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Abstract: A method was developed to integrate the truncated power-law distribution of solid
volumetric fraction into the widely used Kozeny–Carman (KC)-type equations to assess the potential
uncertainty of permeability. The focus was on the heterogeneity of porosity (or solid volumetric
fraction) in the KC equation. The truncated power-law distribution simulates a heterogeneous
scenario in which the solid volumetric fraction varies over different portions of porous media, which
is treated as stationary, so its spatial mean can be replaced by the ensemble mean. The model was
first compared with the experimental results of 44 samples from the literature and a recent model
of KC equation modification that targets the coefficients in the equation. The effects of the fractal
dimension of characteristic length of the solid volumetric fraction on the mean and standard deviation
of permeability are calculated and discussed. The comparison demonstrates that the heterogeneous
solid volumetric fraction can have similar effects as adjusting the empirical constant in the KC
equation. A narrow range smaller than mean ± standard deviation from the model agreed with the
experimental data well. Incorporating the truncated power-law distribution into the classical KC
model predicts a high mean permeability and uncertainty. Both the mean and standard deviation of
the permeability decrease with an increasing fractal dimension.

Keywords: Kozeny–Carman equation; heterogeneous porous media; truncated power-law distribution;
solid volumetric fraction

1. Introduction

The permeability of porous media is a crucial parameter to understand fluid flow in
various materials. A widely used equation to predict the permeability of porous media was
developed by Kozeny and later modified by Carman, which is now the Kozeny–Carman
(KC) equation [1–3] for estimating the permeability of porous materials. The KC equation
or its variants have been used for many different types of porous materials [4–16].

The KC equation is a semi-empirical formula involving potentially large uncer-
tainty [10,17,18]. Due to its significance in science and engineering fields, from industrial
manufacturing processes to groundwater flows, many semi-empirical corrections and ex-
tensions of the KC equation have been developed [12,19–24] to improve the prediction of
the permeability and/or hydraulic conductivity of various porous materials.

Rodríguez et al. [25] investigated the permeability–porosity relationship for glass and
fiber mats. The experimental data were fitted by the Kozeny–Carman equation with two
parameters of the Kozeny constant and the exponent of the porosity. Khabbazi et al. [26]
employed a lattice Boltzmann (LB) modeling approach to compute the permeability of two
periodic porous structures of cylinders and spheres and identified functional forms of the
Kozeny–Carman constant by regression analysis. They demonstrated that the algebraic
function for the Kozeny–Carman constant produced the most accurate estimation of the KC
porosity–permeability relationship. Nomura et al. [27] illustrated that the specific surface
area could be derived from the semilog–sigmoid function of particle size distribution. The
modified KC equation was then extended in terms of uniformity and sorting coefficients for
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its use in engineering applications. Safari et al. [28] developed a mathematical equation to
modify the porosity–permeability relationship in rocks with ellipsoidal grains and validated
it by pore-scale modeling. The results demonstrated that deviations in the sphericity of the
grains increased the permeability.

Fractal geometry theory has been used to study physical properties of disordered
porous materials in various areas of science and engineering applications [29–37]. Bayles
et al. [6] applied fractal mathematics to develop a modified KC equation to predict perme-
ability from particle size distribution alone and brought new insight into the dependence of
permeability on porosity and tortuosity. Costa [10] applied the classical KC equation and the
assumption of fractal pore space geometry to develop the permeability–porosity equation,
which contained the two fitting parameters of a Kozeny coefficient and a fractal exponent.
Xu and Yu [38] improved the classical KC equation according to the two-dimensional fractal
capillary bundle model. The proposed equation was expressed as a function of porosity,
fractal dimensions, and maximum pore size, and was found to be more closely related to
the microstructures (porosity, maximum pore size, and fractal dimensions) compared to
those obtained from the original conventional models. Yu et al. [39] derived the specific
surface areas of fractal porous media in two and three dimensions in relation to the fractal
dimensions and fundamental microstructural parameters. Xiao et al. [40] developed a
fractal solution for the KC constant and the permeability of fibrous porous media and
verified the model with the analytical solution, numerical simulation, and experimental
data found in the literature. The developed fractal model explicitly related the permeability
and the KC constant to the microstructural parameters of the fibrous porous media.

In summary, the KC equation has been widely used to estimate porous media per-
meability, and many modifications/extensions have been developed for various porous
materials. However, effective practical applications of the equation require accurate mea-
surements of the specific surface area, which involve high uncertainty. Many other previous
studies mostly focused on the quantification and modification of empirical constants embed-
ded in the KC model, focusing on the fact that the KC constant is not actually a constant but
a varying function of microstructural properties. Numerous previous studies of fractal mod-
els introduced and applied the fractal dimensions of various porous media properties [41].
The fractal dimensions commonly used in characterizing porous media include those of
pore surface [42], pore volume [43], pore tortuosity [44], void [45], fracture surface [46],
crack [47], and particle distribution [48], among others. Since porosity is the predominant
factor in estimating porous media permeability in many practical applications according to
the KC model and its variants, it is logical to investigate the effects of uncertainty related
to porosity. As discussed, previous studies treated various variables as fractals, including
pore volume, tortuosity, and particle distribution, among others. Because the porosity is
complementary to the solid volumetric fraction, as the summation of them is equal to one,
the main objective of this study was to investigate the direct impact of the fractal feature of
the solid volumetric fraction on porous media permeability.

In the present study, a new approach was developed to treat the total solid volumetric
fraction of porous media as a truncated power-law distribution, which was then combined
with the KC equation to examine the potential uncertainty in the permeability prediction.
While it is natural to assume that the permeability of porous media is related to the porosity,
it is not easy to develop the appropriate relationship, since this would require an extensive
knowledge of the spatial arrangement of the pore channels and their size distribution
in porous media. Therefore, the focus of this study was on the uncertainty from the
portion in the KC model that is related to the porosity (or solid volumetric fraction). This
type of heterogeneous spatial distribution of the solid volumetric fraction simulates the
scenario in which, in part of the porous media, the solid volumetric fraction is higher or
lower than the other locations. The porous media are treated as stationary, so the mean of
spatial heterogeneity can be replaced by the ensemble mean. The developed model was
first compared with a few sets of experimental data and a recent model of KC equation
modification that targets the coefficients in the KC-type equation from the literature. Then,
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the effects of fractal dimension and solid volumetric fraction on the mean and standard
deviation are then determined and discussed.

2. Theory and Methods

In the KC model, the hydraulic diameter is related to the porosity and specific surface
area, and the permeability is expressed as follows:

K =
d2e3

C(1 − e)2 =
d2(1 − c)3

Cc2 (1)

where K is the permeability, d is an effective diameter of solid particles, e is the porosity, c is
the solid volumetric fraction (= 1 − e), and C is the empirically determined dimensionless
constant representing both the flow path tortuosity and the shape factor, as well as many
other factors. For random packed beds of spherical particles, the value of C could be
approximated as C = 180. The model was originally developed mainly for isotropic,
granular porous media of spherical particles at medium porosity and has been expanded
and modified in applications to many other different types of porous materials.

Since the focus of the present study was on the effect of heterogeneous solid volumetric
fraction (or porosity), a dimensionless permeability k can be defined from normalizing K in
Equation (1) by d2/C:

k =
CK
d2 =

(1 − c)3

c2 (2)

Recently, Ye et al. [12] modified the C coefficient in the KC equation by also considering
particle size distribution parameters. In particular, their model also included the uniformity
coefficient Cu and the coefficient of curvature Cc to estimate the hydraulic conductivity Ks:

Ks =
ρg(Cu + Cc)d2

10k
µC2

(3)

where ρ is the density of water, g is the gravitational acceleration, µ is the dynamic viscosity
of water, C2 is an empirical fitting parameter, and d10 is the effective particle size, with
10% of particles being finer by weight. By matching Equation (3) to several experimental
datasets compiled in their study, Ye et al. [12] suggested an optimal range for the fitting
parameter values of C2 between 1500 and 2500.

The truncated power-law distribution is used to directly describe the spatial hetero-
geneity of the solid volumetric fraction in porous media. The focus was on the dimension-
less permeability k that is only related to the solid volumetric fraction in the general KC
equation of permeability. Even with similar particle size distribution statistics, such as Cu
and Cc, the porosity (or solid volumetric fraction) can exhibit strong spatial heterogeneity.
The effect of this type of heterogeneity on the uncertainty of permeability estimation was
the main objective of this study. After the model was developed, we compared the model
prediction with Equation (3) and five experimental datasets found from the literature. Ye
et al. [12] concluded that by adjusting the fitting parameter C2, Equation (3) could reason-
ably match the experimental data. In general, there have been many studies to adjust the
empirical coefficient in the KC-type models to match experimental results. The goal of this
study was to investigate whether strong spatial heterogeneity of solid volumetric fraction
represented by a truncated power-law distribution may affect the permeability prediction.
In particular, the model was compared with that in Ye et al. [12] in relation to the same sets
of experimental data.

With the heterogeneity being taken into account, the solid volumetric fraction c
varies spatially and can be assumed to follow the following truncated power-law
distribution [49–51]:

N(χ ≥ c) = (ca/c)D/3 (4)
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where ca is the maximum solid volumetric fraction, and D is the fractal dimension of
characteristic length of the solid volumetric fraction. In this study, we approximated the
solid volumetric fraction as a truncated power-law distribution in which the minimum
solid volumetric fraction is c = ci in practical science and engineering problems, which
means the range of the solid volumetric fraction in heterogeneous porous media could vary
from ci to ca.

To develop analytical solutions of mean dimensionless permeability and its standard
deviation, the following parameters related to the truncated power-law distribution pa-
rameters of solid volumetric fraction (i.e., D and ca/ci) are first defined in Equation (5)
through (7) below. The sole purpose of first defining these parameters is to simplify the
mathematical expressions of mean and standard deviation of dimensionless permeability
in the subsequent derivations.

D1 =
D

D + 12
, D2 =

D
D + 9

, D3 =
D

D + 6
, D4 =

D
D + 3

, D5 =
D

3 − D
, D6 =

D
6 − D

(5)

T1 = 1 −
(

ci
ca

) D+12
3

, T2 = 1 −
(

ci
ca

) D+9
3

, T3 = 1 −
(

ci
ca

) D+6
3

, T4 = 1 −
(

ci
ca

) D+3
3

(6)

T5 = 1 −
(

ci
ca

) D
3

, T6 = 1 −
(

ci
ca

) 3−D
3

, T7 = 1 −
(

ci
ca

) 6−D
3

(7)

With the definition of the parameters in Equations (5)–(7), the probability density
function of the truncated power-law distribution of the solid volumetric fraction c can be
determined from Equation (4) as:

f (c) =
DcD/3

i c−(D/3+1)

3T5
(8)

From the truncated power-law distribution in Equation (8) for the solid volumetric
fraction, the mean solid volumetric fraction c* and the ratio of c* over ca in the heterogeneous
porous media can then be integrated as, respectively:

c∗ =
∫ ca

ci

c f (c)dc =
D5ciT6

T5(1 − T6)
(9)

c∗

ca
=

D5

[
(ca/ci)

−D/3 − (ca/ci)
−1
]

T5
(10)

The solid volumetric fraction range ratio ca/ci can then be iteratively determined from
the constraint specified in Equation (10) with the given values of c*/ca and the fractal
dimension D.

After determining the power-law distribution parameters ca/ci and ci, the variance
s2

c and standard deviation sc of the solid volumetric fraction can be determined as follows,
respectively:

s2
c =

(
c2
)∗

− (c∗)2 =
D6c2

i T7

T5(1 − T7)
−

D2
5c2

i T2
6

T2
5 (1 − T6)

2 (11)

sc = ci

[
D6T7

T5(1 − T7)
−

D2
5T2

6

T2
5 (1 − T6)

2

]1/2

(12)

In Equation (11), the subscript * denotes the mean operator.
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When the truncated power-law distribution of c is given, the mean dimensionless
permeability k* and the mean of k2, (k2)*, can be determined from integrating the truncated
power-law distribution of the solid volumetric fraction as follows, respectively:

k∗ =
∫ ca

ci

k f (c)dc (13)

(
k2
)∗

=
∫ ca

ci

k2 f (c)dc (14)

Substituting the expression of the KC equation in Equation (2) and the truncated
power-law distribution of the solid volumetric fraction f (c) in Equation (8), integrating
and simplifying them, one can obtain the following mean expressions of k* and (k2)*,
respectively:

k∗ = 3 +
D3T3

T5c2
i
− 3D4T4

T5ci
− ciD5T6

T5(1 − T6)
(15)

(
k2
)∗

= 15 +
D1T1

T5c4
i
+

15D3T3

T5c2
i

+
c2

i D6T7

T5(1 − T7)
− 6D2T2

T5c3
i

− 20D4T4

T5ci
− 6ciD5T6

T5(1 − T6)
(16)

The variance of the dimensionless permeability k can then be determined by the
following relationship:

s2 =
(

k2
)∗

− (k∗)2 (17)

After substituting the expressions in Equations (15) and (16) into Equation (17), one
has the following variance s2 and standard deviation s of the dimensionless permeability,
respectively:

s2 = A − B (18)

s = (A − B )1/2 (19)

where A and B in the above equations are related to the various truncated power-law
distribution parameters as, respectively:

A = 6 +
D1T1

T5c4
i
+

9D3T3

T5c2
i

+
c2

i D6T7

T5(1 − T7)
+

6D3D4T3T4

T2
5 c3

i
+

2D3D5T3T6

T2
5 (1 − T6)ci

(20)

B =
6D2T2

T5c3
i

+
2D4T4

T5ci
+

D2
3T2

3

T2
5 c4

i
+

9D2
4T2

4
T2

5 c2
i

+
6D4D5T4T6

T2
5 (1 − T6)

+
c2

i D2
5T2

6

T2
5 (1 − T6)

2 (21)

In the following section, the developed model in the present study is compared with
five experimental datasets of saturated hydraulic conductivity Ks found in the literature. In
a recent study, Ye et al. [12] compiled several datasets of Ks measurements of sand-gravel
mixture, which were listed in their Table 2 [12]. We first compared the present model
with these datasets and the modified KC model by Ye et al. [12]. The statistical criteria to
quantitatively assess the goodness of fit with the experimental results include the bias (Bias),
the root mean square error (RMSE), and the Nash–Sutcliffe model efficiency coefficient
(NSE), defined as follows:

Bias =
1
M ∑M

i=1(Ksi − Ksei) (22)

RMSE =

√
1
M ∑M

i=1(Ksi − Ksei)
2 (23)

NSE = 1 − ∑M
i=1(Ksi − Ksei)

2

∑M
m=1

(
Ksei − Kse

)2 (24)

In Equations (22) through (24), Ksi and Ksei are the saturated hydraulic conductivity es-
timated by the model and the observed saturated hydraulic conductivity from experimental
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data point i with the given porosity, respectively; Kse is the mean of the observed saturated
hydraulic conductivity; and M is the total number of data points. The experimental datasets
were extracted from Table 2 of Ye et al. [12].

3. Results and Discussion

The comparison with the saturated hydraulic conductivity experimental data that were
compiled from five different sources by Ye et al. [12] in the literature is shown in Figure 1.
The model results of Ye et al. [12] when the C2 values were 1000, 2000, 3000, and 4000 are
also included in Figure 1, which was the same range of C2 in Ye et al. [12] in their trial-and-
error process to determine the optimal C2 to best fit the experimental data. Overall, when
C2 increased from 1000 to 4000, the modified KC model by Ye et al. [12] evolved from over-
prediction to under-prediction, as seen from the scatterplots from Figure 1a–d. The mean
saturated hydraulic conductivity by the present model also changed from over-prediction
to under-prediction when C2 varied from 1000 to 4000.

Hydrology 2023, 10, x FOR PEER REVIEW 6 of 14 
 

 

𝑁𝑆𝐸 = 1 −
∑ (𝐾𝑠𝑖 − 𝐾𝑠𝑒𝑖)2𝑀

𝑖=1

∑ (𝐾𝑠𝑒𝑖 − 𝐾𝑠𝑒
̅̅ ̅̅ )2𝑀

𝑚=1

 (24) 

In Equations (22) through (24), Ksi and Ksei are the saturated hydraulic conductivity 

estimated by the model and the observed saturated hydraulic conductivity from experi-

mental data point i with the given porosity, respectively; 𝐾𝑠𝑒
̅̅ ̅̅  is the mean of the observed 

saturated hydraulic conductivity; and M is the total number of data points. The experi-

mental datasets were extracted from Table 2 of Ye et al. [12]. 

3. Results and Discussion 

The comparison with the saturated hydraulic conductivity experimental data that 

were compiled from five different sources by Ye et al. [12] in the literature is shown in 

Figure 1. The model results of Ye et al. [12] when the C2 values were 1000, 2000, 3000, and 

4000 are also included in Figure 1, which was the same range of C2 in Ye et al. [12] in their 

trial-and-error process to determine the optimal C2 to best fit the experimental data. Over-

all, when C2 increased from 1000 to 4000, the modified KC model by Ye et al. [12] evolved 

from over-prediction to under-prediction, as seen from the scatterplots from Figure 1a–d. 

The mean saturated hydraulic conductivity by the present model also changed from over-

prediction to under-prediction when C2 varied from 1000 to 4000. 

 

Figure 1. Comparison with experimental saturated hydraulic conductivity Ks data compiled by Ye 

et al. [12] from 5 different sources (Zhu [52], Cui [53], Ren et al. [54], Huang et al. [55], and Ye et al. 

[12]) and listed in their Table 2. The range of C2 presented in (a–d) in this figure is the same as that 

tried in Ye et al. [12]. 

Figure 1. Comparison with experimental saturated hydraulic conductivity Ks data compiled by
Ye et al. [12] from 5 different sources (Zhu [52], Cui [53], Ren et al. [54], Huang et al. [55], and Ye
et al. [12]) and listed in their Table 2. The range of C2 presented in (a–d) in this figure is the same as
that tried in Ye et al. [12].

For a three-dimensional fractal system, the fractal dimension D is typically from 2 to 3,
and the potential range of ca may vary from c* to 1. We used a D value of 2.5 and ca = 0.8
for comparison, as shown in Figure 1. The comparison of statistical measures between the
modified KC model by Ye et al. [12] and the present model is shown in Table 1.
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Table 1. Comparison of statistical measures between the modified KC model in [12] and the present
model.

C2 = 1000 C2 = 2000 C2 = 3000 C2 = 4000

Modified
KC Model Ks* − 0.7s Modified

KC Model Ks* − 0.3s Modified
KC Model Ks* + 0.1s Modified

KC Model Ks* + 0.4s

Bias (cm s−1) 0.0413 0.00366 −0.0288 −0.00473 −0.0521 −0.00709 −0.0638 −0.0138

RMSE (cm s−1) 0.103 0.0893 0.0996 0.0964 0.120 0.0996 0.133 0.101

NSE 0.495 0.622 0.530 0.559 0.313 0.530 0.162 0.517

Depending on the C2 value, the mean Ks from the truncated power-law distribution
may either over-predict or under-predict the experimental results. When C2 is small, the
mean Ks needs to be subtracted by a fraction of the standard deviation to best fit the
experimental data. On the other hand, if C2 is large, a fraction of the standard deviation
needs to be added to the mean Ks to best capture the variation of experimental data.
Therefore, if the potential uncertainty due to the heterogeneous solid volumetric fraction is
taken into account by adjusting the mean prediction from the present study by the potential
uncertainty, the present model can better match the experimental data regardless of the
values of C2. Experimental data have significant scatters, which highlight the uncertainty
in estimating Ks of porous media. While adjusting the empirical correction factor in Ye
et al. [12] can better describe experimental data to a certain extent, the uncertainty could
still be very large. The truncated power-law distribution is intended for potential maximum
uncertainty. As a result, the standard deviation can be larger than the mean, signifying its
significant uncertainty extent.

While the comparison was particularly made against the fitting parameters of the
KC model, using the same sets of experimental data, the conclusion should also hold in
general cases that strong spatial heterogeneity of solid volumetric fraction could affect
the permeability prediction. The uncertainty due to the spatial heterogeneity can also
exert similar effects as adjusting empirical constants in the KC equation on predicting the
permeability of porous media.

Figure 2 shows the potential range of concentration ca/ci in relation to the porosity
at a few values of the fractal dimension D and maximum concentration ca. While there
are two parameters in the truncated power-law distribution, the constraint requires D and
ca/ci to be related to each other for any given porosity (or solid volumetric fraction). The
required range of ca/ci increases dramatically as the porosity e increases, which is due to the
required decrease in ci as e increases. Note that a large e value translates into a small c value,
as they are simply related by c = 1 − e. If the mean c is small, then the minimum c should
be also small enough to bring the overall mean c down to the constrained small c value.
For the effect on the dimensionless permeability k, this dramatically increased ca/ci also
significantly increases its uncertainty, reflected by its standard deviation. A larger fractal
dimension D indicates a narrower range of ca/ci. For a larger D value, the fractal system
is more space-filled, which also means the potential range of solid volumetric fraction
variability should also be smaller. On the other hand, a larger ca obviously allows a larger
range for potential concentration variability, which requires ca/ci to be also larger, as seen
in Figure 2.



Hydrology 2023, 10, 21 8 of 14Hydrology 2023, 10, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 2. The ratio of maximum solid volumetric fraction ca over minimum solid volumetric fraction 

ci (ca/ci) of the truncated power-law distribution in relation to the porosity and fractal parameters. 

The influence of porosity on the dimensionless permeability, with a few selected val-

ues of the fractal parameters, is shown in Figure 3. When the heterogeneous solid volu-

metric fraction is incorporated into the widely used KC model, the mean prediction of 

dimensionless permeability is higher than that predicted by the deterministic KC model. 

The difference between the predicted mean dimensionless permeability and the determin-

istic prediction by the KC model increases quickly as the porosity e increases. With the 

truncated power-law distribution, the low solid volumetric fraction regions are clustered, 

which means the high porosity regions are also clusters. The KC model indicates that the 

permeability increases non-linearly but very quickly with increasing porosity; therefore, 

on the high end of porosity (or the low end of solid volumetric fraction), the dimensionless 

permeability is significantly higher than that predicted by the deterministic KC equation. 

For a higher ca and lower D, the mean dimensionless permeability is also higher, as seen 

in Figure 3. 

 

Figure 3. The mean dimensionless permeability k* versus the porosity e for a few selected values of 

the fractal parameters. The k result from the KC equation is also plotted for comparison. 

Figure 2. The ratio of maximum solid volumetric fraction ca over minimum solid volumetric fraction
ci (ca/ci) of the truncated power-law distribution in relation to the porosity and fractal parameters.

The influence of porosity on the dimensionless permeability, with a few selected
values of the fractal parameters, is shown in Figure 3. When the heterogeneous solid
volumetric fraction is incorporated into the widely used KC model, the mean prediction of
dimensionless permeability is higher than that predicted by the deterministic KC model.
The difference between the predicted mean dimensionless permeability and the determin-
istic prediction by the KC model increases quickly as the porosity e increases. With the
truncated power-law distribution, the low solid volumetric fraction regions are clustered,
which means the high porosity regions are also clusters. The KC model indicates that the
permeability increases non-linearly but very quickly with increasing porosity; therefore, on
the high end of porosity (or the low end of solid volumetric fraction), the dimensionless
permeability is significantly higher than that predicted by the deterministic KC equation.
For a higher ca and lower D, the mean dimensionless permeability is also higher, as seen in
Figure 3.
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The corresponding results of k standard deviation are shown in Figure 4 under the
otherwise same conditions as those in Figure 3. The variation of the standard deviation
exhibited a similar trend as the dimensionless permeability. The standard deviation also
increased significantly with the increase in the porosity. This trend was also reflected by
the increase in ca/ci with an increasing e, which meant increasing uncertainty near the high
range of porosity. This phenomenon is a general feature of a power-law distribution, in
which most of the heterogeneous solid volumetric fraction clusters near its low range. The
fractal dimension D also impacts the uncertainty of the dimensionless permeability k. For a
smaller fractal dimension D, the heterogeneous solid volumetric fraction is less space-filled,
and the range of potential concentration variation is higher, which translates into a lower
permeability uncertainty (standard deviation). On the other hand, a high ca means a larger
range of solid volumetric fraction, and in turn, indicates a higher permeability standard
deviation, as seen in Figure 4.
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The influence of the fractal dimension D on the dimensionless mean permeability
is shown in Figure 5. The corresponding results of the deterministic dimensionless per-
meability from the classical KC equation are also plotted for comparison, although they
did not change with the fractal dimension D (i.e., a horizontal line seen in the figure).
The results show that the mean dimensionless permeability decreases with an increasing
fractal dimension D. As discussed earlier, the solid volumetric fraction tends to cluster
near the low end of its range for a smaller D, which favors a higher porosity in larger
regions. Since the permeability increases dramatically with an increase in the porosity, this
tendency of clustering near the low end of solid volumetric fraction also enhances the mean
dimensionless permeability. In the higher mean porosity case (Figure 5b), the extent of
the mean permeability increase with a decreasing fractal dimension D is more significant
compared to the case of a lower mean porosity (Figure 5a).
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e = 0.4 and (b) e = 0.8. The k result from the KC equation, which is a horizontal line, is also plotted for
comparison.

The impact of the fractal dimension D on the standard deviation of the dimensionless
permeability is plotted in Figure 6. The standard deviation variation exhibited a similar
trend as the mean dimensionless permeability. The standard deviation can be on the
same order of magnitude as the mean dimensionless permeability itself, highlighting the
significant impact of the heterogeneous solid volumetric fraction on the uncertainty of the
dimensionless permeability prediction. Overall, the impact of the fractal dimension D was
smaller than that of ca/ci on the dimensionless permeability and its associated standard
deviation.

In this study, the KC equation was used as a basic model in analyzing uncertainty in the
predicted permeability due to the uncertainty in the required input solid volumetric fraction
(or the porosity). The KC equation establishes a link between porous media properties
and flow resistance in pore channels, which quantitatively expresses the permeability in
terms of porosity (or solid volumetric fraction). It should be emphasized, however, that
while the KC model has been widely used, it is less satisfactory for porous materials that
are cemented or have irregular grain/pore shapes and sizes, as well as for clays [19,56].
The KC equation may also have issues in many practical applications due to the difficulty
in determining either the specific surface area or the effective diameter [57]. Other more
sophisticated models may perform better than the KC model under certain conditions [58].
No simple universal equations, however, can possibly exist to satisfactorily predict the
permeability of all porous media encountered in science and engineering applications, due
to the complexity and the large number of parameters involved [10]. It should be, therefore,
noted that any limitations inherent in the underlying KC model also apply to the model
developed in the present study. In addition, the specific focus in this study was only on
the heterogeneity of the solid volumetric fraction. Other potential uncertainties, such as
those related to the determination of the specific surface area [59–61], which are embedded
in the KC model, also affect the predictive uncertainty of porous media permeability. A
comprehensive investigation of other types of uncertainty is, however, beyond the scope of
this study and warrants further studies in the future.
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4. Conclusions

A new approach was developed to incorporate the truncated power-law distribution of
the solid volumetric fraction of porous media into the widely used KC model to investigate
the potential uncertainty in the permeability prediction of porous media. The truncated
power-law distribution is used to describe the potential maximum heterogeneity of porous
media. The equations of the mean permeability and its associated standard deviation were
developed. The main conclusions can be summarized as follows:

(1) Heterogeneous solid volumetric fraction can have similar effects as adjusting empirical
constants embedded in the classical KC equation.

(2) Incorporating the truncated power-law distribution into the classical KC model pre-
dicts a higher mean permeability than the deterministic KC equation.

(3) Both the mean and standard deviation of the dimensionless permeability decrease as
the fractal dimension D increases.

(4) The increase in both the mean and standard deviation of dimensionless permeability
with porosity is more significant when the fractal dimension D is smaller.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The author declares no conflict of interest.



Hydrology 2023, 10, 21 12 of 14

Nomenclature

A parameter in Equation (20) e porosity
B parameter in Equation (21) g gravitational acceleration (m s−2)
C empirical constant in Equation (1) K permeability (m2)
C2 empirical parameter in Equation (3) Ks hydraulic conductivity (m s−1 or cm s−1)
Cc coefficient of curvature k dimensionless permeability
Cu coefficient of uniformity k* mean dimensionless permeability
c solid volumetric fraction (= 1 − e) s standard deviation of k
cm maximum solid volumetric fraction sc standard deviation of c
ci minimum solid volumetric fraction T1, T2, T3, T4 parameters in Equation (6)
c* mean solid volumetric fraction T5, T6, T7 parameters in Equation (7)
D fractal dimension
D1, D2, D3, D4, D5, D6 parameters in Equation (5) Greek symbols
d effective diameter of solid particles (m) µ viscosity of water (Pa s m−2)
d10 effective particle size (m) ρ density of water (kg m−3)
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