Agri-Food Residues into N-Doped Hydrochar for Peroxymonosulfate Activation in Wastewater Treatment
Abstract
1. Introduction

2. Materials and Methods
2.1. Hydrochar Synthesis
2.2. N-Doped Hydrochar Synthesis
2.3. Evaluation of Catalytic Activity
2.4. Evaluation of Catalytic Mechanism
2.5. Characterization
3. Results
3.1. Characterization
3.2. Assessing the Catalytic Capacity of Alperujo and Banana Peel Materials
3.3. Optimization of Catalytic Activity
3.4. Evaluation of Catalytic Mechanism
3.5. Catalyst Evaluation for Other Organic Pollutants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ewadh, H.M.; Abdullah, S.R.; Anwar, N.; Hasan, H.A. Pharmaceuticals and Personal Care Products: Sources, Toxicity in the Environment, Regulations and Removal Technologies. J. Chem. Pharm. Sci. 2017, 10, 1180–1187. [Google Scholar]
- Melchor-Martínez, E.M.; Jiménez-Rodríguez, M.G.; Martínez-Ruiz, M.; Peña-Benavides, S.A.; Iqbal, H.M.N.; Parra-Saldívar, R.; Sosa-Hernández, J.E. Antidepressants Surveillance in Wastewater: Overview Extraction and Detection. Case Stud. Chem. Environ. Eng. 2021, 3, 100074. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 12 May 2023).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF (accessed on 12 May 2023).
- European Commission. Proposal for a Directive of the European Parliament and of the Council Urban Wastewater Treatment (Recast). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52022PC0541 (accessed on 16 May 2023).
- Puga, A.; Rosales, E.; Pazos, M.; Sanromán, M.A. Application of Deep Eutectic Solvents (DES) for the Synthesis of Iron Heterogeneous Catalyst: Application to Sulfamethoxazole Degradation by Advanced Oxidation Processes. Catalysts 2023, 13, 679. [Google Scholar] [CrossRef]
- Díez, A.M.; Ribeiro, A.S.; Sanromán, M.A.; Pazos, M. Optimization of Photo-Fenton Process for the Treatment of Prednisolone. Environ. Sci. Pollut. Res. 2018, 25, 27768–27782. [Google Scholar] [CrossRef]
- Poza-Nogueiras, V.; Moratalla, Á.; Pazos, M.; Sanromán, Á.; Sáez, C.; Rodrigo, M.A. Towards a More Realistic Heterogeneous Electro-Fenton. J. Electroanal. Chem. 2021, 895, 115475. [Google Scholar] [CrossRef]
- Arellano, M.; Pazos, M.; Sanromán, M.Á. Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater. Water 2019, 11, 1695. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Z.; Zhang, H.; Di, G.; Qiu, Y.; Yin, D.; Wang, S. Hydrochars from Pinewood for Adsorption and Nonradical Catalysis of Bisphenols. J. Hazard. Mater. 2020, 385, 121548. [Google Scholar] [CrossRef]
- Yun, E.-T.; Lee, J.H.; Kim, J.; Park, H.-D.; Lee, J. Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation Versus Mediated Electron Transfer. Environ. Sci. Technol. 2018, 52, 7032–7042. [Google Scholar] [CrossRef]
- Tang, L.; Liu, Y.; Wang, J.; Zeng, G.; Deng, Y.; Dong, H.; Feng, H.; Wang, J.; Peng, B. Enhanced Activation Process of Persulfate by Mesoporous Carbon for Degradation of Aqueous Organic Pollutants: Electron Transfer Mechanism. Appl. Catal. B 2018, 231, 1–10. [Google Scholar] [CrossRef]
- Sun, H.; Kwan, C.K.; Suvorova, A.; Ang, H.M.; Tadé, M.O.; Wang, S. Catalytic Oxidation of Organic Pollutants on Pristine and Surface Nitrogen-Modified Carbon Nanotubes with Sulfate Radicals. Appl. Catal. B 2014, 154–155, 134–141. [Google Scholar] [CrossRef]
- Gasim, M.F.; Lim, J.-W.; Low, S.-C.; Lin, K.-Y.A.; Oh, W.-D. Can Biochar and Hydrochar Be Used as Sustainable Catalyst for Persulfate Activation? Chemosphere 2022, 287, 132458. [Google Scholar] [CrossRef]
- Zaeni, J.R.J.; Lim, J.-W.; Wang, Z.; Ding, D.; Chua, Y.-S.; Ng, S.-L.; Oh, W.-D. In Situ Nitrogen Functionalization of Biochar via One-Pot Synthesis for Catalytic Peroxymonosulfate Activation: Characteristics and Performance Studies. Sep. Purif. Technol. 2020, 241, 116702. [Google Scholar] [CrossRef]
- Wan, Z.; Sun, Y.; Tsang, D.C.W.; Hou, D.; Cao, X.; Zhang, S.; Gao, B.; Ok, Y.S. Sustainable Remediation with an Electroactive Biochar System: Mechanisms and Perspectives. Green Chem. 2020, 22, 2688–2711. [Google Scholar] [CrossRef]
- Lee, J.; Von Gunten, U.; Kim, J.H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef]
- Guan, C.; Jiang, J.; Luo, C.; Pang, S.; Yang, Y.; Wang, Z.; Ma, J.; Yu, J.; Zhao, X. Oxidation of Bromophenols by Carbon Nanotube Activated Peroxymonosulfate (PMS) and Formation of Brominated Products: Comparison to Peroxydisulfate (PDS). Chem. Eng. J. 2018, 337, 40–50. [Google Scholar] [CrossRef]
- Oh, W.-D.; Lim, T.T. Design and Application of Heterogeneous Catalysts as Peroxydisulfate Activator for Organics Removal: An Overview. Chem. Eng. J. 2019, 358, 110–133. [Google Scholar] [CrossRef]
- Yan, Y.; Wei, Z.; Duan, X.; Long, M.; Spinney, R.; Dionysiou, D.D.; Xiao, R.; Alvarez, P.J.J. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. Environ. Sci. Technol. 2023, 57, 12153–12179. [Google Scholar] [CrossRef]
- Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Carbocatalysis by Graphene-Based Materials. Chem. Rev. 2014, 114, 6179–6212. [Google Scholar] [CrossRef] [PubMed]
- Escudero-Curiel, S.; Pazos, M.; Sanromán, A. Facile One-Step Synthesis of a Versatile Nitrogen-Doped Hydrochar from Olive Oil Production Waste, “Alperujo”, for Removing Pharmaceuticals from Wastewater. Environ. Pollut. 2023, 330, 121751. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/Designer Biochar for Contaminant Removal/Immobilization from Soil and Water: Potential and Implication of Biochar Modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef]
- Ahmed, W.; Mehmood, S.; Mahmood, M.; Ali, S.; Shakoor, A.; Núñez-Delgado, A.; Asghar, R.M.A.; Zhao, H.; Liu, W.; Li, W. Adsorption of Pb(II) from Wastewater Using a Red Mud Modified Rice-Straw Biochar: Influencing Factors and Reusability. Environ. Pollut. 2023, 326, 121405. [Google Scholar] [CrossRef]
- Yang, G.; Chen, H.; Qin, H.; Feng, Y. Amination of Activated Carbon for Enhancing Phenol Adsorption: Effect of Nitrogen-Containing Functional Groups. Appl. Surf. Sci. 2014, 293, 299–305. [Google Scholar] [CrossRef]
- Wang, H.; Guo, W.; Liu, B.; Wu, Q.; Luo, H.; Zhao, Q.; Si, Q.; Sseguya, F.; Ren, N. Edge-Nitrogenated Biochar for Efficient Peroxydisulfate Activation: An Electron Transfer Mechanism. Water Res. 2019, 160, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Xu, Z.; Sun, Y.; He, M.; Hou, D.; Cao, X.; Tsang, D.C.W. Critical Impact of Nitrogen Vacancies in Nonradical Carbocatalysis on Nitrogen-Doped Graphitic Biochar. Environ. Sci. Technol. 2021, 55, 7004–7014. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Sun, H.; Wang, Y.; Kang, J.; Wang, S. N-Doping-Induced Nonradical Reaction on Single-Walled Carbon Nanotubes for Catalytic Phenol Oxidation. ACS Catal. 2014, 5, 553–559. [Google Scholar] [CrossRef]
- Byambaa, B.; Kim, E.J.; Seid, M.G.; An, B.M.; Cho, J.; Aung, S.L.; Song, K.G. Synthesis of N-Doped Sludge Biochar Using the Hydrothermal Route-Enabled Carbonization Method for the Efficient Degradation of Organic Pollutants by Peroxymonosulfate Activation. Chem. Eng. J. 2023, 456, 141037. [Google Scholar] [CrossRef]
- Qu, S.; Yuan, Y.; Yang, X.; Xu, H.; Mohamed, A.K.; Zhang, J.; Zhao, C.; Liu, L.; Wang, B.; Wang, X.; et al. Carbon Defects in Biochar Facilitated Nitrogen Doping: The Significant Role of Pyridinic Nitrogen in Peroxymonosulfate Activation and Ciprofloxacin Degradation. Chem. Eng. J. 2022, 441, 135864. [Google Scholar] [CrossRef]
- Sun, X.-F.; Wang, S.-G.; Cheng, W.; Fan, M.; Tian, B.-H.; Gao, B.-Y.; Li, X.-M. Enhancement of Acidic Dye Biosorption Capacity on Poly(Ethylenimine) Grafted Anaerobic Granular Sludge. J. Hazard. Mater. 2011, 189, 27–33. [Google Scholar] [CrossRef]
- Xia, Y.; Luo, H.; Li, D.; Chen, Z.; Yang, S.; Liu, Z.; Yang, T.; Gai, C. Efficient Immobilization of Toxic Heavy Metals in Multi-Contaminated Agricultural Soils by Amino-Functionalized Hydrochar: Performance, Plant Responses and Immobilization Mechanisms. Environ. Pollut. 2020, 261, 114217. [Google Scholar] [CrossRef]
- Ateia, M.; Attia, M.F.; Maroli, A.; Tharayil, N.; Alexis, F.; Whitehead, D.C.; Karanfil, T. Rapid Removal of Poly- and Perfluorinated Alkyl Substances by Poly(Ethylenimine)-Functionalized Cellulose Microcrystals at Environmentally Relevant Conditions. Environ. Sci. Technol. Lett. 2018, 5, 764–769. [Google Scholar] [CrossRef]
- Tran, H.D.; Nguyen, D.Q.; Do, P.T.; Tran, U.N.P. Kinetics of Photocatalytic Degradation of Organic Compounds: A Mini-Review and New Approach. RSC Adv. 2023, 13, 16915–16925. [Google Scholar] [CrossRef] [PubMed]
- Demšar, J.; Erjavec, A.; Hočevar, T.; Milutinovič, M.; Možina, M.; Toplak, M.; Umek, L.; Zbontar, J.; Zupan, B. Orange: Data Mining Toolbox in Python Tomaž Curk Matija Polajnar Laň Zagar. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Agrochemical Characterisation of “Alperujo”, a Solid by-Product of the Two-Phase Centrifugation Method for Olive Oil Extraction. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Yeom, H.J.; Ha, M.S.; Bae, D.H. Development of Banana Peel Jelly and Its Antioxidant and Textural Properties. Food Sci. Biotechnol. 2010, 19, 449–455. [Google Scholar] [CrossRef]
- Elsayed, I.; Madduri, S.; El-Giar, E.M.; Hassan, E.B. Effective Removal of Anionic Dyes from Aqueous Solutions by Novel Polyethylenimine-Ozone Oxidized Hydrochar (PEI-OzHC) Adsorbent. Arab. J. Chem. 2022, 15, 103757. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Escudero-Curiel, S.; Penelas, U.; Sanromán, M.Á.; Pazos, M. An Approach towards Zero-Waste Wastewater Technology: Fluoxetine Adsorption on Biochar and Removal by the Sulfate Radical. Chemosphere 2021, 268, 129318. [Google Scholar] [CrossRef]
- Escudero-Curiel, S.; Acevedo-García, V.; Sanromán, M.Á.; Pazos, M. Eco-Approach for Pharmaceutical Removal: Thermochemical Waste Valorisation, Biochar Adsorption and Electro-Assisted Regeneration. Electrochim. Acta 2021, 389, 138694. [Google Scholar] [CrossRef]
- Brillas, E.; Oliver, R. Development of Persulfate-Based Advanced Oxidation Processes to Remove Synthetic Azo Dyes from Aqueous Matrices. Chemosphere 2024, 355, 141766. [Google Scholar] [CrossRef]
- Reza, M.T.; Andert, J.; Wirth, B.; Busch, D.; Pielert, J.; Lynam, J.G.; Mumme, J. Hydrothermal Carbonization of Biomass for Energy and Crop Production. Appl. Bioenergy 2014, 1, 11–29. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and Quantitative Analysis of Lignocellulosic Biomass Using Infrared Techniques: A Mini-Review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef]
- Abdelhadi, S.O.; Dosoretz, C.G.; Rytwo, G.; Gerchman, Y.; Azaizeh, H. Production of Biochar from Olive Mill Solid Waste for Heavy Metal Removal. Bioresour. Technol. 2017, 244, 759–767. [Google Scholar] [CrossRef]
- Volpe, M.; Wüst, D.; Merzari, F.; Lucian, M.; Andreottola, G.; Kruse, A.; Fiori, L. One Stage Olive Mill Waste Streams Valorisation via Hydrothermal Carbonisation. Waste Manag. 2018, 80, 224–234. [Google Scholar] [CrossRef]
- Mohd Zaini, H.; Roslan, J.; Saallah, S.; Munsu, E.; Sulaiman, N.S.; Pindi, W. Banana Peels as a Bioactive Ingredient and Its Potential Application in the Food Industry. J. Funct. Foods 2022, 92, 105054. [Google Scholar] [CrossRef]
- Landázuri, A.C.; Prócel, L.M.; Caisaluisa, O.; Beltrán, K.; Holguín, E.; Yépez, S.; Orejuela-Escobar, L.M.; Guerrero, V.H.; Herrera, N.; Taco, R. Valorization of Ripe Banana Peels and Cocoa Pod Husk Hydrochars as Green Sustainable “Low Loss” Dielectric Materials. J. Clean. Prod. 2023, 426, 139044. [Google Scholar] [CrossRef]
- Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. The Thermal and Boron-Catalysed Direct Amide Formation Reactions: Mechanistically Understudied yet Important Processes. Chem. Commun. 2010, 46, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Larkin, P.J. Introduction. In Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–5. [Google Scholar][Green Version]
- Chen, X.; Oh, W.-D.; Lim, T.T. Graphene- and CNTs-Based Carbocatalysts in Persulfates Activation: Material Design and Catalytic Mechanisms. Chem. Eng. J. 2018, 354, 941–976. [Google Scholar] [CrossRef]
- Anfar, Z.; El Fakir, A.A.; Zbair, M.; Hafidi, Z.; Amedlous, A.; Majdoub, M.; Farsad, S.; Amjlef, A.; Jada, A.; El Alem, N. New Functionalization Approach Synthesis of Sulfur Doped, Nitrogen Doped and Co-Doped Porous Carbon: Superior Metal-Free Carbocatalyst for the Catalytic Oxidation of Aqueous Organics Pollutants. Chem. Eng. J. 2021, 405, 126660. [Google Scholar] [CrossRef]
- Mumme, J.; Eckervogt, L.; Pielert, J.; Diakité, M.; Rupp, F.; Kern, J. Hydrothermal Carbonization of Anaerobically Digested Maize Silage. Bioresour. Technol. 2011, 102, 9255–9260. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Moreno, L.; Bazhari, S.; Gasco, G.; Méndez, A.; El Azzouzi, M.; Romero, E. New Insights into the Efficient Removal of Emerging Contaminants by Biochars and Hydrochars Derived from Olive Oil Wastes. Sci. Total Environ. 2021, 752, 141838. [Google Scholar] [CrossRef]
- Ângelo, J.; Magalhães, P.; Andrade, L.; Mendes, A. Characterization of TiO2-Based Semiconductors for Photocatalysis by Electrochemical Impedance Spectroscopy. Appl. Surf. Sci. 2016, 387, 183–189. [Google Scholar] [CrossRef]
- Díez, A.M.; García-Ocampo, J.; Pazos, M.; Sanromán, M.Á.; Kolen’ko, Y.V. Structured Organic Frameworks as Endocrine Disruptor Adsorbents Suitable for Fenton Regeneration and Reuse. J. Environ. Chem. Eng. 2024, 12, 111820. [Google Scholar] [CrossRef]
- Mahanthappa, M.; Kottam, N.; Yellappa, S. Enhanced Photocatalytic Degradation of Methylene Blue Dye Using CuSCdS Nanocomposite under Visible Light Irradiation. Appl. Surf. Sci. 2019, 475, 828–838. [Google Scholar] [CrossRef]
- Pant, B.; Ojha, G.P.; Kuk, Y.S.; Kwon, O.H.; Wan Park, Y.; Park, M. Synthesis and Characterization of ZnO-TiO2/Carbon Fiber Composite with Enhanced Photocatalytic Properties. Nanomaterials 2020, 10, 1960. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Zhao, X.; Tang, Z.; Lv, H.; Wu, F.; Wang, X.; Zhao, T.; Wang, J.; Wu, A.; Giesy, J.P. Difference in Performance and Mechanism for Methylene Blue When TiO2 Nanoparticles Are Converted to Nanotubes. J. Clean. Prod. 2021, 297, 126498. [Google Scholar] [CrossRef]
- Díez, A.M.; Núñez, I.; Pazos, M.; Sanromán, M.Á.; Kolen’ko, Y.V. Fluoride-Doped TiO2 Photocatalyst with Enhanced Activity for Stable Pollutant Degradation. Catalysts 2022, 12, 1190. [Google Scholar] [CrossRef]
- He, H.; Hu, Y.; Chen, S.; Zhuang, L.; Ma, B.; Wu, Q. Preparation and Properties of A Hyperbranch-Structured Polyamine Adsorbent for Carbon Dioxide Capture. Sci. Rep. 2017, 7, 3913. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H. Structure-Function Correlations of Carbonaceous Materials for Persulfate-Based Advanced Oxidation. Langmuir 2021, 37, 13969–13975. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, X.; Li, X.; Jiang, L.; Wang, H. Burgeoning Prospects of Biochar and Its Composite in Persulfate-Advanced Oxidation Process. J. Hazard. Mater. 2021, 409, 124893. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Xiao, S.; Zhong, H.; Yan, M.; Yang, X. Activation of Persulfates by Carbonaceous Materials: A Review. Chem. Eng. J. 2021, 418, 129297. [Google Scholar] [CrossRef]
- Ji, R.; Zhang, Z.; Tian, L.; Jin, L.; Xu, Q.; Lu, J. Z- Scheme Heterojunction of BiOI Nanosheets Grown in Situ on NH2-UiO-66 Crystals with Rapid Degradation of BPA in Real Water. Chem. Eng. J. 2023, 453, 139897. [Google Scholar] [CrossRef]
- Oh, W.-D.; Zaeni, J.R.J.; Lisak, G.; Lin, K.-Y.A.; Leong, K.-H.; Choong, Z.-Y. Accelerated Organics Degradation by Peroxymonosulfate Activated with Biochar Co-Doped with Nitrogen and Sulfur. Chemosphere 2021, 277, 130313. [Google Scholar] [CrossRef]
- Guan, C.; Jiang, J.; Luo, C.; Pang, S.; Jiang, C.; Ma, J.; Jin, Y.; Li, J. Transformation of Iodide by Carbon Nanotube Activated Peroxydisulfate and Formation of Iodoorganic Compounds in the Presence of Natural Organic Matter. Env. Sci. Technol. 2016, 51, 479–487. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, B.; Yan, M.; Liu, Z.; Liang, Q.; He, Q.; Wu, T.; Liu, Y.; Pan, Y.; Huang, J.; et al. Activation of Peroxymonosulfate by Biochar-Based Catalysts and Applications in the Degradation of Organic Contaminants: A Review. Chem. Eng. J. 2021, 416, 128829. [Google Scholar] [CrossRef]
- Kemmou, L.; Frontistis, Z.; Vakros, J.; Manariotis, I.D.; Mantzavinos, D. Degradation of Antibiotic Sulfamethoxazole by Biochar-Activated Persulfate: Factors Affecting the Activation and Degradation Processes. Catal. Today 2018, 313, 128–133. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Qin, Y.; Yao, C.; An, Q.; Xiao, Z.; Zhai, S. Preparation of Cobalt/Hydrochar Using the Intrinsic Features of Rice Hulls for Dynamic Carbamazepine Degradation via Efficient PMS Activation. J. Environ. Chem. Eng. 2022, 10, 108659. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Y.; Zhang, H.; Qiu, Y.; Yin, D.; Zhu, Z. Synergistic Electron Transfer in MnOX-Embedded Hydrochar Composite for Efficient Peroxymonosulfate Activation toward Degradation of Refractory Florfenicol in Water. J. Environ. Chem. Eng. 2025, 13, 119597. [Google Scholar] [CrossRef]
- Ouadrhiri, F.E.L.; Adachi, A.; Elyemni, M.; Bayout, A.; Hmamou, A.; Bendaoud, A.; Lhassani, A.; Chaouch, M.; Oturan, M.A.; Lahkimi, A. N,P-Co-Doped Carbocatalyst from Olive Pomace Obtained by Catalytic Hydrothermal Carbonization for Efficient Dye Degradation via Persulfate-Based Advanced Oxidation Process. 2022. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D. Fe–Nitrogen–Doped Carbon with Dual Active Sites for Efficient Degradation of Aromatic Pollutants via Peroxymonosulfate Activation. Chem. Eng. J. 2022, 427, 130898. [Google Scholar] [CrossRef]
- Wei, J.; Xiong, Z.; Ao, M.; Guo, Z.; Zhang, J.; Lai, B.; Song, Y. Selective Degradation of Sulfamethoxazole by N-Doped Iron-Based Carbon Activated Peroxymonosulfate: Collaboration of Singlet Oxygen and High-Valent Iron-Oxo Species. Sep. Purif. Technol. 2022, 297, 121379. [Google Scholar] [CrossRef]
- Liu, T.; Li, C.; Chen, X.; Chen, Y.; Cui, K.; Wang, D.; Wei, Q. Peroxymonosulfate Activation by Fe@N Co-Doped Biochar for the Degradation of Sulfamethoxazole: The Key Role of Pyrrolic, N. Int. J. Mol. Sci. 2024, 25, 10528. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, Y.; Li, N.; Liu, W.; Yan, B.; Yu, Y.; Liang, L.; Chen, G.; Hou, L.; Wang, S. Tunable Active Sites on Biogas Digestate Derived Biochar for Sulfanilamide Degradation by Peroxymonosulfate Activation. J. Hazard Mater. 2022, 421, 126794. [Google Scholar] [CrossRef]
- Sun, Z.; Kou, W.; Leng, J.; Xu, Y.; Ke, S.; Ren, W. Thermally Derived Sludge Biochar as an Efficient Activator of Persulfate for Dye Wastewater Treatment. Environ. Res. 2025, 287, 123146. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Duan, X.; Dong, Q.; Meng, F.; Tan, X.; Liu, S.; Wang, S. Facile Synthesis of N-Doped 3D Graphene Aerogel and Its Excellent Performance in Catalytic Degradation of Antibiotic Contaminants in Water. Carbon N. Y. 2019, 144, 781–790. [Google Scholar] [CrossRef]






| Composition (%) | A | HA | N-HA-GTA | N-HA-EDC |
|---|---|---|---|---|
| C | 52.58 | 59.29 | 56.66 | 61.98 |
| N | 1.37 | 1.32 | 5.42 | 3.96 |
| O* | 40.74 | 33.07 | 30.55 | 25.92 |
| H | 5.01 | 6.03 | 7.08 | 7.85 |
| S | <0.30 | <0.30 | <0.30 | <0.30 |
| B | HB | N-HB-GTA | N-HB-EDC | |
| C | 39.42 | 58.83 | 57.72 | 61.14 |
| N | 1.14 | 1.73 | 4.04 | 4.17 |
| O* | 55.42 | 28.61 | 32.27 | 28.24 |
| H | 3.73 | 6.05 | 5.98 | 6.15 |
| S | <0.30 | <0.30 | <0.30 | <0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escudero-Curiel, S.; López-Rodríguez, X.M.; Díez, A.M.; Pazos, M.; Sanromán, Á. Agri-Food Residues into N-Doped Hydrochar for Peroxymonosulfate Activation in Wastewater Treatment. ChemEngineering 2025, 9, 135. https://doi.org/10.3390/chemengineering9060135
Escudero-Curiel S, López-Rodríguez XM, Díez AM, Pazos M, Sanromán Á. Agri-Food Residues into N-Doped Hydrochar for Peroxymonosulfate Activation in Wastewater Treatment. ChemEngineering. 2025; 9(6):135. https://doi.org/10.3390/chemengineering9060135
Chicago/Turabian StyleEscudero-Curiel, Silvia, Xacobe M. López-Rodríguez, Aida M. Díez, Marta Pazos, and Ángeles Sanromán. 2025. "Agri-Food Residues into N-Doped Hydrochar for Peroxymonosulfate Activation in Wastewater Treatment" ChemEngineering 9, no. 6: 135. https://doi.org/10.3390/chemengineering9060135
APA StyleEscudero-Curiel, S., López-Rodríguez, X. M., Díez, A. M., Pazos, M., & Sanromán, Á. (2025). Agri-Food Residues into N-Doped Hydrochar for Peroxymonosulfate Activation in Wastewater Treatment. ChemEngineering, 9(6), 135. https://doi.org/10.3390/chemengineering9060135

