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Abstract: The dynamics of a quadruple tank system (QTS) represent an extensive class of multivariate
nonlinear uncertain systems found in the industry. It has been established that changes in split
fractions affect the transmission zero location, thereby altering the operating conditions between the
minimum and non-minimum phase regions. The latter is difficult to control as more fluid flows into
the two upper tanks than into the two bottom tanks, resulting in competing effects between the initial
and final system responses. This attribute, alongside nonlinearity, uncertainties, constraints, and a
multivariate nature, can degrade closed-loop system performance, leading to instability. In this study,
we addressed the aforementioned challenges by designing controllers for the regulation of the water
flow in the two bottom tanks of the QTS. For comparative analysis, three controller algorithms—a
nonlinear model predictive controller (NMPC), NMPC augmented with an extended Kalman filter
(i.e., NMPC-EKF) and linear model predictive controller (LMPC)—were considered in the analysis
and design of the control mechanism for the quadruple water level system in a non-minimum phase
condition via the Matrix Laboratory (MATLAB) simulation package environment. The simulated and
real-time results in the closed loop were analyzed, and the controller performances were considered
based on faster setpoint responses, less oscillation, settling time, overshoot, and smaller integral
absolute error (IAE) and integral square error (ISE) under various operational conditions. The study
showed that the NMPC, when augmented with an EKF, is effective for the control of a QTS in
the non-minimum phase and could be designed for more complex, nonlinear, and multivariable
dynamics systems, even in the presence of constraints.

Keywords: quadruple tank system; non-minimum phase; nonlinear model predictive control;
extended Kalman filter; optimal control problem; MIMO

1. Introduction

Problems are frequently encountered in process industries (such as oil and gas, wastew-
ater treatment, power plants, pharmaceutical, and food industries). Level control in tanks
and other process equipment is critical and is of great interest to systems engineers because
inadequate level control can result in system shutdown, waste of power, process vessel
overflow or emptying, unsafe working conditions, shorter life span of equipment, etc.

This study focuses on the practical application of NMPCs to a real-time experimental
four-tank control rig. The four-tank process was designed at Lund University to study
multivariable systems with performance limitations by conditions that include right half-
plane (RHP) zeros and model uncertainties [1]. A four-tank system, often called a quadruple
tank system (QTS), exhibits transmission zero as it transitions from the minimum phase
(MP) to the non-minimum phase (NMP) by simple valve adjustment. NMP systems are
characterized by RHP zeros. Systems with an RHP of zero present difficulties when
applying control strategies. Both NMP and unstable systems occur mostly in industrial
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processes. Therefore, systems engineers must be aware of this kind of process because they
are important sources of control problems in real multivariable systems.

Generally, a control problem is formulated such that an NMPC is preferred as the
appropriate choice of controller owing to its handling of the system’s input and output
constraints, nonlinearity, multivariate interactions, and non-minimum phase characteris-
tics. The NMPC problem is formulated similarly to the LMPC problem since it shares the
majority of the LMPC’s fundamental characteristics [2]. However, NMPCs use nonlinear
models for predictions rather than linear system models [3]. However, nonlinear models are
attractive for the control of systems with substantial nonlinearities because they faithfully
reproduce the behaviour of the managed system. In the presence of unforeseen distur-
bances and modifications to the desired state trajectory, the current state of a controlled
system closely follows the ideal state trajectory. In other words, a suitable control action is
performed to direct the state toward the reference trajectory if it is currently far from it. A
suitable control action is made to regulate the state in the presence of disturbances [4] if the
present state is already sufficiently near to the reference trajectory, making the control prob-
lem simple to solve. However, owing to nonlinearity and coupling effects, control problems
can often be difficult to solve. When issues with static output feedback stabilization are
taken into consideration, the influence of the non-minimum phase, which is defined by the
presence of dead time and an unstable inverse, is not desired in control procedures [5]. The
stability of a closed loop is not ensured by this feedback law [6]. NMPCs specifically make
a stable system unstable [7]. This work proposed and implemented the augmentation of
the EKF to the designed NMPC to estimate states and remove offsets from the outputs with
the following objectives: (a) interface a quadruple tank system with a microcontroller board
for a direct digital control (DDC); (b) design and implement an NMPC augmented with an
extended Kalman filter (NMPC-EKF) and a linear model predictive controller (MPC) for
the system; and (c) evaluate the performances of the designed controllers for non-minimum
phase conditions.

2. Materials and Methods
2.1. Theoretical Framework

Consider the experimental setup of a quadruple tank system specifically designed
and fabricated in our laboratory to investigate the control of a non-minimum phase system
using the NMPC technique. The system consists of four interconnected water tanks and
two pumps. The inputs were the voltages of the two pumps. The outputs were the water
levels in the two lower tanks (h1 and h2). The setup, though very simple, can be used to
illustrate interesting multivariable nonlinear phenomena. The positions of the valves are
denoted as γ1 and γ2. Tank 3 and tank 4 were placed above tank 1 and tank 2 to drain
water directly by the action of gravity. The flow from each of the pumps was split into
two by using a three-way valve (flow splitter or flow divider). The output of pump 1 is split
between tank 1 and tank 4, whereas that of pump 2 is also split between tank 2 and tank 3.
As a result, the flow to each pump’s output tanks—a lower and an upper diagonal tank—is
regulated by the valve position, shown by the symbol γ. At the bottom of each tank was
a discharge valve that allowed liquid to flow into the tank beneath it. The reservoir tank
at the bottom receives discharge from tanks 1 and 2. It is an MIMO system because of the
interactions and strong connection between the tanks. Figure 1a depicts a schematic of the
quadruple tank system.
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Figure 1. (a) Schematic diagram of QTS. (b) QTS experimental rig in Simulation and Computational
Laboratory, OAU Ile-Ife.

2.2. Dynamic Model Development of the System

Theoretical mass balance using Bernoulli’s law was used to investigate and control
the behavior of the process. Employing these laws using the flow rate data in Table 1, after
simplification, the nonlinear dynamic models of the QTS are derived as

.
h1(t) =

1
A1

(−a1α1
√

2gh1 + a3α3
√

2gh3 + k1q1γ1) (1)

.
h2(t) =

1
A2

(−a2α2
√

2gh2 + a4α4
√

2gh4 + k2q2γ2) (2)

.
h3(t) =

1
A3

(−a3α3
√

2gh3 + k2q2(1− γ2)) (3)

.
h4(t) =

1
A3

(−a4α4
√

2gh4 + k1q1(1− γ1)) (4)

The parameters of the system are defined in the Appendix A.
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Table 1. Flow rates into the tanks by pumps.

Tank Pump1 Pump2

1 k1q1γ1 -
2 - k2q2γ2
3 - k2q2(1− γ2)
4 k1q1(1− γ1) -

2.3. Non-Minimum Phase Characteristics

A system that is causal and stable but whose inverse is causal and unstable is known
as a non-minimum phase system. In a quadruple tank system, the non-minimum phase
(NMP) occurs when the fraction of liquid entering the upper tanks is greater than that
entering the lower tanks [8–10]. The valves were regulated to control the flow ratio to
the maximum value for the two upper tanks. The flow ratio (γ) is obtained as a fraction
by measuring the volumes of water in the two diagonal tanks of the respective pumps,
and it obeys the phase configuration 0 < γ1 + γ2 < 1. This implies that the zeros of the
corresponding transfer functions are in the right half-plane. When the system is run in
the non-minimum phase, there is a pole shift to the right half of the s-plane. The study
procedure is made unpredictable by this.

2.4. Control Algorithms

The two control algorithms follow the same path, except for the use of the linearized
model of the plant by the LMPC and the solving of the nonlinear programming problem by
the NMPC.

2.4.1. Linear Model Predictive Control (LMPC)

Equations (1)–(4) have square root terms that account for nonlinearity, which makes
designing controllers more difficult. The linearized state-space model of the system is given as

.
h = Ah + Bq (5)

y = Ch + Dq (6)

In order to obtain the transfer function of a non-linear model, linearization has to be
carried out to obtain the state-space representation of the model. This follows the fact that
the Laplace transform of a non-linear model cannot be obtained unless linearization has
been carried out. With details of the procedure shown in the Appendix A, the state-space
representation using Taylor’s series rule for linearization of the quadruple tank process is
shown below:

dh1
dt

dh2
dt

dh3
dt

dh4
dt

 =


−0.2829 0 1.2858 0

0 −0.1858 0 0.3269
0 0 −1.2858 0
0 0 0 −0.3269




h1
h2
h3
h4

+


0.01303 0

0 0.005769
0 0.02214

0.01395 0

[q1
q2

]
(7)

y =

[
1 0 0 0
0 1 0 0

]
h1
h2
h3
h4

+
[
0 0

][q1
q2

]
(8)

where y represents the desired output variables which, in this case, are tank 1 and tank
2 levels (h1 and h2); q1 and q2 are the input variables representing pump 1 and pump 2,
respectively.



ChemEngineering 2023, 7, 74 5 of 17

The above state space was used to design the LMPC controller with a control horizon
and prediction horizon (prediction of state performed over a finite future time interval) of
2 and 50, respectively.

2.4.2. Validation of Operating Phases

The NMP had at least one zero value in the RHP. The poles of the system are the
eigenvalues of the matrix obtained, which were used for the stability analysis, and the
eigenvalues for the phase indicated that the system was open-loop stable. However,
the zeros of multivariable systems, such as the system under consideration, are hidden
dynamics [1]. However, to establish this fact, a pole-zero map is required to confirm that
the obtained multivariable transfer functions are truly representative of an NMP. For the
operating non-minimum phase, the zeros of the system after linearization and computation
of the system transfer function are (−2.2053, 0.5926), which implies that the three-way split
valve was preset correctly.

2.4.3. Constrained NMPC Formulation

There are two important separate parts of the NMPC problem: a prediction model
formulation and a solution to the optimal control problem. In order to anticipate the
trajectory of the future state, the nominal model of the controlled system was iterated
several times to create the prediction model.

Using the model Equations (1)–(4), a discrete-time nonlinear nominal state-space
model in its general form is given by

x (k + 1) = f (x(k), q(k)) (9)

y (k) = g (x(k)) (10)

2.4.4. State Prediction Model

By repeating the state transition equation provided by Equation (6), future states can
be predicted. Here is a description of the state prediction model:

x(k + 1| k) = f (x(k| k), q(k| k)) (11)

x(k + 2| k) = f (x(k + 1| k), q(k + 1| k)) (12)

x(k + 3| k) = f (x(k + 2| k), q(k + 2| k)) (13)

x(k + Nc| k) = f (x(k + Nc − 1| k), q(k + Nc − 1| k)) (14)

x
(
k + Np| k

)
= f

(
x
(
k + Np − 1| k

)
, q(k + Nc − 1| k)

)
(15)

where “ | k” means that at time instant k, the state is expected. Up until a certain number
of time steps in the prediction horizon Np is reached, this pattern is followed. If Nc < Np,
the last set of control values q (k + Nc − 1| k) in the control sequence is maintained for the
remaining (Np–Nc) time steps, where, Nc is the control horizon. Note that in the formulation
of the NMPC, Nc is always set to be either less than or equal to Np. Equations (11)–(15)
demonstrate this. The sequence of control inputs and the expected state trajectory can be
represented in vector form as follows:
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X(k) =


x(k + 1| k)
x(k + 2| k)
x(k + 3| k)

...
x
(
k + Np| k

)

 (16)

Q(k) =



q(k| k)
q(k + 1| k)
q(k + 2| k)
q(k + 3| k)

...
q
(
k + Np − 1| k

)


(17)

Using Equations (16) and (17), Equations (11)–(15) are summarized as a function of
the current state x(k) = x(k| k) and predicted control input vector Q(k), as follows:

X(k + 1) = f (x(k), Q(k)) (18)

2.4.5. Output Prediction Model

The projected output estimates of the system are obtained by propagating the pre-
dicted state estimates provided by Equation (16) but derived by Equation (18) through the
output equation provided by Equation (10). The following is a description of the output
prediction model:

y(k + 1| k) = g(x(k + 1| k)) (19)

y(k + 2| k) = g(x(k + 2| k)) (20)

y(k + 1| k) = g(x(k + 1| k)) (21)

y
(
k + Np| k

)
= g

(
x
(
k + Np| k

))
(22)

The following vector form can be used to represent the predicted output estimates:

Y(k) =


y(k + 1| k)
y(k + 2| k)
y(k + 3| k)

...
y
(
k + Np| k

)

 (23)

Equation (10) can be written in a compact form:

Y(k) = g(x(k)) (24)

In essence, the NMPC method resolves an optimum control problem to identify the
best order of control inputs so that the controlled system’s future outputs follow a specified
output trajectory that is provided by

Ysp(k) =


ysp(k + 1| k)
ysp(k + 2| k)
ysp(k + 3| k)

...
ysp(k + Np| k

)

 (25)
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Y(k) and Q(k) are the predicted output and control input trajectories that are generated
by the NMPC algorithm at every time step k, while Ysp(k) is the desired output trajectory.
At each time step, these are given into the NMPC algorithm to build a corresponding cost
function that is a component of the optimal control problem.

2.4.6. Cost Function

There are three cost functions that make up the quadratic cost function: Jy, Jq, and
Jdq. The cost function Jy penalizes the deviation between the predicted output Y(k) and
the desired output trajectories Ysp(k). The quadratic form of Jq is weighted with positive
(semi-) definite weighing matrices (Wy(k), . . . Wy(k + Np − 1)) and thus Jy is given by

Jy = ∑Np
i=0 (y(k + i| k)− ysp(k + i| k))TWy(k + i)(y(k + i| k)− ysp(k + i| k)) (26)

When the matrices (Wy(k), . . . Wy
(
k + Np − 1

)
) are positioned along a positive (semi-

definite) weighing matrix of the appropriate size’s main diagonal, Wy(k) is

Wy(k) =


Wy(k) 0 · · · 0

0 Wy(k + 1) · · ·
...

...
...

. . . 0
0 · · · 0 Wy

(
k + Np − 1

)

 (27)

Cost function Jy in compact form is

Jy = Y(k)−Ysp(k))TWy(k)(Y(k)−Ysp(k)) (28)

Cost function Jq penalizes control input magnitudes in the control sequence Q(k). The
quadratic form of the Jq is weighted with the positive (semi-) definite weighing matrices
(Wq(k), . . . Wq

(
k + Np − 1

)
).

Jq = ∑Np−1
i=0 q(k + i| k)TWq(k + i)(q(k + i| k) (29)

Wq(k) =


Wq(k) 0 · · · 0

0 Wq(k + 1) · · ·
...

...
...

. . . 0
0 · · · 0 Wq

(
k + Np − 1

)

 (30)

Jq = Q(k)TWq(k)Q(k) (31)

Jdq is a cost function that penalizes input rate magnitudes. The quadratic form of the Jdq is
weighted with the positive (semi-) definite weighing matrices (Wdq(k), . . . Wdq

(
k + Np − 1

)
).

Jdq = ∑Np−1
i=0 dq(k + i| k)TWdq(k + i)(dq(k + i| k) (32)

where
dqi = qi − qi−1 (33)

Similarly,
Jdq = dQ(k)TWdq(k)dQ(k) (34)

The total cost function is
J = Jy + Jq + Jdq (35)

To analyze the difference in system performance and precision, the prediction horizon
Np, is varied within a finite range of values. An infinitely long prediction horizon would
be the ideal choice, which would provide perfect performance. However, practically, it
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is impossible to implement an infinitely long prediction horizon. It is desirable to use a
large but finite horizon. In addition, the controller performance decreased when the control
horizon was set to high values. It is worth noting, however, that choosing a long prediction
horizon implies that more variables must be solved in the optimization problem. This
makes solving the problem complex.

The prediction horizon Np was taken as 100, and the control horizon was taken to be
1. For the weighing matrices Wy (weight on output) and WQ (weight on input), they were
tuned until the desired performance was achieved. This is a trade-off between a smooth
signal and fast system performance. If a smooth signal is desired, then the ratio of Wy to
WQ is to be low, and if one wants a fast system, then the ratio should be quite high. Since
only tank 1 and tank 2 levels are being controlled, the matrix Wy is chosen as a diagonal
matrix with nonzero values on the positions that correspond to states 1 and 2 since tank 1
and tank 2 levels control is desired. WQ is a diagonal 2 × 2 matrix.

The constraints placed on the input and output are also important. As dictated by
the pump specifications, the maximum input flow is 255 PWM. Therefore, the upper and
lower limits, respectively, were 255 PWM (qmax) and 0 (qmin). The constraints applicable to
the tank levels were associated with their heights. The lower and upper limits of the tank
levels were 30 and 0 cm, respectively.

2.5. Optimal Control Problem (OCP)

In order to maximize the controlled system’s performance, J must be minimized with
respect to U(k), while also taking the system’s equality and inequality restrictions into
consideration. J can only ever have a minimum value of zero. The optimum control
problem (OCP) for MPC is the formal name for this minimization problem. Depending
on whether constrained fulfillment is sought, the OCP can be formulated as either an
unconstrained or a constrained OCP. A constrained OCP was employed in this study to
formulate the constrained NMPC controller. The capacity of NMPC schemes to address
system limitations in their formulations makes them more desirable for the control of
nonlinear dynamic systems. The OCP problem is posed as (when constraints are present):

minU(x)(Y(k)−Ysp(k))TWy(k)(Y(k)−Ysp(k)) + Q(k)TWq(k)Q(k) + dQ(k)TWdq(k)dQ(k) (36)

subject to
x(k + i| k) = f (x(k + i− 1| k), q(k + i− 1| k)) (37)

y(k + i| k) = g(x(k + i− 1| k)), i = 0, . . . , Np − 1 (38)

q(k + i| k) = q(k + Nc − 1| k), i = Nc, . . . , Np − 1 (39)

Xmin ≤ X(k) ≤ Xmax (40)

Qmin ≤ Q(k) ≤ Qmax (41)

Ymin ≤ Y(k) ≤ Ymax (42)

dQmin ≤ dQ(k) ≤ dQmax (43)

where Xmin, Ymin, Qmin, and dQmin are the lower bounds of the state trajectory, system
output trajectory, sequence of control inputs, and input rate, respectively. Xmax, Ymax, Qmax,
and dQmax are the upper bounds of the state trajectory, system output trajectory, sequence
of control inputs, and input rate, respectively. Equations (40)–(43) describe the inequality
constraints of the system, and Equations (37)–(39) describe the equality constraints.
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2.6. Discretization of OCP

This is a process of transforming OCP into standard nonlinear programming (NLP) to
solve the OCP using solution techniques such as sequential quadratic programming (SQP).

A standard NLP is described as

min F(z(k))

subject to
H(z(k)) = 0 (44)

G(z(k)) ≤ 0 (45)

where F is the cost function of the problem and z(k) is the optimization variable.

2.6.1. Linear Approximation of Nonlinear State Estimation

The EKF approximates the Gaussian random variable (GRV) distribution of state. In
the first-order linearization of the nonlinear dynamic system, the GRV was transformed
analytically [11] at every instant. Because it is essential to consider the linearization of
a nonlinear dynamic system, the manner in which the EKF performs the linearization is
discussed. Consider the nonlinear general structure of the quadruple tank system with the
disturbance additive defined by Equations (46)–(49).

.
h1(t) =

1
A1

(
−a1α1

√
2gh1 + a3α3

√
2gh3 + k1q1γ1 + d1

)
(46)

.
h2(t) =

1
A2

(
−a2α2

√
2gh2 + a4α4

√
2gh4 + k2q2γ2 + d2

)
(47)

.
h3(t) =

1
A3

(
−a3α3

√
2gh3 + k2q2(1− γ2) + d3

)
(48)

.
h4(t) =

1
A3

(
−a4α4

√
2gh4 + k1q1(1− γ1) + d4

)
(49)

Using Euler to discretize Equations (46)–(49), we obtained the equations in the
Appendix A. It was determined that the functions f were sufficiently differentiable and
continuous in x so that each one had a valid Taylor series expansion. The Jacobians process
model was computed as described in the Appendix A.

2.6.2. EKF-Based NMPC Algorithm

EKF-based NMPC extended the performance of the standard NMPC controller to the
rejection of disturbances and handling of mismatches from the plant to the model, which
can be observed when modeling dynamic systems. The algorithm for the formulation of
the EKF (augmented with NMPC) is presented below.

Initialization at k = 0

For k = 1, . . . ∞;

i. Time-update equations:
J f = ∇x f (x, q(k− 1)) (50)

x̂−(k) = f (x̂(k− 1), q(k− 1)) (51)

P−x = ∅ J f Px(k− 1)JT
f + Rw (52)
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ii. Measurement-update equations:

J f = ∇x h(x) (53)

K(k) = P−x (k) JT
h

[
JhP−x (k)JT

h + Rv

]−1
(54)

ŷ−k = h
(
x̂−(k)

)
(55)

x̂(k) = x̂−(k) + K(k)
[
y(k)− ŷ−k

]
(56)

Px = [I − K(k)Jh]P−x (k) (57)

where
x̂−(k) is the predicted estimates of the states,
P−x (k) is the estimation error of the state covariance,
K is Kalman gain,
k is time instant,
I is an identity matrix,
∅ (phi) is a measure of how aggressively deviation in measurements affects state
estimation,
and Rw and Rv are the covariance matrices of the process noise and measurement
noise, respectively.
The values of quadruple tank physical parameters are given in Table A1.

Ai= internal area of the tanks (cm2), where i = 1, 2, 3, 4 for Tanks 1, 2, 3, and 4, respectively.
ai = cross-sectional area of the outlet orifice from the tank i = 1, 2, 3, and 4.
αi = dimensionless constant of proportionality for outlets from the respective tanks.
g = acceleration due to gravity (cm s−2).
hi= height of water in the respective tanks (cm).
k j= pump constants for pump j, where j = 1,2 represents pumps 1 and 2, respectively.
qj= pump flow rate (cm3 s−1).
γ = flow ratio.

3. Results and Discussion

One of the advantages of NMPC algorithms is their high degree of configuration
(control and prediction horizons, penalization terms, etc.). The controller setup parameters
and computational effort for the simulation scenario are presented in Table 2.

Table 2. Design Parameters.

Parameters Variable Value

Prediction Horizon Np 100
Control Horizon Nc 1
Sampling time Ts 1

Simulation time Tsim 2000
Weight on input Wq 0

Weight on input rate Wdq 1
Weight on output Wy 1

Shown in Figure 2 are the set-point tracking of the two lower tanks (Tank 1 and Tank 2)
for closed loop simulations showing the controlled variables (h1 and h2) in addition to their
respective manipulated variables, q1 and q2. The control scheme used for this closed loop
simulation time of 2000 s is LMPC in a non-minimum phase.
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Also, Figure 3 shows the set-point tracking of Tank 1 and Tank 2 heights for closed
loop simulations for a period of 2000 s using the designed NMPC in a non-minimum phase.
The corresponding manipulated variables (q1 and q2) are shown as well.
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Figure 4 presents the designed NMPC augmented with an extended Kalman filter
used to track setpoints, remove noise, and estimate the states. An inverse response was
observed in the two lower tanks compared to the NMPC, where an inverse response was
only observed in tank 2. Tank 1 and 2 levels for the closed-loop simulation for the three
scenarios have negligible rise times and observed an inverse response with LMPC and
NMPC-EKF.
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Figure 4. NMPC-EKF closed-loop NMP response simulation.

3.1. Real-Time Experimental Results

The closed-loop responses of tanks 1 and 2 obtained from the experimental imple-
mentation of the LMPC, NMPC, and NMPC-EKF in real time are shown in Figures 5–7,
respectively. The figures present the responses of the two lower tanks to setpoint changes
using the designed controllers under non-minimum phase conditions. Manipulated input
responses are shown.

It can be observed in Figure 5 for the tank 1 level response (h1) that even though it
tracked the setpoint before and after it was stepped, no inverse response was observed.

The tank 2 level response shows an apparently slight oscillatory response when the
setpoints are stepped before finally tracking and settling. However, the tank 2 level response
exhibited an inverse response and an overshoot.

In Figure 6, which involves the use of the NMPC controller, the tank 1 level response,
unlike that obtained using LMPC, was found to settle without oscillation but overshot
when the setpoint was stepped to 18 cm before dropping to continue the tracking process
of the setpoint with mild undershoot at a setpoint of 9.021 cm.

The tank 2 level response exhibited a satisfactory tracking response, but when stepped
to a lower value it undershot and finally tracked after 800 s in real time. In this case, an
inverse response was observed to be significant.

With the NMPC controller augmented with EKF in Figure 7, perfect tracking of
setpoints at every stage of the stepping was observed for tank 1 with visible inverse
response. However, a significant overshoot occurred during the initial period, which finally
settled after approximately 140 s.
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For the tank 2 level, the response oscillated with decreasing amplitude towards settling
before it was rapidly stepped at 400 s. The response finally settled after 1000 s.
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Figure 8 presents response comparison of the three controllers at the non-minimum phase.
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3.2. Controllers’ Performance Indices

The performance of these controllers was judged based on their ability to track set-
points and the values of the IAE and ISE. Both controllers in the three scenarios tracked the
setpoint, but at different rates. For instance, during the simulation, the LMPC, NMPC, and
NMPC-EKF tracked the set point without overshooting. The LMPC seemed to be the best
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of the three during the simulation; it was able to track the setpoint smoothly and on time
with an inverse response, smaller IAE and ISE, and with no overshoot for both outputs. The
NMPC-EKF also tracked the setpoint but was not as smooth as the LMPC in the simulation.
In addition, the performance of the controllers can be evaluated based on their overshoot,
rising time, IAE, and ISE values. Table 3 presents the performance index for the simulation
of the phase.

Table 3. Lower tanks’ performance indices.

Index LMPC NMPC NMPC-EKF

Tank1 Tank2 Tank1 Tank2 Tank1 Tank2

IAE 66.74 40.13 259.1 218.2 222.5 215.2

Simulation ISE 326.4 47.6 1087 511.7 852 495.5

Rise Time 0 0 0 0 4.21 4.22

IAE 2691 1935 4091 1561 1375 2076

Real-Time ISE 7512 4990 18210 3893 4773 6705

Rise Time 11.89 12.78 13.77 14.41 14.62 14.88

The responses from the experimental results showed that the LMPC gave smooth
results, but when considering the performance indices, especially the integral errors of both
the absolute and the square, NMPC-EKF seemed to be better.

The performance index values were larger than the comparative errors. Therefore, it
can be inferred that the NMP is difficult to control, which supports what earlier researchers
have observed.

4. Conclusions

In this study, the four-tank system was interfaced with a microcontroller board for
direct digital control to measure the level of the two upper tanks and control the levels
of the two lower tanks by manipulating the two inputs (pump flow rates). Owing to the
strong interaction, the four-tank system is difficult to control in the non-minimum phase
for conventional controllers; however, with the help of advanced controllers, better results
are obtained.

Both linear and nonlinear MPC algorithms were designed and implemented in a
four-tank experimental rig. The EKF was augmented in the algorithm to remove the offset
from the NMPC.

In this study, based on the results obtained from the simulation of the Simulink models,
NMPC controllers (augmented with EKF) were able to provide better control performance
by tracking the setpoint smoothly with little overshoot and relatively stabilizing the system
over time in comparison to the NMPC controller employed. However, it was discovered
during the course of the experiment that the LMPC in real time gave a better result as com-
pared to the NMPC simulation as the setpoint was tracked consistently with no overshoot;
however, when considering performance indices, especially the integral errors of both the
absolute and the square, NMPC-EKF proved to be better.

As an improvement on the advanced LMPC control technique, the NMPC was used
to successfully control the experimental rig. However, based on real-time response, the
NMPC controller failed to replicate the model accurately. Hence, state estimation with
Kalman filtering was used to improve the performance.
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Appendix A

Table A1. Model physical parameter and nominal operating points.

Parameters Values Units

q10 170 cm3/s
q20 170 cm3/s
h10 10.57 cm
h20 9.02 cm
h30 1.46 cm
h40 3.63 cm

A1 = A3 35 cm2

A2 = A4 39 cm2

a1 = a3 2.9928 cm2

a2 = a4 1.9949 cm2

k1 = k2 1 −
g 981 cm/s2

α1 0.4856 −
α2 0.4926 −
α3 0.8215 −
α4 0.5496 −
γ1 0.456 −
γ2 0.225 −

Using Euler to discretize Equations (44)–(47), we obtain:

f1 : h 1,k+1 = h1,k +
Ts

A1
b−a1α1

√
2gh1,k + a3α3

√
2gh3,k + k1q1,kγ1 + A1d1,kc

f2 : h 2,k+1 = h2,k +
Ts

A2
b−a2α2

√
2gh2,k + a4α4

√
2gh4,k + k2q2,kγ2 + A2d2,kc

f3 : h 3,k+1 = h3,k +
Ts

A3
b−a3α3

√
2gh3,k + k2q2,k(1− γ2) + A3d3,kc

f4 : h 4,k+1 = h4,k +
Ts

A4
b−a4α4

√
2gh4,k + k1q1,k(1− γ1) + A4d4,kc

f 5 : d1,k+1 = d1,k

f 6 : d2,k+1 = d2,k

f 7 : d3,k+1 = d3,k

f 8 : d4,k+1 = d4,k

The Jacobians process model was computed as follows:

J f =



∂h1k
∂h2k
∂h3k
∂h4k
∂d1k
∂d2k
∂d3k
∂d4k


= A



∂h1
∂h2
∂h3
∂h4
∂d1
∂d2
∂d3
∂d4


(A1)
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where matrix A was:

A=



∂ f 1/∂h1 ∂ f 1/∂h2 ∂ f 1/∂h3 ∂ f 1/∂h4 ∂ f 1/∂h1 ∂ f 1/∂h2 ∂ f 1/∂h3 ∂ f 1/∂h4

∂ f 2/∂h1 ∂ f 2/∂h2 ∂ f 2/∂h3 ∂ f 2/∂h4 ∂ f 2/∂h1 ∂ f 2/∂h2 ∂ f 2/∂h3 ∂ f 2/∂h4

∂ f 3/∂h1 ∂ f 3/∂h2 ∂ f 3/∂h3 ∂ f 3/∂h4 ∂ f 3/∂h1 ∂ f 3/∂h2 ∂ f 3/∂h3 ∂ f 3/∂h4

∂ f 4/∂h1 ∂ f 4/∂h2 ∂ f 4/∂h3 ∂ f 4/∂h4 ∂ f 4/∂h1 ∂ f 4/∂h2 ∂ f 4/∂h3 ∂ f 4/∂h4

∂ f 5/∂h1 ∂ f 5/∂h2 ∂ f 5/∂h3 ∂ f 5/∂h4 ∂ f 5/∂h1 ∂ f 5/∂h2 ∂ f 5/∂h3 ∂ f 5/∂h4

∂ f 6/∂h1 ∂ f 6/∂h2 ∂ f 6/∂h3 ∂ f 6/∂h4 ∂ f 6/∂h1 ∂ f 6/∂h2 ∂ f 6/∂h3 ∂ f 6/∂h4

∂ f 7/∂h1 ∂ f 7/∂h2 ∂ f 7/∂h3 ∂ f 7/∂h4 ∂ f 7/∂h1 ∂ f 7/∂h2 ∂ f 7/∂h3 ∂ f 7/∂h4

∂ f 8/∂h1 ∂ f 8/∂h2 ∂ f 8/∂h3 ∂ f 8/∂h4 ∂ f 8/∂h1 ∂ f 8/∂h2 ∂ f 8/∂h3 ∂ f 8/∂h4


(A2)

For the output equation:

Jh =


y1k
y2k
y3k
y4k

 =



∂h1
∂h2
∂h3
∂h4
∂d1
∂d2
∂d3
∂d4




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 (A3)

∂ f 8/∂h1 (A1)
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