minimum/mean temperature, mean dew point temperature, minimum/maximum
vapor pressure deficit); whereas the MSP deployments for the TRB study area applied
the PRISM Norm91m long-term (1991–2020) mean monthly gridded data sets (annual
precipitation, maximum/minimum/mean temperature, mean dew point temperature,
minimum/maximum vapor pressure deficit, global shortwave solar radiation received
on a horizontal/sloped surface, global shortwave solar radiation received on a horizontal
surface under clear sky conditions, cloudiness). These covariates and their squares consti-
tuted the entire set of covariables (26/34 in total for the WRB/TRB study areas) considered
to build trend surfaces associated with each MSP deployment for each study region. The
selection of these covariates was based on past literature that demonstrated links between
local extreme precipitation, physical information (e.g., elevation, climatology) [55–57], and
rainfall-temperature thermodynamic relationships [58–60].

2.4. Methods

The following is a summary of the approach that was employed to develop and apply
each distinct MSP model for the WRB and TRB study areas.

MSP model fitting was a two-step procedure involving trend surface and simple MSP
model fitting and selection wherein each separate step assumed independence among the
extreme data and unit Fréchet margins, respectively. The results from these two separate
steps were subsequently combined to fit the full MSP model, wherein the trend surface and
dependence parameters were fit simultaneously. The uncertainty of the MSP model was
quantified through the use of the bootstrap method [35,36].
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Figure 4. Precipitation gage subsets of the 48 h duration mid-latitude cyclone (MLC) annual maximum
(July to June) precipitation dataset that was compiled for the eight-degree-by-six-degree rectangular
region with north, south, east, and west extents of approximately 29◦ N, 35◦ N, −101◦ W, and
−93◦ W [52]. (a) Four subsets of the original 48 h duration MLC annual maximum precipitation
dataset included the 85, 151, 360, and 610 gages located within 0.5, 1, 2, and 3-degree buffers of
the project study area, respectively. Randomly sampled subsets of the 610 gages located within a
3-degree buffer of the project study area of sizes (b) 153, (c) 305, and (d) 458. These precipitation gage
datasets were prepared and used to develop and apply distinct MSPs to model 48 h duration MLC
annual maximum in the Trinity River Basin (TRB) of Texas (TX). For each plot, the horizontal axis is
in degrees longitude and the vertical axis is in degrees latitude.

The spectral representation of an MSP, introduced by de Haan [61] has resulted in the
subsequent development of several parametric models for spatial extremes, with different
distributional assumptions yielding different MSP models. Marginal distributions of an
MSP model can be shown to be GEV distributed, with possibly different parameters by
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location [13,14]. A simple MSP is defined to have unit Fréchet, rather than spatially variable
GEV, margins.

For each MSP model employed, the extremal-t [62] simple MSP was utilized. How-
ever, in each case, five different correlation functions were considered, including the Bessel,
Cauchy, generalized Cauchy, powered exponential, and Whittle–Matern correlation func-
tions [63]. Model selection from among the five potential extremal-t MSP models was based
on the composite likelihood information criterion, an adaption of the Takeuchi Information
Criterion (TIC) [64], due to the application of the composite pairwise likelihood-based
estimation approach [13,14]. The Schlather process was not considered since it is a special
case of the extremal-t process [13,14]. The Smith process [65] was also not considered as
its realizations are known to be too smooth for most practical applications [13,14]. The
Brown–Resnick process [66,67] was also not considered since it is known to be difficult to
work with [14]. To this end, Nicolet et al. [68] reported better performance for the extremal-t
process relative to other available MSP models in their study of the dependence structure
of extreme snowfall in the French Alps.

The extremal coefficient function is a convenient summary measure of dependence
among extreme data [69]. In the bivariate case, assuming isotropy, the extremal coefficient
is a function of the Euclidean distance, h, between any two spatial locations. It takes
on values between one when the observations are fully dependent, and two, when they
are independent [11,13,18]. Interestingly, there exists a unique mapping between the
extremal coefficient function and the F-madogram [70], another well-defined measure
of dependence among extreme data. Moreover, there exist empirical estimators for the
F-madogram [10,14]. Inspection of plots of the extremal coefficient function for a model
and its data is a recommended qualitative evaluation of a fitted MSP model [13,33].

As previously mentioned, the marginal distributions of an MSP are GEV distributed,
possibly varying by location. The composite (pairwise) likelihood-based approach of-
ten used to fit a simple MSP model can be readily adapted to accommodate the si-
multaneous estimation of trend surface and dependence parameters [13,14,33]. Trend
surfaces are functions that use spatially varying covariates to model the location, µ(x),
scale, σ(x), and shape, ξ(x), parameters of the GEV marginal distributions. For exam-
ple, linear trend surfaces are of the form µ(x) = ηµ,0 + ηµ,1covµ,1 + . . . + ηµ,nµ covµ,nµ ,
σ(x) = ησ,0 + ησ,1covσ,1 + . . . + ησ,nµσ covσ,nσ , ξ(x) = ηξ,0 + ηξ,1covξ,1 + . . . + ηξ,nξ

covξ,nξ
,

where η·,i and cov·,i are the parameters and covariates of the linear trend surface for
µ(x), σ(x), and ξ(x), respectively. Potential covariates include; for example, gridded
physiographic (e.g., such as x-location, y-location, elevation, slope, aspect, curvature) and
climatological (e.g., such as mean annual/monthly temperature, precipitation, wind, solar
radiation) data. Cooley et al. [10] described trend surface modeling as capturing regional
spatial effects (i.e., climate effects) and that local spatial effects (i.e., weather effects) are
best described by a stochastic dependence structure.

A novel approach was applied in this study to develop linear trend surfaces for
the marginal parameters [37]. Zou and Hastie [71] introduced the elastic-net penalty
as a compromise between ridge [72,73] and lasso [74] regression. Given observations
yi, i = 1, . . . , n, an n×m matrix of normalized covariates X, and an assumed linear model

yi = η0 + η1xi,1 + . . . + ηmxi,m, the elastic net minimizes 1
2n ∑n

i=1
∼
wi
(
yi − η0 − ηxT

i
)2

+

λ∑m
j=1

[
1
2 (1− α)η2

j + α
∣∣ηj
∣∣], where λ is a non-negative regularization parameter that is

tuned to weigh the overall strength of the penalty and α ∈ [0, 1] is specified to control the
penalty term to vary from ridge regression at α = 0 to lasso regression at α = 1, and

∼
wi is the

weight assigned to the ith observation [41]. Ridge regression yields smooth solutions that
include all the predictors; whereas, the application of lasso regression results in automatic
variable selection; i.e., sparse, much more easily interpretable solutions [75]. The elastic net
mixes the two methods. As α increases from 0 to 1 for a fixed λ, the number of zero-valued
ηj increases from 0 to the sparsity of the lasso [41].
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In this study, variable selection was preferred and α was specified close to 1 (α = 0.95)
for numerical stability [41]. The

∼
wi were normalized and assigned in proportion to the

number of observations at each site. Cross-validation (CV) was applied to ensure that
the minimizing value for λ was properly located for each elastic net application. A set
of base covariates and their squares [18] constituted the entire set of covariables con-
sidered to build each trend surface. Davison and Gholamrezaee [18] demonstrated sig-
nificant improvements in model fits with the inclusion of quadratic terms for model-
ing the marginal distributions in their MSP-based spatial analysis of extreme tempera-
ture data in Switzerland. Independent elastic net application results for µ(x) and σ(x),
with ξ(x) = ξ, guided subsequent spatial GEV model formulation and evaluation. In
spatial modeling studies of this type, it is not uncommon to treat the GEV shape pa-
rameter in this manner [18,76]. The log-likelihood of the spatial GEV model, which
assumes independence among the sample observation sites, is given by l

(
ηµ, ησ, ηξ

)
=

∑nsite
i=1 ∑nobs

j=1

{
−logσi −

(
1 + ξi

yi,j−µi
σi

)−1/ξi −
(

1 + 1
ξi

)
log
(

1 + ξi
yi,j−µi

σi

)}
, where µi, σi, and

ξi are the GEV location, scale, and shape parameters for the i-th site and yi,j is the j-th
observation for the i-th site [37].

The joint spatial modeling of precipitation observations enables the computation,
via Monte Carlo simulation, of an integral such as I = 1

dBe
∫
B Z(x)dx for a basin B to

estimate the unknown distribution of the random variable I (e.g., areal average precipitation
exceedance estimate) [33]. Areal exceedances were calculated by simulating multiple
independent copies of the MSP for an area of interest [12,13,33], using its fitted values or
random samples either gleaned from model calibration [10,13,18,26,34] or application of
the bootstrap method [35,36]. Schlather [77] introduced an approach for simulating an
independent realization of a simple MSP with only a finite number of replicates.

Distinct MSP models were developed and applied to examine the impacts of study
area sampling density, precipitation gage extent and density, and model fitting method
on areal exceedance calculations for a project area within the WRB (Figure 1) and TRB
(Figure 2), respectively. Each analysis involved a comparison of calculated areal exceedance
values for AEPs of 10−1, 10−2, 10−3, and 10−4. Seven distinct models were developed for
both the WRB and the TRB. Salient details for these models are summarized in Table 1. Two
different fitting methods were considered for the WRB models whereas all seven models
deployed for the TRB used the same approach for model optimization. Except for WMSP04,
all models were fit using observed data. The model WMSP04 was fit using synthetic data
that was generated from the spatial process WMSP02.

Table 1. Summary details for each MSP that was developed and applied to calculate areal ex-
ceedances for a project area within the Willamette River Basin (WRB) and the Trinity River Basin
(TRB), respectively.

Model Name MSP Model Description

Dataset

WRB MSP Models

WMSP01 Figure 3a General MSP was fit using constrained optimization and initialized with simple MSP and
spatial GEV trend surface parameter estimates

WMSP02 Figure 3a
General MSP was fit using unconstrained optimization and initialized with simple MSP and
spatial GEV trend surface parameter estimatesWMSP03 Figure 3b

WMSP04 Figure 3c

WMSP05 Figure 3d
General MSP was fit using constrained optimization and initialized with simple MSP and
spatial GEV trend surface parameter estimatesWMSP06 Figure 3e

WMSP07 Figure 3f
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Table 1. Cont.

Model Name MSP Model Description

Dataset

TRB MSP Models

TMSP01 Figure 4a Used the 85 precipitation gages within the 0.5◦ buffer of the project area

TMSP02 Figure 4a Used the 151 precipitation gages within the 1◦ buffer of the project area

TMSP03 Figure 4a Used the 360 precipitation gages within the 2◦ buffer of the project area

TMSP04 Figure 4a Used the 610 precipitation gages within the 3◦ buffer of the project area

TMSP05 Figure 4b A random sample of 153 (~25%) of the 610 precipitation gages within the 3◦ buffer of the
project area

TMSP06 Figure 4c A random sample of 305 (50%) of the 610 precipitation gages within the 3◦ buffer of the
project area

TMSP07 Figure 4d A random sample of 458 (~75%) of the 610 precipitation gages within the 3◦ buffer of the
project area

2.4.1. Impact of MSP Areal Exceedance Calculations to Study Area Sampling Density

The fitted values for the max-stable model WMSP01 were used to simulate inde-
pendent copies of the spatial process for the four study area sampling densities of the
536 square kilometers Cougar Dam project study area shown in Figure 5. Figure 5a depicts
the delineated area at a 30 arc-second grid cell scale, the grid scale of the covariate data
that were used for the trend surface modeling analyses. It consisted of 853 grid cells that
were equally weighted for areal exceedance calculations. Figure 5b–d depict the subsets
of 213 (approximately 25% of the 853), 85 (approximately 10% of the 853), and 21 (approx-
imately 2.5% of the 853) points that were randomly sampled from the original 853 grid
cell points shown in Figure 5a, and their corresponding Voronoi polygons which were
computed using the public domain Geographic Information System QGIS [78]. For these
study area sampling densities, each sampled point’s simulated value was weighted using
its corresponding Voronoi cell area. One hundred thousand values of the fitted process
WMSP01 were simulated at each of the 853 grid cell points shown in Figure 5a to compute
areal exceedances for the Cougar Dam project study area. One million values were sim-
ulated for the three coarsened study area sampling densities shown in Figure 5b–d. The
1,000,000 values were obtained from 10 separate runs that each simulated 100,000 values.

The subsets of 213, 85, and 21 points that were sampled from the 853 grid cell points
that compose the entire project study area were random and arbitrary (Figure 5). A
random sample subset optimized for areal exceedance calculation was hypothesized to
be one whose distribution of pointwise return level values best matched its comparable
distribution for the entire set of 853 grid cells that compose the study area. Directed subsets
of sizes 213, 85, and 21 were iteratively computed to find an optimized random sample in
each case. Ten thousand samples were evaluated for each of the three study area sampling
densities. For an AEP of 10−3, the distribution of pointwise return level values was defined
to be the vector of quantile values for the predetermined probability values of 0.01, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. For each study area sampling density, the
optimized subset was the one among the 10,000 evaluated with the minimum sum of
squared differences. This approach to reducing the study area sampling density for areal
exceedance calculation differed from working with a coarsened grid cell scale which is
known to dampen extremes [79–81].

A delineation of the 15,662 square kilometer TRB project study area composed of
the Upper West Fork Trinity (12030101; 5102 square kilometers), Lower West Fork Trinity
(12030102; 3911 square kilometers), Elm Fork Trinity (12030103; 4766 square kilometers),
and Denton (12030104; 1883 square kilometers) USGS 8-digit HUC sub-basins (Figure 2)
consisted of 21,794 grid cells at a 30 arc-second grid cell scale. The fitted values for the
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max-stable model TMSP04 were used to simulate five independent copies of the spatial
process for the entire study area and the two study area sampling densities shown in
Figure 6. Figure 6a,b depict the subsets of 2180 (approximately 10% of the 21,794) and 218
(approximately 1% of the 21,794) points that were randomly sampled from the original
21,794 grid cell points, and their corresponding Voronoi polygons. As was performed for
the Cougar dam project area in the WRB, for these TRB study area sampling densities,
each sampled point’s simulated value was weighted using its corresponding Voronoi cell
area. For each of the five simulated copies of the TMSP04 spatial process, areal means were
computed for the three project study area spatial resolutions.
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Figure 5. (a) A delineation of the Willamette River Basin’s 536 square kilometer Cougar dam
project study area consisted of 853 grid cell points at the 30 arc-second scales. Subsets of (b) 213
(approximately 25% of the 853), (c) 85 (approximately 10% of the 853), and (d) 21 (approximately 2.5%
of the 853) points that were randomly sampled from the original 853 grid cell points shown in (a),
and their corresponding Voronoi polygons. For each plot, the horizontal axis is in degrees longitude
and the vertical axis is in degrees latitude.
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Figure 6. For the Trinity River Basin project area, subsets of (a) 2180 (approximately 10% of the 21,794)
and (b) 218 (approximately 1% of the 21,794) points were randomly sampled from the 21,794 grid
cell points that composed the project study area’s delineation at the 30 arc-second grid cell scale, and
their corresponding Voronoi polygons. For each plot, the horizontal axis is in degrees longitude and
the vertical axis is in degrees latitude.

2.4.2. Impact of MSP Areal Exceedance Calculations to Precipitation Gage Extent

The fitted values for the max-stable models WMSP02, WMSP03, and WMSP04 were
used to simulate one million independent copies for each spatial process for the 536 square
kilometer Cougar Dam project study area using the sampling density shown in Figure 5c.

The max-stable model WMSP04 was fit using synthetic data that was generated from
the spatial process WMSP02. The fitted parameter estimates for WMSP02 were applied to
simulate 152 independent storms for the 1-degree by 1-degree box located within the WRB
with north, south, east, and west extents of 44.75◦ N, 43.75◦ N, −121.8◦ W, and −122.8◦ W,
respectively. One of the 152 independent storms simulated for this box region is depicted in
Figure 7. Twenty-six of the one-hundred and forty precipitation gages shown in Figure 3a
were located within this box region (Figure 3c). For each of the 152 storms, observations
were extracted at each of the 26 precipitation gage sites shown in Figure 3c. For each
of the 26 precipitation gage sites shown in Figure 3c, whenever its original precipitation
dataset had a missing value, a missing data value designation replaced that year’s synthetic
storm observation.

The fitted values for the max-stable models TMSP01, TMSP02, TMSP03, and TMSP04
were used to simulate one million independent copies for each spatial process for the
15,662 square kilometer TRB project study area using the sampling density shown in Figure 6b.

2.4.3. Impact of MSP Areal Exceedance Calculations to Precipitation Gage Density

The fitted values for the max-stable models WMSP01, WMSP05, WMSP06, and
WMSP07 were used to simulate one million independent copies for each spatial process
for the 536 square kilometer Cougar Dam project study area using the sampling density
shown in Figure 5c.

The fitted values for the max-stable models TMSP04, TMSP05, TMSP06, and TMSP07
were used to simulate one million independent copies for each spatial process for the
15,662 square kilometer TRB project study area using the sampling density shown in Figure 6b.
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2.4.4. Impact of MSP Areal Exceedance Calculations on Model Fitting Method

The MSPs WMSP01 and WMSP02 were each fit using different optimization methods.
While the optimization for each model was initialized using its corresponding simple
MSP and spatial GEV trend surface parameter estimates, WMSP01 was calibrated using
constrained optimization whereas unconstrained optimization was used to fit WMSP02.
The fitted values for each max-stable model were used to simulate ten million independent
copies of each spatial process for the 536 square kilometer Cougar Dam project study area
using the sampling density shown in Figure 5c.
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Figure 7. A cool season (October to April) three-day duration storm simulated for the one-degree-
by-one-degree box located within the Willamette River Basin with north, south, east, and west ex-
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WMSP02 (Table 1), an extremal-t MSP with Whittle–Matern correlation function. Twenty-six of 
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grees longitude and the vertical axis is in degrees latitude. 
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Figure 7. A cool season (October to April) three-day duration storm simulated for the one-degree-by-
one-degree box located within the Willamette River Basin with north, south, east, and west extents
of 44.75◦ N, 43.75◦ N, −121.8◦ W, and −122.8◦ W, respectively. Simulated precipitation values are
in mm. The storm was simulated using fitted model parameter estimates for WMSP02 (Table 1), an
extremal-t MSP with Whittle–Matern correlation function. Twenty-six of the 140 original precipitation
gage sites that exist within the box region (Figure 3a,c), including the Cougar Dam project study area,
are also shown. The horizontal axis is in degrees longitude and the vertical axis is in degrees latitude.

3. Results and Discussion

Aside from Coles and Tawn [20] and Davison et al. [11], little attention has been given
to practical areal precipitation-frequency estimation using MSPs [19–32,82]. Rather than
areal exceedance calculations, practice directed MSP applications have focused on condi-
tional simulations of MSPs [82], covariate selection for estimation of the GEV marginal
distributions [21], pointwise return level estimation [22,32], Intensity-Duration-Frequency
curve development [23], conditional maps of pointwise return levels across different du-
rations [24], general overviews of the MSP modeling process [11,25,26], inference method
development for fitting MSPs [27,28,31], and the use of a climate index for trend surface
development [29,30]. Azizah et al. [19] studied the application of the Broyden-Fletcher
Goldfarb-Shanno (BFGS) Quasi-Newton method for general MSP parameter estimation
while considering the Smith model [65]. Coles and Tawn [20] derived a closed-form
GEV distribution solution to calculate areal exceedances that combined a GEV marginal
trend surface, wherein only the GEV location and shape parameters were allowed to vary
spatially, with an MSP model of spatial dependence. However, their areal exceedance calcu-
lations were dependent upon a computation-intensive areal coefficient that characterized
the extremal spatial dependence but was not completely independent of marginal behavior.
Davison et al. [11] demonstrated, based on a limited set of simulations, applications of
the Smith [65], Schlather [13,14], extremal-t [13,14], and Brown–Resnick [66,67] MSPs for
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areal precipitation frequency estimation. Neves and Gomes [25] and Padoan et al. [27] both
mentioned that guidance for modeling spatial extremes was limited.

3.1. Impact of MSP Areal Exceedance Calculations to Study Area Sampling Density

Table 2 lists areal exceedance values that were calculated using the fitted values from
the max-stable model WMSP01 for the three study area sampling densities of the 536 square
kilometer Cougar Dam project study area shown in Figures 5 and 8.

Table 2. Areal exceedance values, in inches, were calculated using the fitted values from the max-
stable model WMSP01 for the 536 square kilometer Cougar Dam project study area shown in
Figures 5 and 8 using four study area sampling densities. Row 1 results were based on 100,000 inde-
pendent realizations of WMSP01. The results in rows 3/4, 6/7, and 9/10 list the average, minimum,
and maximum values obtained from ten distinct runs that each computed 100,000 independent
realizations of WMSP01. The results in rows 2, 5, and 8 were obtained from the 1,000,000 independent
realizations of WMSP01. Row 3, row 6, and row 9 results were obtained using arbitrary random
sampling whereas the results in row 4, row 7, and row 10 used optimized sample subsets.

AEP

Sampling Density 10−1 10−2 10−3 10−4

100% (853 points) 1 9.71 13.47 17.50 21.55

25% (213 points)

2 9.74 13.44 17.22 21.23

3 9.74
(9.72, 9.78)

13.44
(13.35, 13.52)

17.21
(16.95, 17.52)

21.27
(20.01, 21.81)

4 9.73
(9.72, 9.76)

13.44
(13.34, 13.51)

17.22
(16.95, 17.55)

21.20
(20.06, 21.96)

10% (85 points)

5 9.69 13.41 17.27 21.27

6 9.69
(9.67, 9.72)

13.41
(13.34, 13.53)

17.27
(17.03, 17.62)

21.34
(20.42, 22.08)

7 9.68
(9.65, 9.70)

13.39
(13.33, 13.50)

17.22
(17.03, 17.51)

21.16
(20.20, 21.75)

2.5% (21 points)

8 9.77 13.49 17.30 21.45

9 9.77
(9.75, 9.80)

13.50
(13.43, 13.60)

17.30
(17.09, 17.55)

21.49
(20.82, 22.61)

10 9.74
(9.71, 9.76)

13.45
(13.39, 13.54)

17.26
(16.98, 17.59)

21.48
(20.55, 22.60)

Figure 8 shows the 10−3 AEP pointwise return level values that were computed for
the entire study area at the 30 arc-second grid cell scale using the fitted values from the
max-stable model WMSP01. In Figure 8, the optimized random subsets that were computed
for the study area sampling densities of sizes 213, 85, and 21, respectively, overlay the
pointwise return level map computed for the study area.

Table 3 lists quantile values that were extracted from the 10−3 AEP pointwise return
level grid of the Cougar Dam study area for the four sampling densities. It also reports the
sum of the squared difference (SSD) value that was computed for each random subset. The
SSD value computed for each random subset compared quantile values from the full set
of 853 grid points composing the study area. For the subset that used 213 (approximately
25%) of the entire set of 853 grid points composing the study area, Table 3 lists the quantile
values that were extracted from the arbitrary random sample (row 2; Figure 5b) and the
optimized random sample (row 3; Figure 8a). It also lists those values, in row 4/6 and row
5/7, for the subset that used 85/21 (approximately 10%/2.5%) of the study area’s 853 grid
points. Row 4 and row 6 report the extracted vector of quantile values, and its computed
SSD, for the arbitrary random sample whereas row 5 and row 7 list corresponding values
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for the directed random sample. As measured by the SSD values reported in Table 3, the
optimized random subsets better characterized, throughout the study area, the modeled
10−3 AEP pointwise return levels than their corresponding arbitrary random samples.
Among the 10,000 random samples of size 213 that were evaluated to find an optimized
subset, the minimum, first quartile, median, third quartile, and maximum computed
SSD values were 0.015, 0.180, 0.320, 0.571, and 3.77, respectively. For the 10,000 random
samples of size 85/21, those values were 0.028/0.156, 0.565/2.69, 1.01/4.44, 1.71/7.56, and
13.51/49.89, respectively.
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Figure 8. The 10−3 AEP pointwise return level values, in inches, were computed for the Cougar
dam study area at the 30 arc-second grid cell scale using the fitted values from the max-stable model
WMSP01. The optimized random subsets that were computed for the study area sampling densities
of sizes (a) 213, (b) 85, and (c) 21, respectively, overlay the pointwise return level map computed for
the study area. For each plot, the horizontal axis is in degrees longitude and the vertical axis is in
degrees latitude.
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Table 3. Quantile values, in inches, were extracted from the 10−3 AEP pointwise return level grid of
the Cougar dam study area for the four sampling densities. Row 2, row 4, and row 6 results were
obtained using arbitrary random sampling whereas the results in row 3, row 5, and row 7 used
optimized sample subsets (SSD = sum of squared difference).

Probability

Study Area
Sampling Density 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 SSD

100% 1 14.70 14.94 15.43 15.97 16.64 17.50 18.38 19.34 20.19 20.96 22.35

25%
2 14.71 14.98 15.46 16.18 16.99 17.96 18.99 19.67 20.41 21.07 22.41 0.94

3 14.75 14.96 15.45 15.96 16.64 17.44 18.44 19.28 20.20 20.99 22.34 0.015

10%
4 14.74 14.98 15.46 16.54 17.38 18.18 19.14 19.72 20.62 20.98 22.23 2.26

5 14.70 15.01 15.45 16.01 16.69 17.52 18.47 19.35 20.16 21.00 22.26 0.028

2.5%
6 15.17 15.45 16.20 17.01 17.63 19.04 19.64 20.22 21.01 21.53 22.13 8.91

7 14.75 14.95 15.46 16.19 16.89 17.63 18.42 19.30 20.11 21.05 22.42 0.156

The first row of Table 2 lists areal exceedance estimates obtained from the
100,000 simulations that were performed using the entire set of 853 grid cells that composed
the Cougar dam study area (Figure 5a). The following three rows (2–4) list the estimates
obtained from the sampling density that is considered an arbitrary (Figure 5b) and opti-
mized (Figure 8a) random subset of size 213 from the 853 grid cells that composed the study
area. Row 2 lists the areal exceedances that were calculated from the 1,000,000 simulations
that used the arbitrary random sample (Figure 5b). For a direct comparison with the areal
values reported in row 1, for each AEP, row 3 lists the average areal exceedance value
obtained from the ten runs that each involved one hundred thousand simulations while
using the arbitrary random subset. The values reported in row 4 are like those listed in
row 3; however, they were obtained using the optimized random subset. Rows 3 and 4 also
include summaries of the minimum and maximum reported areal exceedance values across
the 10 simulations. The areal exceedance values reported in rows 5–7/8–10 are like those
reported in rows 2–4; however, they were obtained using an arbitrary (Figure 5c/Figure 5d)
and optimized (Figure 8b/Figure 8c) random subset of size 85/21 from the 853 grid cells
that composed the study area.

The areal exceedance values calculated for the study area sample subsets agreed well
with their comparable values obtained using the entire set of 853 grid cell points that
composed the Cougar Dam contributing drainage area (Table 2). At the 10−1, 10−2, 10−3,
and 10−4 AEP, the average values reported for the arbitrarily sampled subsets of 213/85/21
points differed from the values reported for the full grid of 853 points by 0.31/0.21/0.62,
0.22/0.45/0.22, 1.67/1.32/1.15, and 1.31/0.98/0.28 percent, respectively. For the optimized
sample subsets, these values were 0.21/0.31/0.31, 0.22/0.60/0.15, 1.61/1.61/1.38, and
1.64/1.83/0.33 percent, respectively. Except for the 10−1 AEP, the values reported for the
full grid of 853 points were also within the range of values reported for each of the two
subsets, regardless of whether the sample subset was arbitrary or optimized.

The results summarized in Table 2 were highly encouraging from the practical per-
spective of the compute time required to obtain a usable mean areal exceedance curve,
including uncertainty quantification. Using code and a compute resource (i.e., a laptop
computer with a 12th Gen Intel(R) Core (TM) i9-12900HK processor and 64.0 GB installed
RAM) in the same way, Figure 9 summarized the times required to compute different
sized sets of independent realizations of the MSP WMSP01 for the entire grid of 853 points
composing the Cougar dam study area and its random sample subsets of sizes 213, 85,
and 21, respectively. From Figure 9, 287.84, 5.34, 0.59, and 0.04 min were required to com-
pute one hundred thousand independent realizations of the MSP WMSP01 for the Cougar
dam study area sampling densities that consisted of 853, 213, 85, and 21 grid cell points.
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It required 5.22/5.59 min to compute 1/12 million independent realizations of the MSP
WMSP01 using the study area sampling density that consisted of 85/21 grid cell points.
A similar amount of time (5.53 min) was required to compute two thousand independent
realizations of WMSP01 while using the 853 grid cell points that composed the Cougar
Dam study area.

Hydrology 2023, 10, 121 19 of 34 
 

 

 
Figure 9. The times required to compute different-sized sets of independent realizations of the MSP 
WMSP01 for the entire grid of 853 (black square) points composing the Cougar Dam study area and 
its random sample subsets of sizes 213 (gray circle), 85 (blue triangle), and 21 (green rhombus), 
respectively. 

Table 4. For the three TRB study area sampling densities, the areal means, in inches, were computed 
for five independent realizations of TMSP04. 

 Areal Means 
Sampling Den-

sity 1 2 3 4 5 

100% 3.61 2.69 3.56 2.99 2.57 
10% 3.60 2.68 3.54 2.99 2.57 
1% 3.59 2.66 3.63 3.00 2.59 

Figure 9. The times required to compute different-sized sets of independent realizations of the
MSP WMSP01 for the entire grid of 853 (black square) points composing the Cougar Dam study
area and its random sample subsets of sizes 213 (gray circle), 85 (blue triangle), and 21 (green
rhombus), respectively.

Significant reductions in compute times were achieved by applying sample subsets
rather than the entire grid when calculating areal exceedances with the MSP WMSP01 for
the Cougar dam study area (Figure 9). These reductions were achieved with little loss in
accuracy (Table 2). These results, albeit limited, challenge the assessment that a limitation
for practical applications of MSP models is their intensive computational requirements [83].

The application of an optimized subset did not provide any benefit relative to the use
of an arbitrary sample, at least for the sampling densities and AEPs that were evaluated for
the Cougar Dam study area (Table 2). However, further study is encouraged, directed at
alternative approaches for optimized subset selection, for study areas with different sizes
and locations, and for a wider range of AEPs and sampling densities. A comparison of
results from the study area sampling approach applied herein with one that coarsens the
base grid cell scale to reduce the study area grid density is another potential path for future
related studies.

Only five independent realizations of the MSP TMSP04 were computed given the
size of the TRB project study area (15,662 square kilometers) and the number of grid cells
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that compose it at the 30 arc-second scales (21,794). Areal means were computed for the
three TRB study area sampling densities for each independent realization of TMSP04
(Table 4). For each individual realization, the agreement among the computed areal means
across the 3 study area sampling densities was excellent. Figure 10 shows the 10−3 AEP
pointwise return level values that were computed throughout the entire TRB study area
at the 30 arc-second grid cell scale using the fitted values from the max-stable model
TMSP04. One likely explanation for the excellent agreement among the areal means
computed across the three TRB study area spatial densities is the relatively narrow range
and predictable spatial pattern of the pointwise return level values throughout the TRB
study area (Figure 10). For the TRB study area, more sampling density comparisons are
needed, either more like those provided in Table 4 or better, like the ones provided in
Table 2 for the Cougar dam study area in the WRB.

Table 4. For the three TRB study area sampling densities, the areal means, in inches, were computed
for five independent realizations of TMSP04.

Areal Means

Sampling Density 1 2 3 4 5

100% 3.61 2.69 3.56 2.99 2.57

10% 3.60 2.68 3.54 2.99 2.57

1% 3.59 2.66 3.63 3.00 2.59
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3.2. Impact of MSP Areal Exceedance Calculations to Precipitation Gage Extent

Application of the three max-stable models that were developed for the WRB with
three different gage extents resulted in relatively similar areal exceedance estimates for the
Cougar dam study area in the WRB (Table 5). The model WMSP02 was developed using
the data from the 140 gages from Skahill et al. [49] with at least 20 seasonal maxima obser-
vations [50] that were located within the WRB and a 20-km buffer of the WRB watershed
boundary (Figure 3a). The model WMSP03 was developed using the data from the 286 pre-
cipitation gages from Skahill et al. [49] with at least 20 seasonal maxima observations whose
footprint intersected with the precipitation gages that were used for a relatively recent
L-moments RFA that was performed for the WRB [51] (Figure 3b). The model WMSP04
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used the 26 precipitation gages located within the one-degree by-one-degree box with
north, south, east, and west extents of 44.75◦ N, 43.75◦ N, −121.8◦ W, and −122.8◦ W, re-
spectively (Figure 3c). The model WMSP04 was fit using synthetic data that was generated
from the spatial process WMSP02. For WMSP04 and each of its 26 precipitation gage sites
shown in Figure 3c, whenever the precipitation dataset for WMSP02 had a missing value, a
missing data value designation replaced that year’s synthetic storm observation. The areal
exceedance estimates listed in Table 5 were obtained from one million independent copies
for each spatial process, using their respective fitted values, for the 536 square erkilometer
Cougar Dam project study area using the sampling density shown in Figure 5c.

Table 5. Areal exceedance values, in inches, calculated using the fitted values from the max-stable
models WMSP02, WMSP03, and WMSP04 for the 536 square kilometer Cougar Dam project study
area shown in Figures 5 and 8 using three gage extents (Figure 3a–c). The areal exceedance estimates
were obtained from one million independent copies for each spatial process using the sampling
density shown in Figure 5c.

AEP

Gage Extent (Model) 10−1 10−2 10−3 10−4

WMSP02 9.66 13.49 17.55 22.03

WMSP03 9.54 13.48 17.83 22.42

WMSP04 9.53 13.33 17.4 21.54

Four MSP models were developed for the TRB with four different gage extents. The
four models were developed using the annual maxima series from the 85, 151, 360, and
610 precipitation gages located within 0.5, 1, 2, and 3 degrees of the project study area,
respectively (Figure 4a). The areal exceedance estimates calculated for the TRB project
study area using these four MSP models were summarized in Table 6. The areal exceedance
estimates listed in Table 6 were obtained from one million independent copies for each
spatial process, using their respective fitted values, for the 15,662 square kilometer TRB
project study area using the sampling density shown in Figure 6b. Across these four MSP
models, there was greater variation among the areal exceedance estimates for the TRB
study area than the areal exceedances reported in Table 5 for the Cougar dam safety project
study area in the WRB, particularly for the AEP values of 10−3 and 10−4.

Table 6. The areal exceedance estimates, in inches, were obtained from one million independent
copies for each spatial process, using their respective fitted values, for the 15,662 square kilometer
TRB project study area using the sampling density shown in Figure 6b.

AEP

Gage Extent (Model) 10−1 10−2 10−3 10−4

TMSP01 5.06 8.23 12.83 19.81

TMSP02 5.06 8.20 12.90 20.21

TMSP03 4.95 7.88 12.16 17.77

TMSP04 4.84 7.71 11.88 17.33

Plots of the extremal coefficient function versus normalized distance were shown for
the three WRB and four TRB models in Figure 11. For both sets of models, the plots of the
extremal coefficient function versus normalized distance varied (Figure 11a,c), with the
models developed for the more limited gage extents exhibiting stronger extremal depen-
dence as a function of distance. For each WRB/TRB model, pairwise sample site distances
were calculated from the normalized coordinate values for the 85/218 study area simula-
tion targets (Figure 5c/Figure 6b). The lower and upper bounds for these distances were
tabulated and plotted (Figure 11b,d). For example, for the WRB models WMSP02, WMSP03,
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and WMSP04, the lower and upper bounds were calculated to be 0.012/0.007/0.024 and
0.641/0.314/1.301, respectively. For the TRB models TMSP01, TMSP02, TMSP03, and
TMSP04, the lower and upper bounds were calculated to be 0.0129/0.0095/0.0058/0.0043
and 2.99/2.15/1.31/0.98, respectively. From Figure 11b,d, one can observe that the range of
extremal coefficient function values across the three WRB models and the four TRB models
were rather consistent, underscoring that inter-site extremal dependence was modeled quite
similarly within each set of models. The range of the extremal coefficient function values
was greater for the four TRB models than it was for the three WRB models (Figure 11b,d).
Extremal dependence was stronger for the three-day duration cool season (October to
April) maxima throughout the 536 square kilometer Cougar dam study area in the WRB
than it was for the 48 h MLC precipitation annual maxima in the 15,662 square kilometer
TRB study area (Figure 11).
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Figure 11. Plots of the extremal coefficient function versus normalized distance for the three WRB
(a,b) and four TRB models (c,d). The lower and upper bounds of pairwise sample site distances
calculated from the normalized coordinate values for the 85/218 study area simulation targets
(Figure 5c/Figure 6b) are also plotted as vertical lines, with corresponding horizontal lines also
included where the vertical lines intersect their respective model extremal coefficient function.
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Tables 7 and 8 list three statistics, the coefficient of determination (R2), Nash–Sutcliffe
efficiency (NSE) [84], and Kling–Gupta efficiency (KGE) [85], that summarizes the degree
of agreement among the gridded GEV location parameter, GEV scale parameter, and 10−3

AEP pointwise return level values computed from three WRB models and the four TRB
models, respectively. Nash–Sutcliffe efficiency values range from minus infinity to one.
An NSE value of one indicates a perfect match between the model and its observations.
An NSE value of zero indicates that model predictions are as accurate as the mean of the
observed data. NSE values less than zero indicate that the mean of the observed data is a
better predictor than the model. Kling–Gupta efficiency values range from minus infinity
to one. A model is more accurate when its KGE value is closer to one.

Table 7. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) [84], and Kling–Gupta
efficiency (KGE) [85] values summarizing the degree of agreement among the gridded GEV location
parameter, GEV scale parameter, and 10−3 AEP pointwise return level values computed from the
three WRB models (02 = WMSP02; 03 = WMSP03; 04 = WMSP04) for the Cougar dam project study
area. The statistics were computed using the complete set of 853 grid cells that compose the project
area at the base 30 arc-second grid cell resolution.

GEV Location GEV Scale Return Levels

02/03 02/04 03/04 02/03 02/04 03/04 02/03 02/04 03/04

R2 1.00 0.99 0.99 0.93 0.97 0.81 0.97 0.98 0.92

NSE 0.92 0.98 0.97 0.91 0.89 0.78 0.95 0.96 0.86

KGE 0.78 0.96 0.85 0.96 0.74 0.71 0.92 0.87 0.80

Table 8. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) [84], and Kling–Gupta
efficiency (KGE) [85] values summarizing the degree of agreement among the gridded GEV location
parameter, GEV scale parameter, and 10−3 AEP pointwise return level values computed from the
four TRB models (01 = TMSP02; 02 = TMSP02; 03 = TMSP03; 04 = TMSP04) for the TRB project study
area. The statistics were computed using the complete set of 21,794 grid cells that compose the project
area at the base 30 arc-second grid cell resolution.

GEV Location GEV Scale Return Levels

01/02 01/03 01/04 02/04 03/04 01/02 01/03 01/04 02/04 03/04 01/02 01/03 01/04 02/04 03/04

R2 0.98 0.98 0.98 0.99 1.00 0.99 0.92 0.85 0.88 0.85 0.99 0.94 0.89 0.93 0.90

NSE 0.96 0.97 0.83 0.72 0.85 0.93 0.81 −2.18 −1.01 −0.87 0.98 −1.75 −5.92 −5.53 0.62

KGE 0.94 0.91 0.83 0.89 0.93 0.86 0.81 0.29 0.50 0.55 0.88 0.73 0.34 0.51 0.68

The marginal distributions of a max-stable process are GEV distributed, possibly
varying by location. Across each set of models, the GEV location and scale parameters
were modeled more consistently throughout the Cougar Dam study area in the WRB than
they were for the TRB study area (Tables 7 and 8). Notably, for the four TRB models,
while agreement among paired GEV scale parameter model grids for the TRB study area
improved with increasing gage extent, the agreement was low. Table 9 lists the fitted values,
including an estimate of their uncertainty, for the GEV shape parameter for the three WRB
models and the four TRB models. For each set of models, the uncertainty of the GEV shape
parameter estimate decreased with increased gage extent. The fitted values for the GEV
shape parameter were more variable across the three WRB models than they were among
the four TRB models. The remaining fitted values for the GEV shape parameter were 1.63
and 1.97 times the minimum GEV shape parameter value among the three WRB models
whereas for the four TRB models, these values were 1.06, 1.17, and 1.18. Across the three
WRB models, the order of the areal exceedances listed in Table 5 for the 10−3 and 10−4 AEP
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aligned with the order of the fitted GEV shape parameter values reported for these three
models in Table 9.

Table 9. Fitted values, including an estimate of their uncertainty, for the GEV shape parameter for
the three Willamette River Basin models and the four Trinity River Basin models that were used to
explore the impact of max-stable process areal exceedance calculations to precipitation gage extent.

GEV Shape Parameter

Model Name Fitted Value Standard Error

WMSP02 0.02496 0.004246

WMSP03 0.03027 0.003833

WMSP04 0.01533 0.006999

TMSP01 0.1441 0.009562

TMSP02 0.146 0.007281

TMSP03 0.1233 0.004677

TMSP04 0.1306 0.003947

The computed pointwise return levels encapsulate modeling of the marginal distri-
butions. For each set of models, as the gage extent increased, the agreement among the
paired models’ computed return levels increased, as measured by the NSE and KGE val-
ues reported in Tables 7 and 8. Interestingly, replacing the GEV scale grids for TMSP01,
TMSP02, and TMSP03 with the GEV scale grid for TMSP04 resulted in the KGE statistic
values increasing from 0.34, 0.51, and 0.68 (Table 9) to 0.98, 0.91, and 0.98 for the model pairs
TMSP01/TMSP02, TMSP01/TMSP03, and TMSP01/TMSP04, respectively. Moreover, areal
exceedance estimates for TMSP01, TMSP02, and TMSP03 changed from the values reported
in Table 6 to 4.94/7.94/12.29/18.87, 4.97/7.97/12.46/19.47, and 4.86/7.67/11.77/17.10 for
AEPs of 10−1/10−2/10−3/10−4, respectively.

More accurately estimating the GEV scale parameter may improve agreement among
the four TRB models such that based on the two storm types and model domains con-
sidered (i.e., three-day duration cool season maxima in the WRB of Oregon and 48 h
mid-latitude cyclone precipitation annual maxima in Texas), in general, the impact the
selected precipitation gage extent would have on areal exceedance estimates could broadly
be reduced to estimation of the GEV shape parameter, particularly for rare AEP values.
Two potential avenues to explore to improve GEV scale parameter estimation include the
consideration of additional covariates or overfitting the scale model when applying the
elastic-net penalty during trend surface development for model deployments with limited
gage extent. While the uncertainty of the GEV shape parameter estimates decreased with
increased gage extent, it is the uncertainty of the areal exceedances that are of most interest.
Additional study is also needed to examine the impacts of gage extent on the uncertainty
quantification of MSP modeled areal exceedances.

The set of twenty-six precipitation gages located within the one-degree-by-one-degree box
with north, south, east, and west extents of 44.75◦ N, 43.75◦ N, −121.8◦ W, and −122.8◦ W
(Figure 3c) that were used to develop WMSP04 using synthetic observations generated from
the spatial process WMSP02 observed WMSP02 quite well based on the model comparisons
and their reported degree of the agreement provided in Tables 5, 7 and 9 and Figure 11. A
comparison of uncertainty estimates for the areal exceedance calculations from WMSP02
and WMSP04 is needed.

3.3. Impact of MSP Areal Exceedance Calculations to Precipitation Gage Density

Surface networks are generally not designed and maintained to observe on a regular grid.
Within a given MSP model domain, some areas that require areal exceedance calculations may
observe precipitation with high density while other areas may be data sparse. This analysis
briefly explored the impact of gage density on MSP areal exceedance calculations.
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For both the WRB and TRB, three subsets were randomly sampled from a base
precipitation gage network. For the WRB, the base network was the 140 gages from
Skahill et al. [49] with at least 20 seasonal maxima observations [50] that were located
within the WRB and a 20-km buffer of the WRB watershed boundary (Figure 3a). The
total number of gages used to develop the WRB models WMSP01, WMSP05, WMSP06,
and WMSP07 were 140, 35, 70, and 105, respectively. For models WMSP01, WMSP05,
WMSP06, and WMSP07, the number of precipitation gages within a 1-degree-by-1-degree
box containing the WRB Cougar dam study area with north, south, east, and west ex-
tents of 44.5◦ N, 43.5◦ N, −121.6◦ W, and −122.6◦ W, were 23, 7, 10, and 12, respectively.
For the TRB, the base network was the 610 gages located within a 3-degree buffer of the
project study area (Figure 4a). The total number of gages used to develop the TRB models
TMSP04, TMSP05, TMSP06, and TMSP07 were 610, 153, 305, and 458, respectively. For
models TMSP04, TMSP05, TMSP06, and TMSP07, the number of precipitation gages within
a 3.3 square degree box containing the TRB study area with north, south, east, and west
extents of 33.8◦ N, 32.3◦ N, −96.6◦ W, and −98.8◦ W, were 63, 12, 29, and 47, respectively.

The areal exceedance estimates listed in Table 10 were obtained from one million
independent copies for each spatial process, using their respective fitted values, for the
536 square kilometer Cougar Dam project study area using the sampling density shown
in Figure 5b. The areal exceedance estimates listed in Table 11 were obtained from one
million independent copies for each spatial process, using their respective fitted values,
for the 15,662 square kilometer TRB project study area using the sampling density shown
in Figure 6b.

Table 10. Areal exceedance estimates, in inches, obtained from one million independent copies for
each spatial process, using their respective fitted values, for the 536 square kilometer Cougar Dam
project study area using the sampling density shown in Figure 5b.

AEP

Gage Extent (Model) 10−1 10−2 10−3 10−4

WMSP01 9.74 13.44 17.22 21.23

WMSP05 9.64 13.73 18.26 23.35

WMSP06 9.55 13.35 17.40 22.01

WMSP07 9.70 13.47 17.36 21.06

Table 11. Areal exceedance estimates, in inches, obtained from one million independent copies for
each spatial process, using their respective fitted values, for the 15,662 square kilometer Trinity River
Basin project study area using the sampling density shown in Figure 6b.

AEP

Gage Extent (Model) 10−1 10−2 10−3 10−4

TMSP04 4.84 7.71 11.88 17.33

TMSP05 4.87 7.83 12.22 18.33

TMSP06 4.91 7.89 12.35 18.74

TMSP07 4.85 7.73 11.85 17.24

For the four models within each set, extremal dependence was modeled in a highly
similar manner as measured by the extremal coefficient function plots in Figure 12. Also,
for both sets of models, the agreement was good, as measured by the R2, NSE, and KGE
values reported in Tables 12 and 13, among the paired GEV location and scale parameter
and pointwise return level model grids for each respective study area. The results in
Tables 12 and 13 underscore the robustness of the novel approach that was employed for
trend surface development as part of the deployment process for each MSP model [37].
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The trend surface modeling methodology employed in this study addressed a previously
mentioned potential drawback for MSP applications; viz., that it can be difficult to find
accurate trend surfaces for the marginal parameters [11]. Across the four TRB models, there
were slight differences in the GEV shape parameter estimates, including their uncertainty
(Table 14). There were greater differences in the GEV shape parameter estimates among the
WRB models. For both the WRB and TRB models, the order of the areal exceedances listed
in Tables 10 and 11 for the 10−4 AEP for each study area aligned with the order of the fitted
GEV shape parameter values reported for these models in Table 14. Additional study is
needed to examine the impacts of gage density on the uncertainty quantification of MSP
modeled areal exceedances.
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project study area. The statistics were computed using the complete set of 21,794 grid cells that com-
pose the project area at the base 30 arc-second grid cell resolution. 
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Figure 12. Plots of the extremal coefficient function as a function of normalized distance for each of
the four models used to evaluate the impact of max-stable process areal exceedance calculations to
precipitation gage density plots in the (a) Willamette River Basin and (b) Trinity River Basin.

Table 12. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) [84], and Kling–Gupta
efficiency (KGE) [85] values summarizing the degree of agreement among the gridded GEV location
parameter, GEV scale parameter, and 10−3 AEP pointwise return level values computed from the
four WRB models (01 = WMSP01; 05 = WMSP05; 06 = WMSP06; 07 = WMSP07) for the Cougar dam
project study area. The statistics were computed using the complete set of 853 grid cells that compose
the project area at the base 30 arc-second grid cell resolution.

GEV Location GEV Scale Return Levels

01/05 01/06 01/07 05/07 06/07 01/05 01/06 01/07 05/07 06/07 01/05 01/06 01/07 05/07 06/07

R2 0.94 1.00 1.00 0.93 1.00 0.98 0.99 0.99 0.99 1.00 0.96 1.00 1.00 0.98 1.00

NSE 0.64 0.96 0.91 0.91 0.99 0.84 0.81 0.90 0.81 0.49 0.43 0.99 0.99 0.70 0.99

KGE 0.57 0.84 0.76 0.87 0.93 0.63 0.95 0.95 0.70 0.92 0.68 0.98 0.92 0.81 0.94

3.4. Impact of MSP Areal Exceedance Calculations on Model Fitting Method

General MSP fitting involves the simultaneous estimation of trend surface and depen-
dence model parameters. The optimization starting point for each general MSP fit was the
vector of values obtained from its respective simple MSP calibration and fitted spatial GEV
model. Four of the fourteen general MSP fits used constrained local optimization whereas
the remaining ten models used unconstrained local optimization (Tables 1 and 15). Notably,
the final GEV shape parameter estimate was always greater than its initial value across all
fourteen general MSP fits (Table 15).
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Table 13. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) [84], and Kling–Gupta
efficiency (KGE) [85] values summarizing the degree of agreement among the gridded GEV location
parameter, GEV scale parameter, and 10−3 AEP pointwise return level values computed from the
four TRB models (04 = TMSP04; 05 = TMSP05; 06 = TMSP06; 07 = TMSP07) for the TRB project study
area. The statistics were computed using the complete set of 21,794 grid cells that compose the project
area at the base 30 arc-second grid cell resolution.

GEV Location GEV Scale Return Levels

04/05 04/06 04/07 05/07 06/07 04/05 04/06 04/07 05/07 06/07 04/05 04/06 04/07 05/07 06/07

R2 0.91 0.98 1.00 0.94 0.99 0.91 0.95 0.97 0.90 0.98 0.96 0.96 0.98 0.96 0.99

NSE 0.85 0.95 0.99 0.85 0.97 0.72 0.61 0.86 0.88 0.86 0.77 0.37 0.97 0.82 0.21

KGE 0.82 0.91 0.96 0.83 0.94 0.90 0.75 0.87 0.80 0.83 0.97 0.76 0.90 0.88 0.82

Table 14. Fitted values, including an estimate of their uncertainty, for the GEV shape parameter for
the four Willamette River Basin models and the four Trinity River Basin models that were used to
explore the impact of max-stable process areal exceedance calculations on precipitation gage density.

GEV Shape Parameter

Model Name Fitted Value Standard Error

WMSP01 0.008987 0.004033

WMSP05 0.04064 0.006227

WMSP06 0.03001 0.004287

WMSP07 0.005042 0.004189

TMSP04 0.1306 0.003947

TMSP05 0.1315 0.004215

TMSP06 0.1349 0.004135

TMSP07 0.1273 0.003911

The only difference between the models WMSP01 and WMSP02 was the fitting method.
Each MSP used the same extreme precipitation dataset, trend surface parameterization,
dependence model, and set of initial values. WMSP01 used constrained local optimization
whereas WMSP02 used unconstrained local optimization. Their final GEV shape parameter
estimates differed by a multiplicative factor of approximately three. For WMSP01 and
WMSP02 the ratios of their final to initial GEV shape parameter estimates were 1.32
and 3.68, respectively. The plot of the extremal coefficient function versus normalized
distance, together with their initial estimate, is shown for each model in Figure 13. The
final dependence parameter estimates for WMSP02 underestimate extremal dependence
compared with its corresponding simple MSP fit. Interestingly, the calculated log-likelihood
for WMSP02 of −2,552,281 was greater than its calculated value of −2,553,786 for WMSP01.

These differences among the two MSPs, in the final GEV shape parameter and depen-
dence model parameter estimates, impact areal exceedance calculations for the Cougar dam
safety study area as shown in Figure 14. The two plots in Figure 14 were generated using
ten million simulations from each fitted process. The two areal exceedance curves begin to
diverge for AEP values approximately less than 10−2. For AEP values of interest to dam
and levee safety, their divergence has the potential to be notable. For example, the three-day
basin average probable maximum precipitation estimate for Cougar Dam is 29.9 inches.
From the fitted model for WMSP01, that equates to an AEP of 6.01 × 10−7 whereas for
WMSP02, the AEP estimate is 1.83 × 10−6. These results underscored the known difficulty
with fitting a general MSP model, particularly when a non-trivial marginal trend surface is
desired [13,34,40,86].
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Table 15. Model fitting method (C = constrained local optimization; U = unconstrained local opti-
mization), initial values, and final fitted GEV shape parameter values for all fourteen max-stable
models. The starting point for each general MSP optimization was the vector of values obtained from
its respective simple MSP calibration and fitted spatial GEV model.

Model Name Model Fitting Method
GEV Shape Parameter

Initial Estimate Final Estimate

WMSP01 C 0.006785831 0.008987

WMSP02 U 0.006785831 0.02496

WMSP03 U 0.02036444 0.03027

WMSP04 U −0.00153159 0.01533

WMSP05 C 0.03778892 0.04064

WMSP06 C 0.02769452 0.03001

WMSP07 C 0.00277155 0.005042

TMSP01 U 0.1138974 0.1441

TMSP02 U 0.1246995 0.146

TMSP03 U 0.1091662 0.1233

TMSP04 U 0.117473 0.1306

TMSP05 U 0.1192562 0.1315

TMSP06 U 0.1201912 0.1349

TMSP07 U 0.1155369 0.1273
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Figure 13. The plot of the fitted extremal coefficient function versus normalized distance for the
max-stable models WMSP01 and WMSP02, together with their initial estimate, the simple MSP fit.
The only difference between the models WMSP01 and WMSP02 was the fitting method.

Fourteen additional general MSP fits for WMSP01 were performed using constrained
local optimization. For each fit, the specified box constraints were progressively relaxed.
Figure 15 summarizes results from the fifteen fits for WMSP01 that were each obtained
using constrained local optimization. For each model fit, it plots its deviation from the
preferred model, its initial value, versus its negative log-likelihood. The curve defined by
the fifteen points in Figure 15 clearly demonstrated the trade-off between model and data
fit when using composite likelihoods [29]. The trade-off curve can be used for general MSP
model selection.
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Figure 14. Areal exceedance calculations for the Cougar Dam safety study area, were generated using
10,000,000 simulations using the fitted values from the process (WMSP01 and WMSP02). The only
difference between the models WMSP01 and WMSP02 was the fitting method. The three-day basin
average probable maximum precipitation estimate for Cougar Dam is 29.9 inches. From the fitted
model for WMSP01, that equates to an AEP of 6.01 × 10–7 whereas for WMSP02, the AEP estimate
is 1.83 × 10−6.
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Figure 15. Results from fifteen fits for WMSP01 using constrained local optimization wherein the
specified box constraints were progressively relaxed for each model fit. The only difference between
each fit were the specified box constraints. The horizontal axis was defined to be the Euclidean
distance between fitted and preferred model parameters where the preferred model was its specified
initial value, i.e., the vector of values obtained from the model’s respective simple MSP calibration
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and fitted spatial GEV model. The vertical axis was defined as the negative log-likelihood value
associated with each model fit. The trade-off curve defined by the plotted results obtained from the
model fits can be used for general MSP model selection.

While efficiency is important [19], further evaluation of alternative fitting methods is
needed; for example, a regularized inversion approach permits an analysis of the tradeoff
between model and data fit [87]. Evaluating the impacts of the fitting method on areal
exceedance uncertainty is also needed.

4. Conclusions

The application of an MSP model enables the estimation of areal-based exceedances
within an EVT framework. It is inherently a spatial model, does not require a decomposi-
tion of a study area into homogeneous regions or the introduction of uncertain empirical
areal reduction factors for computing areal exceedances, and it has a strong and coherent
mathematical basis for model fitting, selection, extrapolation, and uncertainty quantification.

As MSP models become more broadly used for areal precipitation-frequency analysis,
guidance and lessons learned regarding their practical application are needed. This study
explored the impacts of max-stable process areal exceedance calculations to study area
sampling density, surface network precipitation gage extent, model fitting method, and
gage density, for which the first three are user specified for any given model deployment.
Two distinct extreme storm types from two separate geographical locations were used for
model development and application.

The explorations directed at study area sampling density showed that MSPs can
be efficiently and dynamically deployed to support dam and levee safety applications,
including uncertainty quantification.

The potential impacts of the selected model fitting method on areal exceedance calcula-
tions, particularly those relevant to the dam and levee safety, were shown to be non-trivial.
However, a curve that defines the trade-off between data and preferred model fit can guide
the selection of the general MSP to be used for model application.

Several opportunities were identified for future related applied research, including,
among others, further study of methods to reduce study area sampling density for efficient
MSP application, the evaluation of additional covariates to improve GEV scale parameter
estimation for modeling MLCs in Texas, evaluations that also include uncertainty quan-
tification of the areal exceedance calculations and the application of general MSP fitting
methods that penalize deviations from a preferred parameter state.
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