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Abstract: Neuro-fuzzy systems (NFS), as part of artificial intelligence (AI) techniques, have become
popular in modeling and forecasting applications in many fields in the past few decades. NFS are
powerful tools for mapping complex associations between inputs and outputs by learning from
available data. Therefore, such techniques have been found helpful for hydrological modeling
and forecasting, including rainfall–runoff modeling, flood forecasting, rainfall prediction, water
quality modeling, etc. Their performance has been compared with physically based models and
data-driven techniques (e.g., regression-based methods, artificial neural networks, etc.), where NFS
have been reported to be comparable, if not superior, to other models. Despite successful applications
and increasing popularity, the development of NFS models is still challenging due to a number of
limitations. This study reviews different types of NFS algorithms and discusses the typical challenges
in developing NFS-based hydrological models. The challenges in developing NFS models are
categorized under six topics: data pre-processing, input selection, training data selection, adaptability,
interpretability, and model parameter optimization. At last, future directions for enhancing NFS
models are discussed. This review–prospective article gives a helpful overview of the suitability of
NFS techniques for various applications in hydrological modeling and forecasting while identifying
research gaps for future studies in this area.
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1. Introduction

Modeling hydrological processes has been challenging due to their high non-linearity,
complexity, and being varied spatially and temporally [1]. The challenges are aggravated
when dealing with sparse, missing, or poor-quality data. To date, many methods have
been introduced and applied in hydrological modeling, mainly categorized into physically
based and system-theoretic models. Physically based models have been widely used to
simulate hydrological phenomena by approximating actual physical processes [2]. Despite
their great capabilities, physically based models suffer from several factors, such as extreme
computational effort, the need for many influencing factors, the imposed inaccuracies
due to approximating several hydrological parameters, and the required prior knowledge.
Therefore, developing a physically based model has always been challenging and time-
consuming [3].

On the other hand, the system-theoretic (or data-driven) models have significant
advantages over the physically based model in some cases. For example, unlike physically
based models, data-driven models can directly map the associations between inputs and
output without considering the physical process. As such, it is known to be more computa-
tionally efficient, less data-intensive, and less complex [4]. Linear or non-linear regression
techniques such as autoregressive moving average (ARMA) and multiple linear regression
(MLR) models are examples of such data-driven techniques. However, these techniques
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fall short when the model is challenged with extrapolation tasks since their prediction
capacity is limited to what is learned from the calibration data [5]. Therefore, using a longer
historical dataset for model calibration may make its predictability for unseen scenarios at
the testing phase more reliable [6].

The need to improve the conventional data-driven models drove the motivation to
introduce artificial intelligence (AI) and machine learning techniques into hydrological
modeling. Despite sharing similar concepts of conventional data-driven models, AI-based
techniques comprise considerably more advanced computational algorithms that do not
require any prior specification of input–output associations [7]. AI techniques are known to
excel in pattern recognition and handle many non-linear and non-stationary data adaptively,
even if the data contain noises [5]. Using historical data as the input, AI-based models
can capture the information precisely without compromising prediction accuracy, yet at
a lower computation cost, complexity, and time. The artificial neural network (ANN) is
one of the well-known AI-based algorithms used in engineering applications, including
hydrological modeling. An ANN comprises a network of human brain-inspired processing
nodes known as neurons. These neurons appear in different layers and are interconnected
using links with associated weights. This network can identify relationships between
inputs and outputs through an iterative learning process from the training dataset. So
far, several learning algorithms have been proposed for training an ANN. Despite their
successful usage in different modeling applications, ANNs suffer from several issues, such
as a lack of transparency, making them black-box models [8]. This shortcoming became a
motivation to enhance an ANN’s transparency by integrating fuzzy logic into its learning
process, producing a new family of AI-based techniques known as neuro-fuzzy systems
(NFS), which can be called grey-box models [4].

NFS combine the connectionist structure of an ANN and the reasoning skills of fuzzy
logic to map complex associations between inputs and outputs. The fuzzy inference system
(FIS) embedded in NFS allows them to describe the relationships between inputs and
outputs in a series of fuzzy IF–THEN rules. Fuzzy logic is the backbone of fuzzy rules in
NFS and offers approximate reasoning using fuzzy values. While retaining the strength of a
typical ANN, NFS offer a more transparent structure that allows the physical interpretation
of the problem to some extent. There are two classes of FISs, which are called linguistic and
precise. In a linguistic FIS, the antecedent and consequent rules are defined using fuzzy sets.
The Mamdani FIS [9] is the most well-known linguistic FIS that is widely used in several
applications. The Mamdani-FIS tends to be computationally intensive, but it is effective
in classification problems. On the other hand, in a precise FIS, only the antecedent rules
are defined using fuzzy sets, while the rules in the consequent comprise weighted linear
functions of crisp input data. The Takagi–Sugeno FIS [10] is the most widely-used precise
FIS since it is computationally less complex and is particularly favorable when numerical
outputs are desired.

NFS techniques gained popularity among researchers in the early 2000s and have
been used for many hydrological modeling and forecasting applications since then. The
early applications of NFS in hydrological modeling were by Gautam and Holz [11] and
Gautam, Holz [12], focusing on rainfall–runoff modeling and water level forecasting,
respectively. Since then, NFS algorithms have been widely used in different applica-
tions in hydrology, including rainfall–runoff modeling [13–15], rainfall forecasting [16–18],
streamflow forecasting [19–22], groundwater level modeling [23–25], evaporation and
evapotranspiration modeling [26–29], water quality modeling [30–33], sediment transport
modeling [34–36], etc.

Despite the successful usage of NFS in a wide range of applications in hydrology,
several challenges and shortcomings are reported in the literature that need a critical
review. For example, input selection is an essential stage in NFS model development where
the model performance can be significantly jeopardized by selecting the wrong choices.
Similarly, choosing the right dataset for training the model impacts the model’s performance
during validation. Moreover, the model’s adaptability to climate change or urbanization
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depends on its learning algorithm. In addition, the transparency of the model depends on
the adopted FIS in its structure. As can be seen, depending on the hydrological problem,
the requirements for model development could be different. Therefore, it is necessary to
properly understand each hydrological problem’s needs to choose the right NFS algorithm
and data. The presented work aims to address this research gap through three stages.
Firstly, this perspective study reviews the NFS structure and learning system fundamentals.
In the next phase, this article discusses the challenges in developing hydrological models
using NFS and reviews the published efforts in addressing them. In the end, potential
future studies or research directions to further enhance the NFS-based hydrological models
are presented.

2. Neuro-Fuzzy Systems
2.1. Fuzzy Inference System

A fuzzy inference system (FIS) consists of (1) a fuzzification layer that transforms
crisp input values into fuzzy ones, (2) an inference layer that utilizes a set of fuzzy rules
to perform inference operations, (3) a rule-based containing set of fuzzy rules which is
determined by a membership function, and (4) a defuzzification layer that transforms fuzzy
values to crisp ones as the output of the system, as shown in Figure 1.
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Figure 1. Schematic demonstration of a FIS.

The fuzzy membership function determines the fuzzy logic in the fuzzy rule base.
Fuzzy logic is multivalued and deals with degrees of membership and truth. Its value
typically ranges from 0 (zero membership/false) to 1 (full membership/true). There are
two typical membership functions: smooth curve and linear piecewise function, as shown
in Figure 2. The well-known membership functions are triangular, trapezoidal, Gaussian,
and sigmoidal [37].
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The general structure of fuzzy IF–THEN rules is defined as:

IF X is xm, THEN Y is ym (1)
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The IF and THEN statements are known as “antecedent” and “consequent”, respec-
tively. In this rule, X and Y are the input and output variables, respectively, while xm and
ym are specific values of those variables. The rule antecedent is determined by a predefined
membership function used to partition the input space. However, the rule structure differs
based on the type of FIS used in the model (e.g., Mamdani or Takagi–Sugeno).

In Mamdani FIS, both rule antecedents and consequents are determined by fuzzy sets
as shown in Equations (2) and (3):

Rule 1: If x is A1 and y is B1, then Z1 is C1 (2)

Rule 2: If x is A2 and y is B2, then Z2 is C2 (3)

where A and B are membership values for input variables x and y, respectively; and C is
the membership value of output variable Z.

On the other hand, in the Takagi–Sugeno FIS, the rule antecedent is defined by fuzzy
sets, while the consequent is typically a linear function, as shown in Equations (4) and (5):

Rule 1: If x is A1 and y is B1, then Z1 = p1x + p2y + p3 (4)

Rule 1: If x is A2 and y is B2, then Z2 = q1x + q2y + q3 (5)

where p1, p2, p3 and q1, q2, q3 are the parameters of output functions Z1 and Z2, respectively.

2.2. Types of Neuro-Fuzzy Systems

The NFS algorithms can be categorized into three major types based on their function-
ality and structure, as follows:

2.2.1. Cooperative Neuro-Fuzzy Systems

In cooperative NFS, ANNs and FISs operate independently at different phases. The
ANN is tasked with identifying the parameters and initializing the FIS, which can be
performed online or offline. Subsequently, the ANN task is completed, and the FIS will carry
out its operation to determine the output. This type of NFS suffers from interpretability
issues, and the complete integration of the ANN and FIS is not achieved at its full potential.
Figure 3 shows four types of cooperative NFS algorithms [38]. Type 1 cooperative NFS
use the ANN to define fuzzy rules from the training dataset with fuzzy systems receiving
predefined fuzzy sets. A type 2 cooperative NFS has its fuzzy rules determined through
membership functions using a set of training data prior to the initialization of the fuzzy
system, which is then combined with a predefined set of fuzzy rules. Both type 1 and
type 2 implement an offline learning approach. In type 3 cooperative NFS, the ANN
implements the online learning of membership function parameters to update the fuzzy
system. However, the initial fuzzy rules and membership functions must be specified.
Finally, in type 4 cooperative NFS, the ANN determines the weight for each fuzzy rule
which can be performed online or offline, directly influencing the importance of each fuzzy
rule in the fuzzy system.

2.2.2. Concurrent Neuro-Fuzzy Systems

Concurrent neuro-fuzzy systems work by having the ANN pre-process the input or
post-process the output of fuzzy systems [38]. The main drawback of this type of NFS is
that the results are not entirely interpretable, and the ANN does not introduce changes to
the structure of fuzzy systems.
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2.2.3. Hybrid Neuro-Fuzzy Systems

In hybrid neuro-fuzzy systems, the integration of the ANN and FIS is achieved
appropriately. Both AI tools operate efficiently as one entity. The ANN provides the
learning algorithm and trains the model using historical data. Furthermore, the ANN
optimizes the parameters of the fuzzy system. The human-inspired approximate reasoning
of the FIS is then adopted to employ fuzzy rules in predicting the results [38]. The training
of such models can be carried out either online or offline, which is thoroughly discussed
in Section 3.4. Depending on the FIS type used in their algorithm, hybrid NFS can be a
linguistic (or Mamdani) or precise (or Takagi–Sugeno) type. A linguistic hybrid NFS, which
uses Mamdani FIS, generates the linguistic output from a set of linguistic input variables.
It is particularly favorable when a linguistic output is desired; therefore, providing a clear
interpretation of the physical process (e.g., a hydrological process) is achievable. Some
examples of well-known linguistic hybrid NFS are the fuzzy adaptive learning control
network (FALCON) [39] and the neuro-fuzzy control (NEFCON) [40]. In contrast, precise
hybrid NFS generate a crisp output using fuzzy inputs. The main difference between
various precise hybrid NFS is their learning process which can be local or global. The most
widely used precise hybrid NFS in hydrological modeling is the adaptive network-based
fuzzy inference system (ANFIS) [37].

An ANFIS employs a Takagi–Sugeno FIS, and its structure comprises five layers, as
illustrated in Figure 4. The nodes in Layer 1 generate the fuzzy membership values for
each input variable using a defined membership function. The nodes in Layer 2 (shown by
∏) multiply the incoming signals from Layer 1 and calculate the firing strength for each
rule. The nodes in Layer 3 (shown by N) normalize the firing strength received from Layer
2. In Layer 4, each node (shown by O) is responsible for calculating the contribution of one
of the model rules using the first-order linear Takagi–Sugeno output function. Lastly, the
single node in Layer 5 (shown by Σ) calculates the weighted global output (shown by Z).
Further details of each layer operation can be found in Talei, Chua [41].
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An ANFIS uses the back-propagation (BP) algorithm to modify the initially chosen
membership functions, while the least mean square (LMS) algorithm is used to determine
the coefficients of the linear output functions. An ANFIS has global learning, meaning that
the parameters of the fuzzy system are optimized offline during the training process and
stay fixed during testing. NFS models with global learning are incapable of being used in
real-time applications and are more sensitive to noise (Hong and White, 2009).

3. Challenges in Developing NFS-Based Hydrological Models
3.1. Data Pre-Processing

Data pre-processing is one of the most important steps in developing a hydrological
model before utilizing the data. Hydrological data often contain noises and drastic fluctua-
tions. Several pre-processing approaches have been practiced to deal with such issues. For
example, to assess the data’s homogeneity, a double mass analysis can be conducted, while
the Mackus test [42] can be used to evaluate the data sufficiency [43]. Data standardization
is one of the standard data transformation methods used to modify the data distribution
by scaling the data into a specific range. Past studies suggested that standardization is
necessary for data-driven techniques and improves performance [44]. Furthermore, it
helps to remove periodicity present in data [45]. For ANNs, however, values close to 0
and 1 need to be avoided during standardization due to the sensitivity of the neurons’
activation functions to such values [8]. Although standardization improves an NFS model’s
performance, sensitivity to values close to 0 and 1 is reported. Data standardization for
developing NFS-based hydrological models is well-practiced [43,45–48]. One of the com-
mon standardization methods is a linear transformation [49]. Aqil, Kita [50] applied a
log transformation to the data to achieve faster convergence. The model achieved better
performance, but it was reported that the effect of such a transformation diminished as the
network sizes increased.

In recent years, many studies have integrated NFS with a wavelet transformation as a
data pre-processing technique to achieve better performance. Wavelet transformation is a
signal processing technique that decomposes original time series into different frequency
levels for further analysis. This method captures information at different resolution lev-
els [51], assessing the temporal variation of the time series [52] and denoising them [53–55].
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Shabri [56] used different types of the wavelet transform, including continuous wavelet
transform (CWT) and discrete wavelet transform (DWT), where the latter is more suitable
for forecasting applications due to its lesser computation time. DWTs commonly operate
at two sets of function, high pass and low pass, which decompose the time series to one
comprising its trend (approximation) and another comprising high frequency (details) [57].
There are several types of mother wavelets which implement the wavelet transforms such as
Daubachies (Db), Haar (Ha), Symmlet (Symm), Coiflet, Mexican Hat, and Morlet wavelets.

Shabri [56] developed a wavelet-couple ANFIS model (WANFIS) to estimate monthly
SPI as a drought indicator, which showed more accurate results than the ARIMA and
conventional ANFIS model. Sehgal, Sahay [58] investigated the effect of using all wavelet
components (denoted as WANFIS-SD) and ignoring noise wavelet components by only
utilizing the effective components (denoted as WANFIS-MS), where the former showed
better performance at high flood level forecasting. In a daily water level forecasting ap-
plication, Seo, Kim [59] used the WANFIS with a Symmlet mother wavelet of order 10
(WANFIS-symm10) and yielded the best performance among other models. Barzegar,
Adamowski [52] assessed different types of mother wavelets (Db, Symm, Ha) coupled with
an ANN and ANFIS at three levels in which the WANFIS with a Db4 mother wavelet de-
composition showed the best performance in water salinity modeling. Nourani, Alami [60]
integrated a self-organizing map (SOM) as a spatial pre-processor and DWT as a temporal
data pre-processor alongside wavelet transform coherence (WTC) for input selection to
infill and model groundwater level data. Moreover, a DWT can also be used to denoise the
time series where, coupled with generated jittered data, it shows significant improvement
in performance due to the robust identification of hidden trends in the data (Nourani and
Partoviyan [61]). Abda and Chettih [62] highlighted the superiority of wavelet transform
coupled with an ANFIS and ANN compared to the Hilbert–Huang transform in daily flow
rate forecasting.

3.2. Input Selection

The type and number of inputs used in NFS models ultimately contribute to establish-
ing the model structure. The number of fuzzy rules in the rule base increases exponentially
with the increasing number of inputs, which may unnecessarily increase the model’s com-
plexity [4]. Challenges related to data availability may also encourage the usage of fewer
input variables. Therefore, employing appropriate methods in input selection undoubtedly
becomes important when developing NFS-based hydrological models. It is worth noting
that introducing new inputs without a proper understanding of hydrological processes
may adversely affect model performance. Therefore, before applying any input selection
technique, it is necessary to have a list of hydrologically sound input candidates that could
be informative in predicting the desired output. For instance, Chang and Chang [63] intro-
duced the human-controlled reservoir outflow as an input for predicting reservoir water
levels. Esmaeelzadeh, Adib [64] used snow-covered areas extracted from satellite images as
inputs for developing a long-term seasonal streamflow forecasting model alongside other
standard input variables. Adnan, Liang [19] considered the calendar month number as
the input to factor in the periodicity in streamflow forecasting. Ali, Deo [65] and Lohani,
Kumar [66] adopted a similar approach for drought forecasting and monthly reservoir
inflow prediction, respectively.

NFS have been commonly used to develop multiple input single output (MISO)
models, where several combinations of inputs can be formed. Perhaps the most basic
approach for input selection is through sensitivity analysis, which systematically checks the
importance of input candidates in a model. The trial-and-error-based approach has been
used in several NFS-based hydrological modeling applications, such as evapotranspiration
modeling [67] and groundwater forecasting [45]. While it is common to use the trial-and-
error method by testing out different combinations of inputs, employing proper techniques
may save time and effort by narrowing down the candidate list to the most influential
and informative inputs in predicting the desired output. For example, the Gamma test is
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a non-parametric input selection technique that finds a set of suitable input candidates
by minimizing the mean squared error (MSE) [68]. This method can suggest the degree
of model complexity using the selected inputs. The Gamma test has been used for input
selection in several NFS-based hydrological modeling applications, including evaporation
estimation [69,70], modeling suspended sediment concentration [71], and daily river flow
simulation [72].

The other well-known input selection approach is the principal component analysis
(PCA) which identifies the linear correlation between input variables aiming to reduce data
dimensionality. It assists input selection by avoiding redundancy and generating a new
set of variables known as principal components from the original dataset. PCA has shown
successful application with NFS in reducing the number of inputs. For example, in a water
quality modeling application to simulate chemical oxygen demand (COD) and suspended
solids, Wan, Huang [73] used PCA to reduce the number of potential inputs from six to four.
Civelekoglu, Perendeci [74] employed PCA to reduce the input variables in an ANFIS model
from eight to four and eleven to nine for modeling the COD and total nitrogen, respectively.
In a separate study, Civelekoglu, Yigit [75] narrowed down the potential input candidates
into three principal components in modeling the COD. Parsaie and Haghiabi [76] used
PCA to identify the Froude number and ratio of weir height to upstream flow depth as
the most influential parameters for estimating the discharge coefficient using an ANFIS
model. Bartoletti, Casagli [13] confirmed the superiority of PCA over the Thiessen polygon
method with GIS when coupled with an ANFIS in rainfall–runoff modeling; the authors
concluded that using PCA could offer less algorithmic complexity and improved accuracy
in the model.

One of the widely-used input selection techniques is correlation analysis. In this
approach, a high correlation between an input candidate and the desired output will be
the selection criterion. The correlation analysis can be conducted using three different
functions named the autocorrelation function (ACF), the partial autocorrelation function
(PACF), and the cross-correlation function (CCF). The ACF can identify the most correlated
output antecedent with the output. For example, the discharge antecedent Q(t − 1) may
be selected by the ACF as one of the informative inputs in predicting discharge at the
present time, Q(t). On the other hand, one or a few rainfall antecedents could be selected
as inputs by the CCF to predict runoff. The correlation analysis has been used in different
NFS-based hydrological modeling applications, including rainfall–runoff modeling [77,78],
groundwater modeling [79], water level forecasting [80], flood forecasting [81,82], evap-
otranspiration modeling [83], and El Niño Southern Oscillation (ENSO) forecasting [84].
In all reviewed studies that used correlation analysis, the inputs with a cross-correlation
coefficient (CC) above 0.5 are considered potentially strong candidates, with a CC between
0.6 to 0.8 for the selected influential ones. On the other hand, the autocorrelation coefficients
are generally high for the first one or two output antecedents, and they drop drastically
by increasing the lead time. Therefore, it is common to use the first output antecedent as
one of the strong input candidates in NFS-based hydrological models. In a novel approach,
correlation analysis can be integrated into mutual information analysis to avoid selecting
those highly correlated inputs that share mutual information with the output [85,86]. This
minimizes redundant information being fed to the model.

In summary, any of the techniques mentioned earlier can be used for input selection
in NFS-based hydrological models. However, a sensitivity analysis may still be needed to
choose the most informative but trimmed input combination to avoid unnecessary model
complexity. In most NFS algorithms, the users need to predefine the number of membership
functions (fuzzy labels), which along with the number of inputs, govern the number of
generated fuzzy rules. For example, in an ANFIS model with n inputs and m membership
functions, mn rules are expected to be generated. As can be seen, the number of inputs
can increase the number of rules exponentially. Therefore, it is good to avoid adding those
inputs that do not improve the model performance significantly, as they may slow down
the model.
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3.3. Training Data Selection

In most of the hydrological models, using a continuous time series is expected. How-
ever, event-based modeling is also used in some applications, such as rainfall–runoff
modeling. One of the main challenges in both approaches is choosing suitable training and
validation datasets to calibrate the model before being tested by an unseen dataset [82].

3.3.1. Continuous Time Series Modeling

In continuous time series modeling, more than 60% of the available data is typically
suggested for training, while the remaining data is left for testing purposes. The training
dataset contributes to the model calibration and makes it ready to be tested for an unseen
dataset (i.e., the testing dataset). This ensures that the dataset used to train the model
covers all the characteristics of the hydrological problem to obtain a reliable and effective
prediction [87]. Perhaps the most common approach for selecting the training–testing
datasets is to split the data in chronological order. To avoid any biasness, it is recommended
to split the data so that the statistical characteristics of the two datasets (i.e., average,
standard deviation, etc.) remain relatively close. Moreover, the training dataset needs to
contain sufficient extreme (critical) events to help the model perform well in the testing
dataset [88]. Randomizing the dataset for the training and testing datasets is another
common approach; however, it may introduce risk whereby training data do not cover
the characteristic of the problem. As such, a k-fold cross-validation method that allows
different segments of the datasets being used for training and testing is recommended.
Cross-validation helps to identify training problems, such as overfitting and biased learning,
while revealing how the model can generalize its learning to an unseen dataset. In this
approach, the dataset is divided into k equally sized folds (subsets), while the training
and testing folds can be selected in two ways. The first approach, known as leave-p-fold
cross-validation, selects p out of k folds for testing while keeping the remaining folds
for training. In this way, the training and testing process will be repeated Ck

p times. The
second approach, known as leave-one-out cross-validation, allows each fold to become the
testing dataset on a rotation basis while the remaining folds are used for training. Figure 5
illustrates an example of leave-one-out cross-validation where the dataset is split into
5 folds. At the end of a k-fold cross-validation process, the model performance over all
the rounds will be averaged to showcase the overall model predictive capability. In most
past studies, the k value has varied between 4 and 7 [19,64,87,89,90], while some with more
extended historical datasets have used up to 10 folds to avoid partially valid results [91,92].
While this method has been used extensively to consider all possible training and testing
subsets from historical data, it unnecessarily increases the computational time and effort.

3.3.2. Event-Based Modeling

An alternative approach in training a hydrological model is the event-based method.
This method extracts specific events representing extreme scenarios or the data’s seasonality
from the historical time series to train the model better. This approach ends up with a much
smaller training dataset to be examined by the model while being able to produce reliable
estimations; however, the training event selection is subjected to the research objectives of
the hydrological problem. Chang and Chang [63] used 8640 hourly rainfall–runoff data
points from 132 typhoon events that occurred over 31 years in the Shihmen Reservoir,
Taiwan, to develop an ANFIS model for water level prediction. In an event-based rainfall–
runoff modeling approach, Talei, Chua [93] extracted 66 events from approximately two
years of rainfall and runoff time series (5 min resolution) for a rainfall–runoff modeling
application using an ANFIS. Sun, Tang [82] collected 1840 daily data from flood seasons
(June to September) that occurred between 2006 and 2010 for a flood forecasting application.
Zhang, Lu [94] demonstrated the advantages of using heavy rainfall events compared to
all available data for hourly water level forecasting. Chang, Talei [85] utilized the data
from 24 rainfall–runoff events at 10 min intervals in a small catchment in Malaysia, where
18 events were used to train the model while the remaining were left for testing. Similarly,
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Nguyen, Chua [80] extracted data during the wet seasons (June to November) between
1995 and 2000 in the Mekong River, Vietnam, for a water level forecasting application
during extreme flood events.
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3.4. Adaptability of NFS-Based Hydrological Models

NFS models’ ability to adapt to changes in the targeted hydrological process is a
demanding feature for a reliable model. Hydrological processes could change over time
due to factors such as urbanization and climate change. The learned information in an
NFS-based hydrological model during the training process could quickly become obsolete
if the model is not designed for adaptation. One standard solution for keeping a model up-
to-date is periodic re-training, which may not be cost-effective. Therefore, NFS algorithms
that can allow embedded adaptability will be in favor.

The learning mechanism in many NFS algorithms, including an ANFIS, is global
or batch learning in which the model’s parameters are optimized offline; this means the
model goes through the training dataset as one data batch to optimize its parameters. Once
completed, the model parameters remain fixed for the testing stage. In contrast, local
learning employs an evolving approach where the learning process progresses gradually
using a flow of incoming data (training data). Global learning is relatively slower than local
learning and is found to be more sensitive to noise [95]. As can be inferred, the primary
requirement of an adaptive algorithm is to be an online model, where the learning process
can be continuous while receiving a flow of the latest information. Such a mechanism is only
possible through local learning. Therefore, in the past two decades, efforts have been made
to implement local learning in NFS algorithms and move towards online models [96–100].

The first NFS algorithm with local learning used in hydrological modeling was the dy-
namic evolving neural-fuzzy inference system (DENFIS), which was originally introduced
by Kasabov and Song [97]. A DENFIS employs the evolving clustering method (ECM),
which is a fast, one-pass clustering algorithm that creates partitions of the input space in an
incremental approach using a flow of incoming data. Figure 6 illustrates the flowchart of the
ECM algorithm. One of the early applications of a DENFIS in hydrological modeling was a
study by Hong and White [95] for flow forecasting in Waikoropupu Springs, New Zealand.
The authors compared the results of a DENFIS with the ones obtained by an ANFIS and the
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back-propagation neural network, where the superiority of the DENFIS over the other two
models was reported. Talei, Chua [101] employed a DENFIS for rainfall–runoff modeling
in small catchments in Singapore and a large one in Sweden. The authors compared the
DENFIS with an ANFIS and a few physically based models and showed DENFIS capabili-
ties, especially in peak estimation. Heddam [102] found a DENFIS to be a promising tool
for modeling dissolved oxygen in a river located in the USA. In another study, Heddam
and Dechemi [103] employed a DENFIS to model the coagulant dosage in Algeria’s water
treatment plant. The authors found the DENFIS to be a robust modeling tool in their study
and found the local learning mechanism of the model helpful in performance accuracy.
Chang, Talei [104] developed an event-based rainfall–runoff model in the Sungai Kayu
Ara catchment, Malaysia, using a DENFIS and compared it with a hydrologic engineering
center–hydrologic modeling system (HEC-HMS). The authors showed that the DENFIS
outperformed the HEC-HMS in overall hydrograph simulation and peak estimation. Eray,
Mert [105] compared a DENFIS with multi-gene genetic programming (MGGP) and ge-
netic programming (GP) techniques in modeling pan evaporation in Antakya and Antalya
stations located in Turkey. The authors found the DENFIS to be superior to other models
in Antalya, while GP became the best model in Antakya. Esmaeilbeiki, Nikpour [106]
compared DENFIS with multiple machine learning techniques for groundwater quality
modeling. The authors found the DENFIS and gene expression programming (GEP) to
be the most successful techniques when compared to others. Recently, Ye, Zahra [107]
employed two metaheuristic optimization algorithms, the whale optimization algorithm
(WOA) and bat algorithm (BA), to optimize the DENFIS model’s parameters for predicting
evapotranspiration in the coastal region of southwest Bangladesh. The results showed that
the DENFIS-WOA model outperforms other models used in this study.

Despite the successful application of a DENFIS in various hydrological modeling
problems, some issues are also attached to this model. For example, the incremental
learning mechanism in a DENFIS can make it sensitive to the incoming data sequence.
Chang, Talei [108] studied the impact of a training data sequence on DENFIS model
performance during the testing stage for a rainfall–runoff application. This study showed
that the data sequence impacts the number of rules the model generates during the training
stage. Moreover, it was also concluded that training the model with a sequence of low and
high (or high and low) flows followed by medium flows might result in a better performance
during the testing stage. The authors highlighted that a sequence of contrasting flows (i.e.,
low versus high) could generate more distinct rules in the system, eventually contributing
to a better prediction at the testing stage. The incremental learning mechanism of a DENFIS
also makes its rule base ever-expanding, as any new data tuple may result in a new cluster
in the input space, which will be translated as new rules in the system [101]. As a result,
the model rule base may become so large in the long run that it causes unnecessary model
complexity. In addition, this incremental approach may accumulate inconsistent rules in
the system as some newly generated rules may be inconsistent with the older ones. In the
NFS context, inconsistent rules are the ones that have different rule consequents for similar
rule antecedents. Therefore, a need for a rule-pruning mechanism arises to control the rule
base size and maintain consistency in the rule base while keeping it up-to-date.

To address the incremental learning issues in NFS models such as a DENFIS, Chang,
Talei [109] adopted the self-adaptive fuzzy inference network (SaFIN) for rainfall–runoff
modeling applications in three distinct catchments located in China, Sweden, and Australia.
The learning mechanism in a SaFIN is a self-organizing neural fuzzy system capable of
local learning [100]. The clustering technique in a SaFIN is categorical learning-induced
partitioning (CLIP), which updates the model for incoming data. A SaFIN has a self-
automated rule generation system that runs through the partitioned data by CLIP at two
stages. The first stage is the rule generation using the created clusters by CLIP. Then, in the
second stage, a rule-pruning mechanism gets activated to check the rules for consistency.
Once an inconsistency is identified, the rule-pruning algorithm removes the more obsolete
rule. To date, a SaFIN has been compared with a DENFIS for rainfall–runoff modeling
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in five catchments with different sizes and types. Table 1 summarizes the performance
of a SaFIN and DENFIS in these catchments in terms of the Nash–Sutcliffe coefficient of
efficiency (CE), R2, RMSE, and MAE. As can be seen, the SaFIN consistently outperformed
the DENFIS in all catchments in terms of different performance criteria.
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Table 1. SaFIN and DENFIS performances for rainfall–runoff modeling in catchments with different
sizes and types.

Catchment
(Country) Type Area (km2) Model CE R2 MAE (m3/s) Reference

Sungai Kayu
Ara (Malaysia) Urbanized 23.22

SaFIN 0.851 0.868 3.021 Chang, Talei
[110]

DENFIS 0.796 0.845 3.252 Chang, Talei
[104]

Dandenong
(Australia) Semi-urbanized 272

SaFIN 0.893 0.900 0.468 Chang, Talei
[110]

DENFIS 0.812 0.843 0.881
Unpublished-
presented by
the authors

Clarence
(Australia)

Rural with minor
development 22,400

SaFIN 0.821 0.838 81.608 Chang, Talei
[109]

DENFIS 0.670 0.670 106.191 Chang, Talei
[109]

Heshui (China)
Rural with minor

development 2275
SaFIN 0.839 0.849 6.222 Chang, Talei

[109]

DENFIS 0.821 0.823 7.400 Chang, Talei
[109]

Klippan_2
(Sweden) Rural 241.33

SaFIN 0.918 0.919 0.536 Chang, Talei
[109]

DENFIS 0.899 0.903 0.601 Chang, Talei
[109]

Despite using local learning, the discussed studies on the DENFIS and SaFIN are still
considered offline as their learning stops at the end of training stage; this means the rule base
does not change anymore when the training is concluded. However, as mentioned earlier in
this section, local learning is suitable for online hydrological models for real-time modeling
and forecasting. For example, Talei, Chua [101] developed a real-time DENFIS model
(RT-DENFIS) and examined its performance for rainfall–runoff modeling in a catchment
with 43 years of daily data. The model performance was compared with an ANFIS model.
The authors concluded that the ANFIS needs a yearly re-calibration to compete with the
RT-DENFIS. Yu, Tan [111] used an online DENFIS to develop an ensemble modeling tool
for real-time water level forecasting. Ashrafi, Chua [112] adopted the generic self-evolving
Takagi–Sugeno–Kang (GSETSK) algorithm for runoff forecasting in two catchments in
Vietnam and Sweden. They compared the results with the ones obtained by a DENFIS
and concluded that the online GSETSK outperforms the online DENFIS. The rule-pruning
mechanism in GSETSK resulted in a more compact rule base compared to the DENFIS.
Similar findings were reported in another study by Ashrafi, Chua [113] where GSETSK was
used for rainfall–runoff modeling and river routing applications. The reviewed studies
in this section showed the promising capacities of NFS models with local learning for
developing adaptive tools that can continuously learn. Such models were successfully
used as real-time hydrological modeling and forecasting techniques without a need for
re-calibration as their learning process never stops.

3.5. Interpretability of the NFS Models

NFS models are relatively advantageous over ANNs and other AI-based techniques
because of their interpretability which, of course, is not the same in different NFS algorithms.
Interpretability is because the learned knowledge from the data is structured as fuzzy rules
in the rule base, from which the physics of the problem can be interpretable to some extent.
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Therefore, NFS algorithms are also known as grey-box models since the learned knowledge
is not as hidden as in black-box models such as ANNs. However, this advantage of NFS
models has not been well appreciated as the model performance in proving numerical
solutions has often been the primary focus.

One of the early attempts at extracting the physics of the problem from the fuzzy
rules was by Deka and Chandramouli [114] for a hydrologic flow routing application. The
authors extracted linguistic rules from a fuzzy neural network (FNN) and found them
helpful in decision-making processes related to flow. This study considered five fuzzy
labels for flow, including very low, low, medium, high, and very high. The linguistic rules
were able to explain the relationships between flow at different gauges along the river in
the study site. An example of a linguistic rule extracted is presented in Equation (6):

IF flow is low at gauges I/II, THEN flow is low OR medium at gauge III (6)

An ANFIS was also used to develop a multi-purpose reservoir’s operation policy [115].
In this study, fuzzy Mamdani (FM) and ANFIS models with grid partitioning (GP) and
subtracting clustering (SC) were developed to determine the reservoir outflow (releases).
The authors found the ANFIS-SC as the best model; however, FM was more user-friendly
because of having flexibility in the number and type of membership functions. In addition,
the authors found the extracted fuzzy IF–THEN rules useful for developing reservoir
operating policies. In a flood forecasting study using a Takagi–Sugeno NFS, Nayak [116]
explained the internal process of the fuzzy rule base in predicting floods for different
forecast horizons. The author also identified the most dominant input variable in predicting
the flow. Talei [117] compared the interpretability of Mamdani and Takagi–Sugeno NFS in
a rainfall–runoff modeling application. The author showed that the rules’ fuzzy antecedent
and consequent in the Mamdani FIS could be more interpretable than the Takagi–Sugeno
FIS with linear functions as the rule consequent. This study adopted the pseudo outer
product fuzzy neural network (POP-FNN) (Quek and Zhou, 1999) algorithm to develop
rainfall–runoff models in different sizes and types of catchments. The POP-FNN consists of
a five-layer network where the number of rules depends on the number of inputs and a
selected number of fuzzy labels. Figure 7 illustrates the structure of a POP-FNN model for
a two-input system where three fuzzy labels of low, medium, and high are considered. As
can be seen, the total number of rules can be obtained by 32 = 9, where 3 is the number of
labels, and 2 is the number of inputs. The results of this study showed that the POP-FNN
has comparable, if not superior, results to the ANFIS in three studied catchments (located
in Singapore and China). The interpretability of the rules extracted from the POP-FNN
and ANFIS are compared in Table 2 for rainfall–runoff modeling in a small catchment with
one rainfall and one flow gauge at the outlet [117]. In this example, the two inputs are two
rainfall antecedents, while the output is the flow at the catchment outlet. For the sake of
simplicity in comparison, two fuzzy labels of low (L) and high (H) are considered, resulting
in 22 = 4 rules. As can be seen, the extracted rules from the POP-FNN are linguistic fuzzy
IF–THEN rules where clear associations between inputs and output are demonstrated. In
contrast, the rules extracted from the ANFIS have linear functions at the rule’s consequent,
where the flow magnitude cannot be directly inferred. The advantage of a POP-FNN over
an ANFIS in terms of interpretability is evident in this example.

Table 2. Sample extracted rules from POP-FNN and ANFIS rainfall–runoff models for two rainfall
inputs and flow as output when two fuzzy labels of low (L) and high (H) are chosen.

Rule Number Input X1 Input X2
Output Y

(POP-FNN) Output Y (ANFIS)

1 L L L Y = 1.213X1 + 0.548X2 − 0.069

2 L H L Y = −0.297X1 + 0.172X2 + 0.043
3 H L H Y = 1.467X1 − 1.140X2 − 0.026
4 H H H Y = −5.228X1 − 0.851X2 + 5.153



Hydrology 2023, 10, 36 15 of 23

Hydrology 2023, 10, 36 15 of 23 
 

 

to develop rainfall–runoff models in different sizes and types of catchments. The POP-

FNN consists of a five-layer network where the number of rules depends on the number 

of inputs and a selected number of fuzzy labels. Figure 7 illustrates the structure of a POP-

FNN model for a two-input system where three fuzzy labels of low, medium, and high 

are considered. As can be seen, the total number of rules can be obtained by 32 = 9, where 

3 is the number of labels, and 2 is the number of inputs. The results of this study showed 

that the POP-FNN has comparable, if not superior, results to the ANFIS in three studied 

catchments (located in Singapore and China). The interpretability of the rules extracted 

from the POP-FNN and ANFIS are compared in Table 2 for rainfall–runoff modeling in a 

small catchment with one rainfall and one flow gauge at the outlet [117]. In this example, 

the two inputs are two rainfall antecedents, while the output is the flow at the catchment 

outlet. For the sake of simplicity in comparison, two fuzzy labels of low (L) and high (H) 

are considered, resulting in 22 = 4 rules. As can be seen, the extracted rules from the POP-

FNN are linguistic fuzzy IF–THEN rules where clear associations between inputs and out-

put are demonstrated. In contrast, the rules extracted from the ANFIS have linear func-

tions at the rule’s consequent, where the flow magnitude cannot be directly inferred. The 

advantage of a POP-FNN over an ANFIS in terms of interpretability is evident in this 

example. 

 

Figure 7. Schematic structure of POP-FNN for two inputs—one output scenario using three fuzzy 

labels of low (L), medium (M), and high (H). 

Table 2. Sample extracted rules from POP-FNN and ANFIS rainfall–runoff models for two rainfall 

inputs and flow as output when two fuzzy labels of low (L) and high (H) are chosen. 

Figure 7. Schematic structure of POP-FNN for two inputs—one output scenario using three fuzzy
labels of low (L), medium (M), and high (H).

In a similar attempt, Heddam [118] extracted the rules from an ANFIS model devel-
oped for water quality modeling in the Klamath river in the USA. The author extracted
the linear functions between the desired output, dissolved oxygen, and inputs, including
pH, specific conductance (µS/cm), and sensor depth (m). However, it was hard to interpret
the associations between inputs and output from the 15 extracted rules due to the crisp
outputs of the ANFIS. Chang and Tsai [119] also developed an ANFIS model coupled with
a two-staged gamma test for optimal input selection in a flood forecasting application. The
two fuzzy “IF–THEN” rules effectively segregate the inputs into high and low conditions,
allowing the accurate prediction of different input–output scenarios. The authors high-
lighted that it is possible to extract valuable knowledge on the rainfall–runoff relationship
by evaluating the membership functions.

Reviewing the published works on the interpretability of NFS, it is crystal clear that
the Mamdani NFS is more advantageous than the Takagi–Sugeno NFS. The fuzzy IF–THEN
rules that can be extracted could be helpful in applications that seek operational policies
(e.g., in reservoirs, treatment plants, etc.). Further, in catchments with multiple gauging
stations, such fuzzy rules could help identify dominant stations for hydrological forecasting
applications such as flood prediction. However, minimal studies have been conducted
on this topic, and further exploration of the interpretability of different NFS algorithms
is required.
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3.6. Optimization of Model Parameters

Each NFS model has its learning mechanism to find model parameters by going
through the training dataset. For example, an ANFIS has two standard learning options
known as grid partitioning (GP) and subtractive clustering (SC), where the latter has been
found favorable relative to the former [115,120–122]. In general, the learning algorithm in
conventional NFS models, such as an ANFIS, may get trapped in local optimum points
and voluminous computations, resulting in poor accuracy [123]. Therefore, some research
studies have focused on integrating NFS models with an optimizer to access more optimum
model parameters, resulting in better performance. For example, Khosravi, Panahi [90] com-
bined an ANFIS with five metaheuristic algorithms, namely invasive weed optimization
(IWO), differential evolution (DE), the firefly algorithm (FA), particle swarm optimization
(PSO), and the bees algorithm (BA) for spatial groundwater prediction. The authors found
the ANFIS-DE to be the best model compared to other models in this study.

In a similar attempt by Azad, Karami [124] for modeling electrical conductivity,
sodium absorption rate, and total hardness, ANFIS-DE was once again selected as the
best model compared to integrated ANFIS models with genetic algorithm (GA) and ant
colony optimization for continuous domains (ACOR). In a comparative analysis by Kisi
and Yaseen [123], ANFIS models integrated with a continuous genetic algorithm (CGA),
PSO, ACOR, and DE were compared in groundwater quality modeling. The authors
found ANFIS-CGA to be the best-performing model compared to others. In another two
studies, PSO demonstrated excellent performance in modeling the river quality [125] and
groundwater table [126]. Moreover, grey wolf optimization (GWO) also showed successful
integration with an ANFIS in modeling soil moisture content and demonstrated better
results than those obtained by conventional ANFIS, ANN, and SVM models [127].

As can be seen, several optimization methods have been successfully integrated with
conventional NFS, such as an ANFIS, to find the optimum set of model parameters resulting
in better model performance. However, such improvements have been relatively modest.
Furthermore, it is hard to recommend any specific optimization method as (1) multiple
optimization methods have been reported as the best in different applications, and (2)
their results are not significantly different. Therefore, it seems reasonable to attempt any
optimizers to enhance NFS model parameters.

4. Future Directions

In Section 2, different NFS algorithms were discussed, while in Section 3, challenges
in developing NFS-based hydrological models were reviewed. This section is focused
on concluding notes on the past and present advancements in this field while discussing
potential future research directions.

First, with recent advancements in computer science, more complex and powerful
NFS algorithms are expected to be available. Therefore, employing such tools to address
hydrological problems would be necessary. For example, one of the common challenges
in data-driven algorithms, including NFS, is their limitation in extrapolating beyond the
learning knowledge from the training dataset. Addressing such issues and enhancing
the model’s performance in extreme event prediction could become possible soon using
new NFS algorithms. Therefore, targeting tools based on specific needs in hydrological
modeling and forecasting is necessary.

In data pre-processing, the data standardization techniques are well practiced. How-
ever, new advancements in enhancing NFS model performance using wavelet transform
algorithms look promising. However, it is not clear what algorithm is the most suitable for
each NFS model. Furthermore, most of the efforts in this area have focused on the ANFIS
model, while other NFS models are not explored. Therefore, further studies on integrating
such pre-processing methods in various NFS models look necessary.

Regarding input selection, several methods have been investigated for data-driven
models, including NFS. However, no specific method has been universally recognized as
the best input selection technique. That gives the users flexibility to explore the existing
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methods for their problem while seeking new approaches. Perhaps one interesting area to
further explore is relating the selected inputs to the physics of the problem. For example,
many studies have shown that using rainfall inputs from all stations in catchments with
multiple rainfall stations is not necessarily the best input combination for a rainfall–runoff
model. Instead, a set of selected stations would work more efficiently and accurately. In
such a case, the question remains why those stations are selected. Understanding such
a process and the selection mechanism used in input selection techniques could help
researchers make more robust choices.

Selecting the training dataset is perhaps a less studied topic in developing NFS models.
Besides the common challenge of choosing a proper dataset to train and validate the model,
the sensitivity of different NFS models to the training dataset’s size, diversity, and sequence
is relatively unexplored. For example, an ANFIS may not be sensitive to the sequence
of data points in the training dataset. At the same time, different data sequences could
affect DENFIS performance and the number of generated rules. Moreover, there is no clear
guideline for the minimum required length of the training dataset. Therefore, conducting
such studies on a wide range of NFS algorithms could be helpful.

On the other hand, the adaptability of NFS algorithms is an important feature that
makes them helpful in developing real-time and/or adaptive forecasting tools. However,
adaptability looks dependent on the learning mechanism in NFS models. In general, an
online model looks necessary to adapt to environmental changes. However, such NFS
online models are deemed to work effectively with local learning techniques, which are
unavailable in all NFS models. Moreover, some existing models with local learning suffer
from issues such as rule inconsistency, large rule base, etc. Despite addressing some of
these issues by introducing a rule-pruning mechanism (e.g., in SaFIN and GSETSK), there
is still a lot to explore on NFS online models for real-time modeling and forecasting.

The present literature review highlighted the importance of interpretability in NFS
hydrological models, especially when operation policies are needed (e.g., reservoir opera-
tion). Therefore, it was inferred that Mamdani-type NFS models would be preferred over
Takagi–Sugeno NFS due to having fuzzy antecedents and consequents in their IF–THEN
rules. Despite its importance, very few studies have been focused on interpretability, and
limited algorithms with such capabilities have been explored. Extracting fuzzy rules can
showcase some aspects of the physics of the problem, which could be helpful in further
enhancement of model performance at input variables and the training data selection stages.
Therefore, in-depth studies on Mamdani-type NFS algorithms and their interpretability
are needed.

Finally, by advancements in developing new optimization tools, the NFS model param-
eters can be found accurately to enhance model robustness in predicting the desired output.
However, most studies have focused on optimizing ANFIS model parameters, while other
NFS algorithms are left either unexplored or not deeply studied. Therefore, further studies
on integrating optimization techniques into various NFS models are necessary.

5. Conclusions

This study reviewed the existing NFS models used in hydrological modeling and
forecasting. Moreover, it discussed six common challenges in developing such models:
pre-processing, input selection, training data selection, adaptability, interpretability, and
parameter optimization. It was concluded that NFS algorithms have good potential for
being used as a modeling and forecasting tool in various hydrological problems, including
rainfall–runoff simulation, flow prediction, rainfall forecasting, water quality modeling,
groundwater modeling, etc. These models generally outperform their competitors, such as
regression-based models, ANNs, SVM, etc. Despite successful applications, many aspects
of model development are still not fully addressed. Therefore, further studies are needed
to enhance the NFS model’s performance, stability, adaptability, and interpretability. The
specific conclusions of this study are six-fold:
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(i) Data pre-processing is necessary for NFS model development. All conventional meth-
ods based on data standardization would work well. Additionally, new advancements
in wavelet transform functions and their successful integration into NFS algorithms
suggest further study.

(ii) Different input selection methods reported in the literature perform well in developing
NFS models. However, further study is needed for cases with multiple sources of
inputs (e.g., catchments with multiple rain gauges), as using more inputs may not
necessarily enhance model performance.

(iii) The sensitivity of NFS models to training datasets is yet to be explored in detail. The
impact of training data size, sequence, etc., on model performance in several NFS
algorithms is not explored.

(iv) NFS models with local learning have the potential to develop online models which can
be employed for adapting to hydrological changes and real-time modeling. Despite
using a few algorithms, such as a DENFIS, SaFIN, and GSETSK, in hydrological
modeling and forecasting, limited works have been published in this area.

(v) The interpretability of NFS models is yet to be explored in hydrological modeling.
For this, the Mamdani-type NFS with fuzzy rule consequent is advantageous over
the Takagi–Sugeno NFS. The extracted linguistic IF–THEN rules could reveal the
problem’s physics while helping to formulate the association between inputs and
output in a qualitative manner. Further study is necessary to explore interpretability
in NFS-based hydrological models

(vi) Efforts to integrate optimization techniques into NFS models have improved the
model’s performance. These studies have been mainly focused on ANFISs; however,
such improvements have not been significant over the conventional NFS. Anyway,
no substantial superiority has been reported in any optimization tool, meaning that
using any of them could be reasonably helpful. However, further study on using
optimization tools in various NFS algorithms is needed.
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67. Doǧan, E. Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems. Irrig. Drain. 2009, 58, 617–628.
[CrossRef]
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