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Abstract: A trustworthy assessment of soil moisture content plays a significant role in irrigation
planning and in controlling various natural disasters such as floods, landslides, and droughts. Various
machine learning models (MLMs) have been used to increase the accuracy of soil moisture content
prediction. The present investigation aims to apply MLMs with novel structures for the estimation of
daily volumetric soil water content, based on the stacking of the multilayer perceptron (MLP), random
forest (RF), and support vector regression (SVR). Two groups of input variables were considered: the
first (Model A) consisted of various meteorological variables (i.e., daily precipitation, air temperature,
humidity, and wind speed), and the second (Model B) included only daily precipitation. The
stacked model (SM) had the best performance (R2 = 0.962) in the prediction of daily volumetric soil
water content for both categories of input variables when compared with the MLP (R2 = 0.957), RF
(R2 = 0.956) and SVR (R2 = 0.951) models. Overall, the SM, which, in general, allows the weaknesses of
the individual basic algorithms to be overcome while still maintaining a limited number of parameters
and short calculation times, can lead to more accurate predictions of soil water content than those
provided by more commonly employed MLMs.

Keywords: machine learning models; soil moisture content; stacked model; statistical measures

1. Introduction

Soil moisture is a variable that substantially affects the interactions between the
Earth’s surface and the atmosphere, both in meteorological and climatic aspects [1]. It plays
a fundamental role in rainfall–runoff processes [2], influencing the division of precipitation
into surface runoff, subsurface flow, and infiltration. It also affects the transformation
of incoming radiation fluxes to the soil into latent and sensible heat fluxes from the soil
to the atmosphere. Soil moisture also strongly impacts the interaction between climate
and vegetation in its multiple aspects, primarily the phenomenon of evapotranspiration.
Moreover, soil moisture is a major discriminating factor in the type and condition of
vegetation in a region. Variations in soil moisture can, therefore, have a massive impact on
agriculture, forestry, and ecosystems.

Soil moisture measurement can be conducted by using in situ probes [3,4] or by
remote sensing methods [5]. The significant impact on infiltration and runoff phenomena
gives soil moisture prediction a key role in flood risk management [6] and landslide risk
monitoring [7]. Furthermore, predicting soil moisture and its changes is essential for
predicting the onset of drought and planning irrigation [8], as soil moisture is a critical
limiting factor for crop growth.

Traditional soil moisture prediction techniques include empirical formulas, models
based on soil water balance, models based on soil water dynamics, and autoregressive
moving average models (ARMA). Empirical formulas are simple but often inaccurate tools,
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while models based on water balance or soil water dynamics require very detailed knowl-
edge of the investigation site and boundary conditions. ARMA models need large-scale,
high-quality datasets for training, which frequently are not available. Compared to these
traditional methodologies, higher prediction accuracy and improved reliability in estimat-
ing uncertainty can be achieved by models based on artificial intelligence (AI) algorithms,
which have found increasingly widespread use in the prediction of hydrological quantities
over the past two decades [9–17]. However, as with ARMA models, AI models require
large, high-quality datasets, as well as the optimization of a number of hyper-parameters.

A large number of studies on soil moisture estimation were carried out using various
machine learning algorithms: support vector regression (SVR), artificial neural networks
(ANNs), model tree (MT), multivariate adaptive regression spline (MARS), and adaptive
neurofuzzy inference system (ANFIS) [18–28].

Elshorbagy and Parasuraman [18] employed two types of ANNs, i.e., multilayer
perceptron (MLP) and the higher-order (HO-NN) types, to estimate soil moisture by
accumulating field data at three subwatershed soil covers. They considered precipitation,
air temperature, net solar radiation, and soil temperature at various depths for feeding
MLP and HO-NN models. They found that the HO-NN model had better performance
than MLP. Liu et al. [29] proposed a hybrid ANN—SVR architecture to estimate water
content at a study site located in Chongqing, China. The authors noted that the hybrid
model clearly outperformed the individual models. Additionally, Ahmad et al. [30] used
SVR to assess soil moisture at 10 sites in the Lower Colorado River Basin. SVR models were
trained using 5 years of data. The best results obtained were characterized by correlation
coefficients between 0.34 and 0.77 between the soil moisture predicted with SVR and the
value measured with remote sensing techniques, with a root mean square error (RMSE) of
less than 2%. Furthermore, the authors made a comparison with the results obtained from
models based on ANN and multiple linear regressions (MLR), showing that they were
outperformed by SVR.

Si et al. [19] employed ANFIS, MLP, and the Bayesian regularization neural network
(BRNN) in order to estimate soil moisture content at two different depths: 40 and 60 cm.
They applied 900 data sets from field measurement in order to develop the AI models.
From their results, it was found that ANFIS provided more accurate prediction of soil
moisture than the BRNN and the MLP models. In addition, Zanetti et al. [20] employed
the MLP model to assess soil moisture content while considering various properties of five
types of soils, such as the apparent dielectric constant, clay and organic matter contents,
bulk density and sand, and the silt content. They found that the MLP model with various
combinations of input variables, such as organic matter combined with apparent dielectric
constant, was particularly effective. Karandish and Simunek [31] evaluated the superiority
of ANFIS and SVR with HYDRUS-2D for predicting time-dependent soil moisture content
obtained using a physical model under various water stress circumstances over the maize-
growing time period of 2010 and 2011. Later, Cui et al. [21] used MLP and MODIS data to
estimate soil moisture, achieving an acceptable level of accuracy. In another study, Prasad
et al. [23] developed an ensemble committee machine (CoM) learning model based on ANN
(ANN-CoM) and utilized it to predict monthly soil moisture in the upper and lower layer of
soil. From their study, statistical results indicated outperformance of the ANN-CoM model
in comparison with those yielded by extreme learning machine (ELM), RF, and M5Tree.

Moreover, Prasad et al. [24] found superiority of ELM with ensemble empirical mode
decomposition and the Boruta wrapper algorithm (EEMD-Boruta-ELM) over standalone
MARS, ELM, and the EEMD-Boruta-MARS models for estimating weekly values of soil
moisture content. Cai et al. [32] found that the deep learning NN (DLNN) provided
a more accurate prediction of daily soil moisture based on various meteorological factors
(e.g., daily precipitation, daily mean surface temperature, average wind speed, average
relative humidity, average air pressure, and average temperature) than the MLP model
at depths of 10 and 20 cm. Achieng [26] successfully used an SVR model by Gaussian
kernel to simulate soil moisture content when compared with SVR models developed
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by polynomial and linear kernels, MLP, and the DLNN models. In recent years, Yuan
et al. [27] reported a permissible level of accuracy when the generalized regression NN
(GR-NN) was employed in order to estimate the regional surface soil moisture by means
of satellite observations as input factors. Maroufpoor et al. [25] proposed a hybrid model
based on the adaptive neurofuzzy inference system (ANFIS) and grey wolf optimization
(GWO) algorithms, which was then compared with ANN, SVR, and standalone ANFIS.
The input parameters of the model were the dielectric constant, bulk soil density, clay
content, and organic matter of 1155 soil samples. The ANFIS-GWO model proved to be
the most accurate, followed by the standalone ANFIS and SVR models. Adab et al. [33]
used RF, SVR, ANN, and elastic network (EN) regression to estimate soil moisture from
data obtained from Landsat 8 optical and thermal sensors, and knowledge of land use in
a semi-arid region of Iran. The best results, characterized by a Nash–Sutcliffe efficiency
value of 0.73, were obtained with the RF algorithm. In Heddam’s [28] study, four machine
learning models (MLMs, i.e., MT, RF, MARS, and MLP-NN) were successfully employed
to estimate soil moisture content while considering only hourly soil temperature as the
input variable (obtained from two USGS stations) and compared with multivariate linear
regression (MLR) technique.

Therefore, in the current literature, various MLMs have indicated promising perfor-
mance in the estimation of soil moisture content for various conditions of soil physical
properties. However, there is a shortage of models for predicting future soil water content
(SWC), even in the short term, that are both simple, based on a few easily measurable
input variables, and highly accurate. The main objective of this study is to propose a novel
ensemble daily SWC prediction model obtained by stacking [34] three individual machine
learning algorithms: MLP, RF, and SVR. These three standalone algorithms were chosen
both because individually they showed good predictive capabilities, and because they have
different structures and, thus, their combination can overcome the weaknesses of each
algorithm. Furthermore, these three algorithms, compared with more complex algorithms
such as deep learning, have the advantage that they depend on few parameters, facilitating
training and optimization operations, and are characterized by significantly shorter calcu-
lation times. To the best of the authors’ knowledge, there are no applications of stacked
algorithms for short-term prediction of SWC in the literature so far. The performance of the
stacked model is compared with that of the individual algorithms considering two different
scenarios of input variables. The proposed model is trained and tested with data obtained
from a measurement site in East Anglia, UK. In addition, changes in model accuracy are
statistically analyzed as the prediction horizon increases, while remaining within the scope
of short-term forecasts.

2. Materials and Methods
2.1. Standalone Machine Learning Algorithms

In this research, MLP, RF, and SVR algorithms were used both individually and
combined through stacking. Only a brief description of the machine learning algorithms
used is given here. Readers interested in learning more about the algorithms may consult
the relevant references. An MLP is a simple feedforward [35,36] ANN that can approximate
any continuous function. An MLP consists of at least three layers of nodes: an input layer,
at least one hidden layer, and an output layer (Figure 1a). The input layer includes the
nodes that acquire the input data. Each node of the hidden layer processes the values
of the previous layer using a weighted linear sum, followed by a non-linear activation
function. The output layer receives the processed data from the last hidden layer and
transforms them into the resulting values. The training of the algorithm is performed using
the backpropagation technique. The neural networks employed in this study had only
one hidden layer.
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Figure 1. Architecture of individual algorithms considered in the study: (a) multilayer perceptron,
(b) random forest, (c) support vector regression.

RF [37] is an ensemble prediction algorithm obtained by combining a set of individual
regression trees in order to predict a single value of the target variable (Figure 1b). In each
individual regression tree [38] it is possible to identify a root node, which comprises the
training dataset, a number of internal nodes, which define the conditions on the input
variables, and leaves, which represent the actual values assigned to the target variables.
A tree regression model is developed by recursively dividing the input dataset into subsets,
conducted in such a way as to minimize the internal node variance. A multivariable linear
regression model provides predictions for each subset. Each tree grows from a different
bootstrap of the training dataset. In addition, at each node, only a portion of the variables
are randomly chosen with respect to which to split. The number of these variables is kept
constant during the growth of the forest. A pruning process significantly reduces the risk
of overfitting.

The idea behind the SVR (Figure 1c) algorithm [39] is to provide an approximation
of the true value with a function that is as flat as possible, and that brings the error
within a certain threshold, defined by an ε-value. A simple way to understand the SVR
algorithm is to imagine a “tube” with an estimated function (hyperplane) as the center
line and boundaries on both sides defined by ε. The goal of the algorithm is to minimize
the error by identifying a function that places as many points of the training dataset as
possible within the tube, while reducing the “slack”. The concept of slack variables is
simple: for any value that falls outside ε, its deviation from the margin is denoted as ξ.
When these deviations are to be tolerated, the algorithm tends to minimize them as well.
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Therefore, the deviations ξ are added to the objective function to be minimized in the
constrained optimization problem into which the regression problem turns. The need to
ensure a balance between the flatness of the regression function and the tolerated slacks is
met by tuning a regularization parameter C. In SVR, regression is performed in a higher
dimension. For this purpose, a function is required that maps the data points in a higher
dimension. This function is defined as the kernel. In this study, the radial basis function
(RBF) was chosen as the kernel K(xi, xj):

K(xi, xj) = exp
(
−γ
∥∥xi − xj

∥∥2
)

, γ > 0 (1)

where xi, xj are two input vectors.

2.2. Evaluation Criteria

Four different evaluation criteria were employed to assess the accuracy of the pre-
diction models: coefficient of determination (R2), root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error (MAPE). The R2 coefficient
is an estimation of goodness of fit, taking values in the range [0, 1]. The more accurate
a model’s predictions are, the closer its R2 will be to 1. It is defined as:

R2 =

1−
∑
t
( ft − yt)

2

∑
t
(ya − yt)

2

 (2)

where ft is the predicted value at time t, yt is the measured value at time t, and ya is the
averaged value of the measured data.

The RMSE is the standard deviation of the prediction errors, the so-called residuals,
which measure the distance of the experimental points from the regression line. In practice,
the RMSE quantifies the dispersion of the data around the line of best fit. It is evaluated as:

RMSE =

√√√√∑
t
( ft − yt)

2

N
(3)

in which N is the total number of predicted values in the time series.
The MAE estimates the average size of errors in the forecasts as a whole, without

taking their direction into account:

MAE =
∑
t
| ft − yt|

N
(4)

The mean absolute percentage error (MAPE) evaluates the average of the absolute
percentage errors of the prediction model. For the purpose of calculating MAPE, percentage
errors are considered without taking the sign into account:

MAPE =
100
N ∑

t

∣∣∣∣yt − ft

yt

∣∣∣∣ (5)

2.3. Stacked Model Development

Stacking [40,41] is an ensemble machine learning procedure that combines a number
of classification or regression models through a metaclassifier. Stacking can exploit the
capabilities of several well-performing models on a regression task in order to outper-
form standalone models in achieving predictions. The individual regression models are
developed on the basis of the entire training data set, then a metaclassifier is applied on
the basis of the outputs (meta-features) of the individual models. The elastic net (EN)
algorithm was selected as the meta-classifier to develop the stacked prediction models. EN
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algorithm [42] is a combination of the two most commonly used regularized variants of
linear regression: the least absolute shrinkage and selection operator (LASSO) method and
the ridge method. The LASSO method selects the most influential variables by introducing
an absolute penalty in the ordinary least squares (OLS) regression. ridge regularization
also introduces a penalty in the OLS formulation by penalizing square weights instead of
absolute weights. Thus, large weights are penalized significantly, and many small weights
are distributed over the feature spectrum.

Two prediction models, differing in input variables, were developed in this study. Each
model was developed in four variants, each based on one of the different ML algorithms
introduced before, namely MLP, RF, SVR, and the combination by stacking of the previous
ones (Figure 2). Model A includes the following exogenous input variables: cumulative
daily precipitation (P), average daily air temperature T, average daily wind speed (WS), and
average daily relative humidity (RH). On the other hand, Model B only includes cumulative
daily precipitation P as an exogenous input. In addition, both models include lagged values
of SWC as input variables.

Figure 2. Flowchart of the stacked model implementation.

The optimal number of lagged values of SWC, as well as the optimal values of the
hyperparameters of the individual ML algorithms, were chosen by means of a grid search
optimization procedure aimed at minimizing the RMSE of individual forecasting algo-
rithms. A grid search is simply a heuristic search procedure through a user-specified subset
of the hyperparameter space of a learning algorithm. A grid search algorithm must be
driven by some performance metric, in this case RMSE.

It was found that, in the case study investigated, the optimal number of lagged values
of SWC to be considered as input is 7. In addition, the optimized hyper-parameters of the
forecast models are shown in Table 1. Therefore, based on the optimization process, the
following input and output values can be indicated for the two forecast models:

Model A—input: SWCt-6, SWCt-5, . . . , SWCt, Pt, Tt, WSt, RHt; output: SWCt+1,
SWCt+2, SWCt+3

Model B—input: SWCt-6, SWCt-5, . . . , SWCt, Pt; output: SWCt+1, SWCt+2, SWCt+3
where subscripts indicate the number of the day. The generic variable was normalized

according to the equation:

xNi =
xi − xmin

xmax − xmin
(6)

Model training is the core of the process of developing a prediction model, during
which the weights and biases of an algorithm are optimized to reduce the loss function in
the prediction interval. Applying a supervised learning technique, model training leads to
a mathematical representation of the relationship between data features and a target label.
The training of each model was carried out using 80% of the available time series, from
June 2017 to June 2019. As this is a forecasting problem on a time series, preserving the
temporal continuity of the data itself is essential and it is not possible to randomly select
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the training dataset. The models were then tested on the remaining 20% of the time series.
This division allowed the most accurate results to be obtained.

Table 1. Main hyperparameters of the forecasting algorithms.

Algorithm Hyperparameter Value

MLP
Number of hidden layers 1

Number of hidden neurons 5
Activation function Sigmoid

RF Number of trees 100

SVR
Kernel function RBF

C 2
ε 0.01

EN α 0.3

2.4. Case Study

The data used in this study were provided by the COSMOS-UK network of the UK
Centre for Ecology and Hydrology. Specifically, data were obtained from the COSMOS-
UK site in Fincham (https://cosmos.ceh.ac.uk/data, accessed on 1 September 2022), East
Anglia, UK (Figure 3). East Anglia’s climate is generally dry and mild. The region is the
driest in the UK. In many areas, rainfall is less than 600 mm per year and is fairly evenly
distributed throughout the year (Figure 4). The Fincham site is located in a large flat field
planted with winter wheat, oilseed rape, and sugar beet in a 6-year rotation. The soil type
is a chalky loam, a calcareous mineral soil. Similar to the other sites in the network, the
Fincham site is equipped with an instrument that uses cosmic rays to measure soil moisture.
More details on the measurement technique can be found in [43–45]. Experimental data are
related to volumetric SWC (%) = (volume of water/volume of soil) × 100. The time series
of daily hydrological variables of interest analyzed (soil water content, cumulative rainfall,
average air temperature, average wind speed, average relative air humidity) include data
collected from 22 June 2017 to 31 December 2019. Some essential information regarding the
data used in the study is shown in Figure 4 and Table 2. The SWC data sample has a low
coefficient of variation (CV) and negative skewness (Table 2).

Figure 3. Case study location at the Fincham measurement site.

https://cosmos.ceh.ac.uk/data
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Figure 4. Time series of cumulative daily rainfall and SWC during the period under investigation.

Table 2. Essential time series characteristics of measured SWC and other climatic variables.

SWC [%] Air Temp. [◦C] Wind Speed [m/s] Rel. Hum. [%]

Mean 24.18 11.06 3.28 80.12
Median 25.00 11.12 3.03 81.43

Max 34.20 27.36 8.52 99.62
Min 9.40 −4.82 0.67 53.36

St. Deviation 5.16 5.54 1.42 9.50
CV 0.21 0.50 0.43 0.12

1st Quartile 20.55 6.79 2.20 73.00
3rd Quartile 27.90 15.50 4.14 87.82

Skewness −0.57 0.00 0.88 −0.31

3. Results

Table 3 shows the values of the evaluation metrics for the prediction Model A with
reference to the 1-day-ahead, 2-days-ahead and 3-days-ahead SWC. The table shows the
metrics for both the training and testing phase, for each of the individual algorithms and
for the stacked model (SM).

With reference to the 1-day-ahead forecast, in the testing phase, the three standalone
algorithms showed roughly equivalent accuracies, with R2 varying between 0.957 (MLP)
and 0.951 (SVR), while MAPE varied between 3.35% (SVR) and 3.62% (RF). The SM out-
performed all other forecasting algorithms, being characterized by a higher R2 of 0.961
and smaller errors, with MAPE of 3.05%. It should be noted that the metrics values for
the testing phase were absolutely comparable to those for the training phase. The only
algorithm for which there was a perceptible difference between the two phases was RF.

The scatter plots of the predicted SWC values versus the measured values (Figure 5)
show the excellent performance of all forecast models, with the points lying along the line
of perfect agreement. With reference to the stacked model for the 1-day-ahead forecast,
Figure 6a shows the time series of the predicted and measured SWC, while Figure 6b shows
the relative error in the same time series. The relative error is defined as the absolute error
in the forecast divided by the actual value of the SWC. The SM could accurately reproduce
both SWC peak values and value fluctuations. Moreover, the relative error was almost
always in the range −5%, +5%, and in a few cases approached ±10%.
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Table 3. Model A evaluation metrics.

MLP RF SVR Stacked Model

Model A
(Training)

1-day-ahead

R2 0.957 0.992 0.942 0.968
RMSE 1.092 0.49 1.267 0.937
MAE 0.816 0.356 0.911 0.694

MAPE 3.36% 1.49% 3.73% 2.85%

2-days-ahead

R2 0.940 0.985 0.912 0.953
RMSE 1.285 0.663 1.569 1.137
MAE 1.009 0.469 1.139 0.861

MAPE 4.22% 1.94% 4.68% 3.56%

3-days-ahead

R2 0.928 0.977 0.891 0.941
RMSE 1.406 0.829 1.752 1.276
MAE 1.101 0.571 1.266 0.959

MAPE 4.66% 2.36% 5.24% 3.99%

Model A
(Testing)

1-day-ahead

R2 0.957 0.956 0.951 0.962
RMSE 0.924 0.985 0.996 0.877
MAE 0.741 0.787 0.744 0.673

MAPE 3.41% 3.62% 3.35% 3.05%

2-days-ahead

R2 0.940 0.938 0.927 0.946
RMSE 1.146 1.217 1.264 1.053
MAE 0.942 0.990 0.945 0.821

MAPE 4.40% 4.59% 4.27% 3.74%

3-days-ahead

R2 0.921 0.929 0.911 0.935
RMSE 1.355 1.360 1.442 1.169
MAE 1.105 1.113 1.069 0.921

MAPE 5.25% 5.22% 4.83% 4.22%

Figure 5. Predicted versus measured SWC, 1-day-ahead predictions, Model A.
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Figure 6. (a) Stacked model time series (Model A), (b) relative errors for each point in the time series.

Considering the 2-days-ahead forecasts, it can be seen that all variants of Model
A underwent a very slight reduction in accuracy, but the forecasts were still very good.
With regard to the SM metrics, for example, it can be observed that R2 decreased from
0.962 to 0.946, RMSE increased from 0.877 to 1.053, MAE increased from 0.673 to 0.821,
and MAPE increased from 3.05% to 3.74%. Again, the stacked model outperformed the
standalone models. The decrease in accuracy for the standalone models was of the same
order of magnitude as that of the SM, as shown by the metrics (Table 3). Even with regard
to 3-days-ahead forecasts, all variants of Model A showed a further slight decrease in
accuracy. Again, the three individual algorithms led to comparable results, while the SM
outperformed them all, as proved by the higher R2 value and lower RMSE, MAE, and
MAPE values. This reduction in accuracy is also found when examining the time series of
the relative error, with reference to 2- and 3-days-ahead forecasts. In the former case, the
relative error most frequently falls in the ±5–10% range, in the latter case it often exceeds
10%, even reaching 15% or more.
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Focusing on the evaluation metrics of Model B (Table 4), it can be seen that, with regard
to 1-day-ahead forecasts, MLP (R2 = 0.951, RMSE = 0.982, MAE = 0.745, and MAPE = 3.42%)
led to better results in the testing phase than RF and SVR. The SM (R2 = 0.949, RMSE = 0.976,
MAE = 0.751, MAPE = 3.39%) led to results practically equivalent to those obtained with
MLP. The ensemble model, in this case, did not lead to better results than the most accurate
standalone algorithm. Furthermore, the predictions provided by Model B were slightly less
accurate than the corresponding ones provided by Model A, with the exception of the MLP
algorithm, for which negligible differences were observed.

Table 4. Model B evaluation metrics for MLP, RF, SVR and stacked model.

MLP RF SVR Stacked Model

Model B
(Training)

1-day-ahead

R2 0.946 0.990 0.934 0.965
RMSE 1.222 0.533 1.365 0.989
MAE 0.914 0.394 0.979 0.737

MAPE 3.72% 1.62% 3.94% 3.02%

2-days-ahead

R2 0.919 0.976 0.892 0.943
RMSE 1.495 0.835 1.749 1.258
MAE 1.161 0.586 1.274 0.964

MAPE 4.77% 2.38% 5.13% 3.98%

3-days-ahead

R2 0.900 0.960 0.863 0.925
RMSE 1.658 1.073 1.989 1.441
MAE 1.286 0.745 1.479 1.109

MAPE 5.32% 3.01% 5.98% 4.62%

Model B
(Testing)

1-day-ahead

R2 0.951 0.943 0.941 0.949
RMSE 0.982 1.145 1.069 0.976
MAE 0.745 0.937 0.810 0.751

MAPE 3.42% 4.28% 3.64% 3.39%

2-days-ahead

R2 0.928 0.916 0.907 0.924
RMSE 1.249 1.456 1.381 1.224
MAE 0.964 1.198 1.028 0.973

MAPE 4.48% 5.53% 4.59% 4.45%

3-days-ahead

R2 0.903 0.896 0.880 0.902
RMSE 1.513 1.667 1.606 1.411
MAE 1.185 1.381 1.193 1.144

MAPE 5.56% 6.43% 5.32% 5.29%

Figure 7 shows the scatter plots of the predicted SWC values compared to the measured
values for Model B. Again, the regular arrangement of the points along the line of perfect
agreement can be seen, with small deviations.

Referring to the SM for the 1-day-ahead prediction, Figure 8a shows the time series
of the predicted and measured SWC, while Figure 8b shows the relative error in the same
time series, in the case of Model B. Again, the SM was able to accurately reproduce both the
peak values of the SWC and the value fluctuations. Moreover, the relative error, although
again almost always in the range of −5%, +5%, in some cases exceeded ±10%, even
approaching 15%.

Focusing on the 2-days-ahead forecasts, it can be seen that, even for Model B, all
variants suffered a reduction in accuracy. Furthermore, all variants underperformed
compared to the corresponding variants of Model A. However, the forecasts were still
satisfactory. MLP (R2 = 0.928, RMSE = 1.249, MAE = 0.964, MAPE = 4.48%) and the SM (R2

= 0.924, RMSE = 1.224, MAE = 0.973, MAPE = 4.45%) again led to the best results. Finally,
3-days-ahead forecasts showed a further reduction in accuracy. The SM provided the best
results, and its metrics took the following values: R2 = 0.902, RMSE = 1.411, MAE = 1.144,
MAPE = 5.29%. The forecasts were still very good, even though all Model B variants
slightly underperformed compared to the corresponding Model A variants.
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Figure 7. Predicted versus measured SWC, 1-day-ahead predictions, Model B.

The results obtained were compared with those provided by a more traditional autore-
gressive integrated moving average with exogenous variables (ARIMAX) model [46,47],
which is effective in forecasting non-stationary time series and was adopted as a bench-
mark. The details of such a model are not described here in order not to overburden the
discussion. For these details, please refer to the essential literature. Considering again 80%
of the training data, including the same exogenous variables as in Model A, and using
the two optimal values of 6 and 2 for the two parameters p (autoregressive order) and q
(moving average order), the results shown in Figure 9 and Table 5 are obtained.
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Figure 8. (a) Stacked model time series (Model B), (b) relative errors for each point in the time series.

Figure 9. SWC time series forecast with ARIMAX model.
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Table 5. ARIMAX model evaluation metrics.

ARIMAX

1-day-ahead

R2 0.944
RMSE 1.046
MAE 0.831

MAPE 3.88%

2-days-ahead

R2 0.924
RMSE 1.284
MAE 0.997

MAPE 5.23%

3-days-ahead

R2 0.910
RMSE 1.542
MAE 1.124

MAPE 5.63%

It is evident that the ARIMAX model slightly underperformed in all MLMs considered.
In particular, it appears to be less effective in accurately reproducing all SWC fluctuations.
However, the results can still be considered valuable in this case as well.

4. Discussion

The results shown above demonstrate that both Model A and Model B are able to
provide satisfactory predictions of short-term SWC. Model A proved to be slightly more
accurate. The presence of air temperature, relative humidity and wind speed among
the input data allows for the consideration of evapotranspiration, which depends on the
aforementioned climatic variables and, in most cases, is the main outflow of moisture
from the soil. However, even the availability of daily cumulative rainfall data as the only
exogenous variable allowed for accurate short-term SWC forecasts in the case study. The
local climatic conditions, characterized by low evapotranspiration values, probably had
a significant influence on the results, giving Model B even greater practical utility than
Model A, due to the smaller number of exogenous variables needed. Obviously, this result
needs to be verified under different climatic conditions.

The SM generally outperformed the standalone models. In some cases, for Model B,
it provided comparable performance to the most accurate individual algorithm. It seems
that the SM performs significantly better than the individual models from which it is
combined if the number of input variables is increased. This statement, however, needs
further investigation.

Further insight into the accuracy of the different prediction models can be pursued
by analyzing the violin plots in Figure 10, which show the relative error distributions
of all variants of Model A and Model B, for the three forecast horizons considered. The
same violin plots also include the corresponding box plots. The following insights can be
deduced from these plots:

a. In the case of Model A, only the SVR-based variant was characterized by an appre-
ciable bias, whereas in the case of Model B, an appreciable bias could be found in
both the MLP- and SVR-based variants.

b. The distribution of the relative error in both models was asymmetrical in many cases.
c. The error distribution tended to become flatter as the forecast horizon increased,

and the IQR of the relative error expanded as the forecast horizon increased. The
standard deviation of the residuals increased as the forecasting horizon increased.
For example, with reference to Model A based on the SM, it was 0.874, 1.049, and
1.164% for the 1-day-ahead, 2-days-ahead, and 3-days-ahead forecasts, respectively.
With reference to the SM-based Model B, the standard deviation of the residuals was
0.978, 1.227, and 1.414 for the 1-day-ahead, 2-days-ahead, and 3-days-ahead forecasts,
respectively.

d. The number of outliers resulting from forecasting models was very low.
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Figure 10. Violin plots of relative errors in (a) Model A, (b) Model B.

This additional information provided by the violin plots enhanced the understanding
of the results described above in terms of metrics. The improvement achieved through
the stacked model is not only recognized in terms of metrics, but also in terms of error
distribution, as can be seen from the violin graphs. The stacked model has a less asymmetric
error distribution than the standalone models, in fact it is almost symmetrical. Furthermore,
the relative error range is smaller, with a higher frequency of lower relative errors. This,
for example, can certainly be an advantage in applications related to the optimization
of irrigation planning under conditions of severe water scarcity, or in the assessment of
landslide triggers.

The lack of benchmark datasets [48] and closely comparable studies prevents direct
comparisons of the results. There are also very few studies focused on soil moisture that use
stacking algorithms for purposes other than forecasting. A recent study by Das et al. [49]
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aimed to map soil surface moisture with a spatial resolution of 30 m in a semi-arid region
using optical, thermal, and microwave remote sensing data, and applying machine learning
techniques such as bagging, boosting, and stacking. The authors found that the stacking of
the cubist, gradient boosting machine (GBM), and RF algorithms led to better results than
the individual algorithms, in agreement with the findings of this study.

Other recent studies on SWC forecasting are based on the use of hybrid models. In
terms of quantitative comparisons, the statistical measures provided by Models A and B
showed that an improved MLM (i.e., the stacked model) outperformed MLP. This finding
was evident in the comparison with Ahmad et al. [30] (R2 = 0.2601 and 0.1764 for SVM
and ANN, respectively). In the investigation by Ahmad et al. [30], the main limitations
were that the input variables were obtained through satellite images, producing a high
degree of uncertainty in the angle of incidence from the tropical rainfall measuring mission
(TRMM), and in the normalized difference vegetation index (NDVI) from the advanced
very high-resolution radiometer (AVHRR).

The performance of the ML models considered in this study is slightly better than
that seen by Si et al. [19], who used ANN-Bayesian regularization (R2 = 0.929) and ANN-
Levenberg–Marquardt (ANN-LM) (R2 = 0.932). It can be noted that the general structures
of some ML models used here (i.e., RF, SVM, and stacked model) are more complex than
those applied in the research of Si et al. [19].

Moreover, Cai et al. [32] provided soil moisture content predictions using deep neural
network regression (DNNR) with as satisfying a degree of accuracy (R2 = 0.98) as in the
present research. Their success in the evaluation of soil moisture was due to consider-
ing a variety of input variables, such as average temperature, average pressure, relative
humidity, wind speed, land temperature, daily precipitation, and initial soil moisture.

Furthermore, the performance of the present ML models was slightly better than that
obtained by Heddam’s [28] investigation (R2 = 0.925, 0.929, and 0.931 for M5MTree, MARS,
and RF, respectively). In addition, the MLP-based model by Heddam [28] had rather lower
accuracy results (R2 = 0.885) than those reported in the present research for both Model A
and Model B. Heddam [28] did not refer to the climatic variables that were considered in the
present research. In fact, he used the soil temperature, the year number, the month number,
and the day number in order to estimate the soil moisture content. His study indicated that
climatic variables play a key role in improving the accuracy levels of ML models.

The main limitation of this study is that it considers only one case study. Therefore,
the possible influence of different climatic conditions on the forecast models is not taken
into account here. It will be interesting, in future developments of this study, to address the
prediction problem under climatic conditions characterized by intense evapotranspiration
and periods of widely varying rainfall (e.g., tropical climates). It will also be interesting
to compare the results provided by the stacked model with those provided by models
based on deep learning algorithms, which are known to perform very well in predicting
time series [50,51]. Finally, the most ambitious goals will be pursued, such as developing
models with a more distant forecasting horizon and models dependent only on exogenous
climate variables.

5. Conclusions

This study introduced a novel forecast algorithm of daily volumetric soil water content,
based on the stacking of the multilayer perceptron, random forest, and support vector
algorithms. Two different input variable scenarios were considered, in order to develop
two forecast models: Model A, which included daily precipitation, air temperature and
humidity, and wind speed as exogenous variables, and Model B, which instead included
only daily precipitation as an exogenous variable.

Both models provided very accurate predictions, with the coefficient of determination
R2 greater than 0.9 and MAPE not exceeding 5% in almost all cases, and with Model
A generally outperforming Model B. In addition, for both models, the stacked algorithm-
based variant generally outperformed the standalone algorithms. Both models experienced
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a modest reduction in accuracy as the forecast horizon increased, remaining within the
range of short-term forecasts. In any case, even a model that only requires precipita-
tion as an exogenous input variable is capable of providing adequate predictions for
practical applications.

The proposed stacked model is simple, based on few parameters, very accurate,
and has a very limited computational time. In the context of current research, which
shows a marked tendency towards increasingly complex models, the proposed model
can be considered an effective tool for facilitating the planning of irrigation activities and
supporting flood risk management [52].
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31. Karandish, F.; Šimůnek, J. A comparison of numerical and machine-learning modeling of soil water content with limited input
data. J. Hydrol. 2016, 543, 892–909. [CrossRef]

32. Cai, Y.; Zheng, W.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS
ONE 2019, 14, e0214508. [CrossRef] [PubMed]

33. Adab, H.; Morbidelli, R.; Saltalippi, C.; Moradian, M.; Ghalhari, G.A.F. Machine learning to estimate surface soil moisture from
remote sensing data. Water 2020, 12, 3223. [CrossRef]

34. Granata, F.; Di Nunno, F.; de Marinis, G. Stacked machine learning algorithms and bidirectional long short-term memory
networks for multi-step ahead streamflow forecasting: A comparative study. J. Hydrol. 2022, 613, 128431. [CrossRef]

35. Rosenblatt, F. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms; Cornell Aeronautical Lab Inc.:
Buffalo, NY, USA, 1961.

36. Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 1991, 2, 183–197. [CrossRef]
37. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
38. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: Oxford, UK, 2017.
39. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
40. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
41. Breiman, L. Stacked regressions. Mach. Learn. 1996, 24, 49–64. [CrossRef]
42. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320.

[CrossRef]
43. Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring soil moisture content non-invasively at intermediate spatial scale

using cosmic-ray neutrons. Geophys. Res. Lett. 2008, 35, L21402. [CrossRef]
44. Desilets, D.; Zreda, M.; Ferré, T.P. Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water

Resour. Res. 2010, 46. [CrossRef]
45. Andreasen, M.; Jensen, K.H.; Zreda, M.; Desilets, D.; Bogena, H.; Looms, M.C. Modeling cosmic ray neutron field measurements.

Water Resour. Res. 2016, 52, 6451–6471. [CrossRef]
46. Box, G.E.P.; Jenkins, G.M. Some recent advances in forecasting and control. J. R. Stat. Soc. Ser. C Appl. Stat. 1968, 17, 91–109.

[CrossRef]
47. Fan, J.; Shan, R.; Cao, X. The analysis to Tertiary-industry with ARIMAX model. J. Math. Res. 2009, 1, 156–163. [CrossRef]
48. Demir, I.; Xiang, Z.; Demiray, B.; Sit, M. WaterBench: A Large-scale Benchmark Dataset for Data-Driven Streamflow Forecasting.

Earth Syst. Sci. Data Discuss. 2022, 14, 1–19. [CrossRef]
49. Das, B.; Rathore, P.; Roy, D.; Chakraborty, D.; Jatav, R.S.; Sethi, D.; Kumar, P. Comparison of bagging, boosting and stacking algorithms

for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies. Catena 2022, 217, 106485. [CrossRef]
50. Sit, M.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A comprehensive review of deep learning applications in

hydrology and water resources. Water Sci. Technol. 2020, 82, 2635–2670. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2015.10.037
http://doi.org/10.1016/j.jhydrol.2016.10.005
http://doi.org/10.1016/j.geoderma.2018.05.035
http://doi.org/10.1016/j.still.2018.03.021
http://doi.org/10.1016/j.catena.2019.02.012
http://doi.org/10.1016/j.jhydrol.2019.05.045
http://doi.org/10.1016/j.cageo.2019.104320
http://doi.org/10.1016/j.jhydrol.2019.124351
http://doi.org/10.1007/s10661-007-9967-9
http://doi.org/10.1016/j.advwatres.2009.10.008
http://doi.org/10.1016/j.jhydrol.2016.11.007
http://doi.org/10.1371/journal.pone.0214508
http://www.ncbi.nlm.nih.gov/pubmed/30943228
http://doi.org/10.3390/w12113223
http://doi.org/10.1016/j.jhydrol.2022.128431
http://doi.org/10.1016/0925-2312(91)90023-5
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/S0893-6080(05)80023-1
http://doi.org/10.1007/BF00117832
http://doi.org/10.1111/j.1467-9868.2005.00503.x
http://doi.org/10.1029/2008GL035655
http://doi.org/10.1029/2009WR008726
http://doi.org/10.1002/2015WR018236
http://doi.org/10.2307/2985674
http://doi.org/10.5539/jmr.v1n2p156
http://doi.org/10.5194/essd-14-5605-2022
https://doi.org/10.1016/j.catena.2022.106485
http://doi.org/10.2166/wst.2020.369


Hydrology 2023, 10, 1 19 of 19

51. Di Nunno, F.; de Marinis, G.; Gargano, R.; Granata, F. Tide prediction in the Venice Lagoon using nonlinear autoregressive
exogenous (NARX) neural network. Water 2021, 13, 1173. [CrossRef]

52. Yildirim, E.; Demir, I. An integrated flood risk assessment and mitigation framework: A case study for middle Cedar River Basin,
Iowa, US. Int. J. Disaster Risk Reduct. 2021, 56, 102113. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/w13091173
http://doi.org/10.1016/j.ijdrr.2021.102113

	Introduction 
	Materials and Methods 
	Standalone Machine Learning Algorithms 
	Evaluation Criteria 
	Stacked Model Development 
	Case Study 

	Results 
	Discussion 
	Conclusions 
	References

