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Abstract: Drag reduction in turbulent flow may be significantly reduced by adding tiny quantities of
fiber, polymer, and surfactant particles to the liquid. Different drag-reduction agents have proven
to be effective in enhancing the flowability of the liquid when added. This study investigated the
potential of decreasing the drag, turbulent flow, and pressure drop in horizontal pipe flow by using a
mixture of modified xanthan gums (XGs). Xanthan gums are an environmentally friendly natural
polymer complex. They can be extracted from xanthan gum plants and utilized to formulate different
concentrations of complexes. The flowability of the xanthan gum was experimentally investigated in
a 1-m-long pipe by using addition concentrations of 300 to 950 ppm, an inner diameter of 0.254 inches,
and four different flow rates. The results revealed that the pressure drop was reduced considerably
with an increase in the concentration of the additives. The mixture (xanthan gums plus water)
resulted a favorable reduction in the pressure, which reached 65% at a concentration of 950 ppm.
The results of the computational fluid dynamic simulation using the COMSOL simulator showed
a change in the fluid velocity profiles, which became more parabolic. This occurred because of an
increase in the mean fluid velocity due to the addition of the drag-reducing polymers.

Keywords: drag reduction; COMSOL software; polymer; pressure drop

1. Introduction

In an accidental discovery in 1948, Tom observed a notable decrease in the pressure
drop when tiny quantities of viscoelastic materials were injected into the main core of a
turbulent flow system. The phenomenon resulted in active drag reduction which led to the
first practical application in the early 1950s. Since then, several scientists have tested, as-
sessed, and presented a range of soluble and insoluble drag reduction agents (DRAs). These
additives can generally be divided into three categories: suspended particles, polymers,
and surfactants. From an industrial perspective, polymeric DRAs are the most efficient
and practical from a commercial standpoint. These long-chained polymeric additives’
viscoelastic properties give them the distinct ability to interact and interfere with turbulent
flow medium, which allows them to reduce the turbulent structures (eddies) created in the
pipe. Various types of polymeric additives have been used to improve the flow of crude oil
in pipelines. The majority of these additives were synthesized and thereby classified [1–4].

Tabor and De Gennes believed that polymers were able to decrease drag due to their
elastic properties even when they were in their least diluted form [5]. Polymers are also
known as viscoelastic fluids because they can store elastic energy. This causes them to
be able to create shearing waves that naturally truncate at high frequency, which calms
down small eddies and reduces skin friction. As a result of his investigation, Lumley
concluded that the process results from the polymer’s molecules stretching the chains
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of coiled polymers. The wall goes through effective viscosity because of the straining.
Because of this, the tiny vortices are dampened and the skin’s resistance to the wall is
reduced. Sher and Hetsroni [6] provided an alternative model using additives in their 2008
work on polymer elasticity, comparing their findings to those of Virk’s experiment [7]. To
better understand the drag reduction techniques, the next section outlines the underlying
concepts of the idea.

Polymeric drag reducers are expected to work better than DRs because of their long
chains and extremely high molecular weight, which ranges from 1 to 10 million. Water
or oil can dissolve these polymers. They are incorporated into the system in parts per
million, and they are effective in lowering turbulent bursts that are brought on by turbulent
eddies that propagate in the buffer zone. This will enable the pump’s hydraulic energy
to be focused more on fluid flow in the pipes with little chaotic or random motion when
the fluid has to be transported [8]. These polymers are introduced into the system due to
the frequent flow of oil, water, and gas in the petroleum industry. In order to avoid static
pressure losses, it may be essential to introduce gas into the well tube when attempting
to collect only oil [9–11]. Consequently, a multiphase mixture is pushed across a long
distance to separating or processing terminals, resulting in a substantial pressure drop and
a cost-effective technique. However, this is extremely costly and often not practical at well
sites [12]. As a result, modest quantities of drag-reducing chemicals, such as polymers,
are introduced to decrease the current frictional pressure losses. This results in increased
output flow rates at reduced prices, as well as other benefits, including lower operational
costs, greater productivity, quicker loading and uploading procedures, and more powerful
pumps in the refineries. The effect of polymer addition on the waveform of stratified flows
has also been explored. In 2003, Baik and Hanratty discovered that when polymers were
added to the stratified flow, the wave shapes changed. The flow behavior can be modeled
using computational fluid dynamics [13].

With the advancement of fluid mechanics theory, computer technology, and numer-
ical simulation techniques, computational fluid dynamics has become a crucial tool for
simulating turbulent flow. Computational fluid dynamics (CFD), which has been widely
used in other sectors for many years, is becoming more and more accepted. Using nu-
merical techniques for a specific geometry with specific boundary conditions, CFD aims
to solve transport equations that can accurately describe the conservation of mass, mo-
mentum, energy, and other flow-related properties. It does this by utilizing models for
turbulence or heat and mass transfer that are pertinent to the task at hand. Since single-
phase flows are more common in these applications, it has long since largely supplanted
the time-consuming, expensive wind tunnel experiments that were formerly a key tool
in the aerospace and automotive industries. The majority of fluid applications involve
multiphase flows, which provide extra modeling and numerical treatment issues. Since
more computer power has been accessible in the last 10 years, theoretical and numerical
studies of hydrodynamics, heat transfer, and mass transfer for the design and optimization
of two-phase or multiphase fluid flow have drawn a lot of interest [14]. Using horizontal
flow, Jiatong Tan et al. conducted an experiment on the impacts of A-110 anionic poly-
acrylamide on flow behavior, pressure drop, and the drag reduction ratio (oil–water) [15].
The outcomes demonstrated a strong correlation between the oil and water velocities and
the drag reduction impact. The slide between the water and oil was also enhanced by the
inclusion of the DRP. Experimental research on the potential of three different types of drag
reduction agents (DRAs) to enhance flow in a horizontal pipe has been conducted [16]. The
authors employed different concentrations of drag-reducing agents, i.e., between 50 and
1200 ppm. The results suggested that by lowering the drag reduction rate to 47%, flow in
the pipe might be improved. A small amount of GAL surfactant (few ppm) was used by
Alsaedi et al. [17] to minimize drag forces. The GAL solution was tested experimentally
at varying concentrations. Experiments were conducted at low and high XG dosages to
examine the impact on the flow characteristics. Various speeds between 50 and 3000 rpm
were used with a rotating disc apparatus (RDA). Torque values were determined in the GAL
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solution and in water. The findings demonstrated that Glycolic Acid Lauryl Ether (GAL) in
a range of dosages is an efficient drag-reduction tool, with notable torque measurement
disparities. Additionally, the GAL solutions showed the same pattern at all concentrations.
As the concentration increase, the torque results improved.

In this study, a new polymer additive was synthesized using well-known polymeric
drag-reducing chemicals. The polymer additive was initially tested as a DRA. The first
phase investigated the performance of this polymer additive in the pipeline with and
without flow enhancement. In the subsequent stage, experimental and numerical studies
were used to examine the single-phase flow in a horizontal pipe. The drag reduction was
calculated using COMSOL. In this research, the flow distribution of a polymer additive in a
horizontal pipe was examined using COMSOL.

2. Experimental Setup

Linear flexible polymers, polyacrylamide, polyethylene oxide (PEO), and XG as
rigid polymers were selected for this study. The molecular weight range of PAM was
4–8 × 106 kg/mol. PEO had an average molecular weight of 8 × 106 g/mol, and the molec-
ular weight of the XGs was 2.0 × 106 g/mol. All polymers were obtained from Sigma
Aldrich and utilized in the experimental study without any further modifications.

Each of the used polymers is water soluble. The most significant property of the final
solution of xanthan is its ability to significantly enhance viscosity. Even a tiny amount
of PAAM, PEO, and XG added to liquids can cause the solution to become very viscous.
However, when shear rates drop, the viscosity decreases, which makes the solution thin
or behave like a pseudo-plastic. As soon as the shear is removed, the solution returns
to its former properties and dragging decreases. The greater the weight ratio of the XG
components in a liquid, the thicker it becomes. The molecular makeup of the XGs is
depicted in Figure 1.
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2.1. Preparation of the Modified XG Solutions

Different concentrations (300, 600, and 950 ppm) of solutions of modified XGs were
investigated. The modified XG solution was prepared by dissolving 30 mg of each of PAA
and PEO separately in 1 L of distilled water; swirling was conducted for 5 h at a very low
speed using a mechanical stirrer (to prevent polymer degradation). The stirred solution
was left for 12 h. The undissolved portion was xanthan, which was then dissolved in 1 L of
distilled water and stirred for 24 h with a mechanical stirrer at a very low speed (to avoid
degradation of the polymer), and the solution was left for 24 h. After the master solution
was prepared by combining the prepared solutions, the mixture was fully homogenized.
The entire mixture was kept in the tank for one day to reach solution equilibrium.

2.2. Experimental Process

The experiment included a flow loop test and the creation of a modified XG mixture
for aqueous drag reduction. To reduce drag, RXG solutions of a certain concentration were
made. The desired concentration of the modified XG mixture was added to water and
stirred at a high speed of 1200 rpm for 30 s to produce stock solutions of the modified XG
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mixture with concentrations of 300, 600, and 950 ppm. After that, additional water was
added, and the mixture was agitated for 5 h at a slower speed of 100 rpm, after which it
was left for 24 h for the complete equalization of the stock solution and the creation of
aqueous xanthan. To begin the flow loop test, the water pump was turned on. As shown
in Figure 2, the modified XG mixture passed through the flow meter and pump before
entering the test section of the pipeline through the intake. Thereafter, the test pipeline’s
observation and test portions began receiving water. The experimental parameters were
recorded, and photographs were taken after the flow stabilized and the pressure gradient
fluctuated by 5%. When passing through pumps in experimental applications, polymers
degrade under shear. Mechanical deterioration causes the molecular weights to decrease
and the drag reduction efficiency to decrease [19]. This issue may be avoided by using a
one-pass method, which ensures that the polymers behind the injection point are always
new and undamaged and the XGs are continually injected into the flow. Experimental
research can use a one-pass system, but it might not be practical.
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3. Numerical Simulation
3.1. Assumptions

All assumptions and boundary conditions are summarized in Table 1.

Table 1. Boundary conditions and assumptions.

Assumption Boundary Condition

1 Take 2D symmetric geometry u = uo
2 Full development no slip on the wall
3 Constant physical properties p = 0 at the output
4 Turbulent flow
5 The use of average velocity
6 Time dependent
7 Axial Symmetry

3.2. Governing Equation

The fundamental equations describing the flow field of the study, the 2D form of
the continuity equation, and two momentum equations (Naiver–Stokes), are presented in
Equations (1)–(5) [20].

1. Continuity equation (mass conservation)

∂(ρu)
∂x

+
1
r

∂(ρvr)
∂yr

= 0 (1)

2. Momentum equation (Navier–Stokes equation)
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u—Momentum (x-direction)

∂

∂x
(ρuu) +

1
r

∂

∂r
(rρvv) = −∂P

∂x
+

∂

∂x

(
µ

∂u
∂x

)
+

1
r

∂

∂x

(
rµe f f

∂u
∂r

)
+ Sum (2)

v—Momentum (r-direction)

∂

∂x
(ρuv) +

1
r

∂

∂r
(rρvv) = −∂P

∂x
+

∂

∂x

(
µ

∂v
∂x

)
+

1
r

∂

∂x

(
rµe f f

∂v
∂r

)
+ Svm (3)

The skin terms Su and Sv in the above momentum equations can be calculated as follows:

Sum =
∂ρ

∂x
+

∂

∂x

(
µe f f

∂u
∂x

)
+

1
r

∂

∂x

(
rµe f f

∂v
∂r

)
+

(
p− pre f

)
+ gx + Fσx (4)

Svm =
∂ρ

∂x
+

∂

∂x

(
µe f f

∂u
∂x

)
+

1
r

∂

∂x

(
rµe f f

∂v
∂r

)
− 2µe f f

v
r2

(
p− pre f

)
+ gx + Fσx (5)

3.3. Turbulence Model

The function of a turbulence model is to convert the Reynolds stresses into a set of
auxiliary differential and algebraic equations that represent the time-mean properties of the
flow. The eddy or turbulent viscosity and eddy turbulent diffusivity provide the foundation
of the bulk of turbulence models used in solving real-world fluid flow issues.

The typical k− ε model is used to predict the bulk of engineering flow computations
that occur in the real world [21]. In this model, the solution of two differential transport
equations k− ε, one for turbulent kinetic energy (k) and the other for energy dissipation, (ε)
determines the eddy viscosity. The k− ε model is sometimes classified as a two-equation
model as a result of two differential transport phenomena. The k− ε model is the most
widely used due to its adaptability to a variety of flow issues, which makes it easy to handle
using COMSOL Multiphysics simulation software and the CFD Module.

The transport equation (k) can be written as

ρ
∂k
∂t

+ ρ
→
u .∇k = ∇

((
µ +

µT
σk

)
∇k

)
+ pk − ρε (6)

where pk is the production term and is expressed in the following equation:

pk = µT

(
∇→u :

(
∇→u +

(
∇→u )T − 2

3

(
∇.
→
u )2 − 2

3
ρk∇.∇→u (7)

The transport equation (ε) is represented as

ρ
∂ε

∂t
+ ρ
→
u .∇ε = ∇

((
µ +

µT
σε

)
∇ε

)
+ Cε1

ε

k
pk − Cε2

ε2

k
(8)

The constant values, which are the standard values for homogeneous systems, were
quantified as

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.00 and σε = 1.30,

The turbulent intensity (IT) and the turbulent length (LT) were calculated according to
the following equations:

k =
3
2

(
uIT)

2 (9)

ε =
3
2

C3/4
µ

k3/2

LT
(10)
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The effective viscosity used in the momentum equations is

µe f f = µ + µt (11)

The turbulent viscosity was obtained from the following equation:

µT = ρCµ
k2

ε
(12)

in which Cµ represents the model constant.

3.4. Geometry and Mesh

Based on the shapes of the individual pieces, meshes can be categorized into three
primary categories: structured, unstructured, and hybrid. Mesh is a crucial component in
mathematical computation. It is common knowledge that a finer mesh will produce more
precise results, lowering rounding errors to produce a smaller step size. It will increase
the accuracy and effectiveness of the interpolation. The pipeline’s actual dimensions, as
illustrated in Figure 3a, were used to develop the geometry. The setting of the mesh
cell is illustrated in Table 2. The maximum cell size of 0.00142 m, the lowest cell size of
2.03 × 10−5 m, and the curvature factor of 0.25 were obtained in medium smoothing, and
the average skewness of the surface mesh should be as optimal as possible. The total
number of elements is presented in Figure 3b for the pipeline mesh.

ChemEngineering 2023, 7, x FOR PEER REVIEW 7 of 17 
 

 

Figure 3. Dynamic simulation pattern (a) Geometry of the pipeline, (b) Pipeline meshing, (c) Velocity 

disruption, (d) Velocity development along the 1-m-long pipeline. 

3.5. Mesh Sensitivity 

To test the mesh sensitivity, various grid systems were used. The test analysis de-

pended on the percentage error between the experimental and theoretical values of the 

pressure drop. The mesh number ranged between 230,000 and 400,000. The analysis 

demonstrated that the results of the pressure drop errors were unaffected by mesh counts 

greater than 350,000, as shown in Figure 4. Hence, a mesh size of 398,733 was used to 

obtain more accurate findings. 

Figure 3. Dynamic simulation pattern (a) Geometry of the pipeline, (b) Pipeline meshing, (c) Velocity
disruption, (d) Velocity development along the 1-m-long pipeline.



ChemEngineering 2023, 7, 36 7 of 15

Table 2. The setting of mesh cells.

Size (1) Settings

Description Value
Calibrate for Fluid dynamics
Maximum element size 0.00142
Minimum element size 2.03 × 10−5

Curvature factor 0.25
Predefined size Finer

3.5. Mesh Sensitivity

To test the mesh sensitivity, various grid systems were used. The test analysis de-
pended on the percentage error between the experimental and theoretical values of the
pressure drop. The mesh number ranged between 230,000 and 400,000. The analysis
demonstrated that the results of the pressure drop errors were unaffected by mesh counts
greater than 350,000, as shown in Figure 4. Hence, a mesh size of 398,733 was used to
obtain more accurate findings.
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3.6. Numerical Simulation Models

To examine the flow behavior of water in the pipeline with RXGs of various concentra-
tions, the CFD Module of the COMSOL Multiphysics simulation software solver was used
in conjunction with the 2D model. The purpose of the CFD Module was to characterize the
phase flow’s fluid and the XG polymer. The pressure solvers in the COMSOL Multiphysics
settings use an absolute velocity formulation. A model is a common k− ε model with an
easy solution formula. The implementation of the level set model included the first-order
turbulent kinetics, standard pressure discretization, and second-order upwind momentum.
Due to the solubility of xanthan gums in water, it is believed that they are in equilibrium
with the fluid phase. A single-phase Navier–Stokes equation may be applied, and the
relative velocity between phases can be ignored. Experimental measurements were made
and incorporated into the model to determine the liquid characteristics for water with the
modified XG mixtures and the viscosities of the solution at each concentration. In total,
398,733 degrees of freedom were resolved (plus 1 internal DOF).
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4. Results and Discussion
4.1. Experimental Results

The DRP used in this study was a modified XG mixture. Three xanthan gum concen-
trations were evaluated for their drag-reduction effect. The experimental results of the
pressure drop values along the total length of the pipe with and without the modified XG
mixture are shown in Figure 5. The figure clearly shows that with an increase in the velocity
of the mixture from 0.55 m/s to 1.57 m/s, the pressure drop decreased from 3562 mbar to
1720 mbar for 300ppm addition and the same trend as that of other additives. This was
due to the increasing kinetic energy of the liquid inside the pipe, especially near the wall,
which led to an increase in the pressure drop.
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Polymer addition caused a decrease in the pressure drop at all concentrations. The
mechanism can be explained according to elastic theory. In other words, the high kinetic
energy of the turbulent flow near the wall will be adsorbed by polymer molecules and
converted into elastic energy, and this elastic energy near the wall will be lifted by the wall
vortices and dissipated in the buffer region. Hence, the polymer actively affects the energy
system. Thus, to transfer the elastic energy from the near-wall, the polymer should be long
enough to transfer the elastic energy into the buffer region.

The drag reduction effect of the modified XG mixture concentrations of 300, 600, and
950 ppm was determined using Equation (13)

pressuredropreduction% =
∆p(withoutaddition)− ∆p(withaddition)

∆p(withoutaddition)
× 100 (13)

The results are shown in Figure 6. The figure shows that the 300 and 950 ppm XGs
had obvious drag reduction effects in increasing the pressure drop reduction. This increase
can occur with the use of a smaller pump to transport the same amount of mixture.
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The mechanism of drag reduction can be explained according to [22], in which the
polymer molecules are stretched by the high flow. Under this particular condition, the
turbulent structures interact with the molecules, causing a decrease in the pressure drop
and an increase in the drag reduction.

Further, the increase in pressure drop saving increased with increasing total mixture
velocity for all concentrations of the polymer, which means that the activity of these
additives increases with increasing velocity, and this might be due to their effect on the
wall shear. A similar finding was reported by [23,24], who showed that increasing velocity
resulted in increasing drag reduction.

The increase in the pressure drop reduction varied with concentration: 950 ppm
resulted in a higher value in the pressure drop reduction at all values of velocity (58–65)%,
which could be due to the strong emulation that this concentration can cause. However,
300 ppm of XGs resulted in a lower value of reduction (50–59)% at all velocity ranges, while
the use of 600 ppm resulted in a reduction of (54–62)%. Based on the experimental results,
the polymer with a concentration of 950 ppm was selected. This result is similar to other
workers who showed that an increase in the polymer concentration causes an increase in
the reducing pressure drop [25,26]. However, this result differs from that obtained by [27],
who showed a decrease in reduction with an increase in the polymer addition, which may
be due to the type of polymer used.

4.2. Simulation Results
4.2.1. Velocity Distribution

The COMSOL Multiphysics simulation created the velocity distribution variation
throughout the pipe for all modified XG mixture concentrations, and the results are depicted
in Figures 7–10. Figure 7a–d shows the velocity behavior of flow at different positions inside
the pipeline, namely (0.4, 0.6, 0.8, 1 m) and four different flow speeds, namely (0.55, 0.88,
1.106, 1.574 m/s) without additives. There were distinct changes in the velocity magnitudes
at each flow speed, where the velocity magnitudes increased as the flow speed increased,
versus differences in the length’s positions.
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Figure 8a–d illustrates the velocity behavior of flow at several locations inside the
pipeline (0.4, 0.6, 0.8, 1 m) at four different flow speeds (0.55, 0.88, 1.106, 1.574 m/s)
with the addition of xanthan gum (300 ppm). In all speed scenarios, the velocity magni-
tudes at each flow speed changed somewhat from the flow without xanthan gums, even
though the velocity magnitudes increased as the flow speed increased, as opposed to the
length positions.

The same trend of the effect of xanthan addition on velocity behavior was also observed
for other concentrations, as shown in Figures 9 and 10. When xanthan was added to the wa-
ter, the distribution velocity for the 1-m-long pipe increased from (0.64, 1, 1.15, and 1.7) m/s
with no addition to (0.92, 1.2, 1.45, and 2.3) m/s with 950 ppm xanthan.

The figures demonstrate that the velocity was lower at the pipe wall due to the no-slip
boundary condition and was constant at the pipe core. Moreover, the whole velocity profile
appeared 0.4 m away from the pipe’s entrance. The behavior of the velocity distribution in
which the entire distribution arose following the addition of the polymer was dramatically
altered by the presence of the polymer. With the addition of the polymer, the velocity
values at the wall increased for all velocities; for instance, at 1.57 m/s and 0.4 m, the values
increased from 0.78 to 1.3 m/s with the addition of 950 ppm of the polymer. This can be
linked to the water layer near the wall as was previously mentioned.

As shown in the above figures, the flows with RXGs exhibited more parabolic pro-
files. Turbulent flow has a characteristic of a ‘flat’ velocity profile, as the distribution of
momentum, mass, and energy transfer perpendicular to the wall is very chaotic, resulting
in a ‘mixing’ effect and thus reducing the efficiency of the energy to move the fluid forward.
A more parabolic profile indicates better distribution within the fluid layer and better
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flow efficiency. This is related to the fact that there is an increase in the average velocity
magnitude. The outcomes are identical to those found in other studies [28,29].
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4.2.2. Validation of Performance

The suggested model in this work was tested experimentally and analytically using
all of the assumptions and boundary conditions mentioned in Table 1.

The results of the k-ε model were validated and compared with the experimental
results of a smooth pipe (1 m in length) as shown in Figure 11. The figure shows good
agreement between the experimental and the predicted values with an error of less than 6%.

The model showed comparable results, with the k-ε showing slightly better perfor-
mance, and was thus designated to perform the current study.
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5. Conclusions

The effects of utilizing modified xanthan gums mixtures for drag reduction in water
flow in horizontal pipes were examined. The effects of the RXG velocity and water velocity
on the flow pattern, pressure gradient, and drag reduction rate were analyzed. The
following conclusions can be drawn from this study:

1. The addition of the RXGs efficiently affected and was appropriate in improving the
fluidity of mixture solutions at constant environmental conditions of 24 ◦C.

2. The pressure drop reduction differed with polymer concentration, and the best dose
(high concentration) resulted in a lower pressure drop that was reduced by 65%
compared to that without the modified XG mixture.

3. The drag reduction was affected by water velocity, which increased with increasing
velocity.

4. In the numerical part, the flow patterns were quite accurately depicted by the level
set model and the k-turbulence model in the COMSOL simulator. Quantitatively,
maximum variations of 6% between the simulated and experimental pressure drop
values showed that the model accurately explained this kind of flow.
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