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Abstract: This work investigates the effects of oxygen and humidity on black phosphorous (BP) and
black arsenic phosphorous (AsxP1−x ) flakes using Raman spectroscopy and in situ electric transport
measurements (four-probe resistance and thermoelectric power, TEP). The results show that the
incorporation of arsenic into the lattice of BP renders it more stable, with the degradation times for
BP, As0.2P0.8, and As0.4P0.6 being 4, 5, and 11 days, respectively. The P-P Raman peak intensities were
determined to decrease with exposure to oxygen and moisture. The TEP measurements confirmed
that both BP and AsxP1−x are p-type semiconductors with the TEP of As0.4P0.6 stabilizing more slowly
than that of BP. In addition, the four-probe resistance of BP and AsxP1−x stabilized significantly faster
when exposed to air after being degassed in a vacuum. This was attributed to the charge transfer
between the oxygen redox potential of air and the Fermi energy (EF) of the semiconductors.

Keywords: black phosphorous; black arsenic phosphorous; degradation; Raman spectroscopy;
electrical transport measurements; in-situ; charge transfer; environmental stability

1. Introduction

Environmental stability is one of the key issues in the development of functional mate-
rials, especially when these materials are designed for applications and devices requiring
direct environmental exposure. The importance of material stability cannot be overstated
as it directly affects the reliability and lifetime of devices they are used in. Understanding
of the processes that occur at the interface between materials and the environment, i.e., the
processes that are potentially responsible for material degradation is therefore essential.
Among such processes are the phenomena occurring at the surface of the material during
its exposure to humid air. While in metals this often can lead to a corrosion, such exposure
can also significantly affect semiconductors, which are another technologically important
class of materials.

The exceptional properties exhibited by black phosphorous (BP) have motivated
research into mitigating the effects of its instability [1]. The surface of BP is reactive in air
due to the lone pair of electrons a phosphorous atom possesses [2–4]. A photo-assisted
reactive oxygen species (ROS) forms and bonds on BP surface upon exposure to ambient
environment in the presence of light [5]. A thin layer of hydrophilic oxidized phosphorous
(PxOy ) is formed on the surface as it is oxidized [2]. Oxidized regions on the surface of
BP appear as small bumps [6] which further react with moisture in air to form etching
phosphoric acids [2,4–7] that appear as large droplets [6]. Favron et al. reported that visible
light alone induces no degradation on BP [6]; rather, the photo-induced degradation is
activated by air or the mixture of air and water. Passivation strategies that have been
proposed and tested for the inhibition of degradation in BP can broadly be classified into
encapsulation methods and covalent modification methods [4,8,9]. Encapsulation involves
coating BP sheets with non-covalent environmentally stable materials that isolate BP from
interacting with air. Atomic layer deposition (ALD) is an encapsulation method where
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Al2O3, SiO2, TiO2 have been used to coat BP layers resulting in long-term stability upon
exposure [8,10–12]. In addition, dry transfer methods involving stacking up BP layers
with other Table S2 materials such as graphene, hexagonal boron nitride (h-BN), MoS2,
etc. [4,9,13], yield stable BP heterostructures with impressive stability. Nevertheless, this
method is expensive, sophisticated, and requires a long time to complete.

Covalent modifications or functionalization of BP is achieved when functional groups
react with the lone pairs of electrons in phosphorous atoms to yield P-X bonds [4]. The
newly formed surface is thus immune from oxygen attacks. Covalent modification can
be complicated as they require a trade-off between ensuring stability and preserving the
desired properties of phosphorene [8]. Selection of elements from the same group as P or
adjacent in the periodic table can help to mitigate this limitation. Yang et al. stabilized
BP for 21 days by doping it with Te [14]. They reported that Te doping induced a shift
of the conduction band minimum (CBM) of BP so that it approached or went below
the redox potential of O2/O−

2 . In addition, such doping reduced the light-induced O2
generation; thus, it inhibits the oxidation process. Recently, exceptional electrical transport
properties have been reported for As-dopped BP [15]. Based on those previous reports, we
hypothesize that the doping (isovalent substitution) of P with much more stable As which
can have the same orthorhombic crystal structure as BP [16,17] will yield a more stable
alloy with the same structure and similar properties as phosphorene. The As doping not
only preserves BP’s orthorhombic crystal structure and in-plane anisotropy, but also tunes
electronic and optical properties of the material for more applications. The resulting black
arsenic–phosphorous (AsxP1−x), like BP, also has a puckered honeycomb crystal structure
with its lattice parameters following approximately the Vegard’s law [18], i.e., changing
almost linearly with alloy’s composition [15,16]. The lattice parameters of AsxP1−x are
relatively larger compared to those of BP because the As−As bond length is larger than that
of the P-P bond (2.48 Å vs. 2.21 Å in elemental arsenic compared to elemental phosphorous)
and substituted As atoms in BP are slightly displaced outwards resulting in the increase in
rectangular primitive cell constants of AsxP1−x [19].

Here, we present direct experimental evidence based on Raman spectroscopy and
in situ environmental electrical measurements that the introduction of arsenic atoms into
BP lattice can enhance its stability. In addition, we discuss and compare the stability of
these materials, i.e., BP and AsxP1−x, using a similar mechanism to the one proposed
previously for diamond [20] and other semiconductor-type carbon materials [21], where
electrochemical charge transfer occurs between the adsorbed water and the surface of
semiconductor material exposed to humid air. Better understanding of such processes
in BP and AsxP1−x can lead to better protection strategies, as well as to designs of more
durable materials.

2. Materials and Methods
2.1. Synthesis of Black Phosphorous and AsxP1−x

BP and AsxP1−x (x = 0.2, 0.4 and 0.6) were synthesized via the chemical vapor transport
route (CVT). For the synthesis of BP, red phosphorous (500 mg, Sigma, > 97%) was used as
the precursor, while Sn (20 mg, Alfa Aesar, 99.8%) and SnI4 (20 mg, Alfa Aesar, 95%) served
as transport agents. Red phosphorous, Sn, and SnI4 were loaded in a quartz ampoule that
was sealed at 10−6 Torr. The sealed ampoule was then annealed at 615 ◦C in two-zone
furnace where a temperature gradient of 50 ◦C was maintained and starting materials were
placed at the hot end. Detailed steps for this process have been provided [22–24]. At the
same time, stoichiometric amounts of red phosphorus and gray arsenic (Sigma, >97%) were
measured into quartz ampoules alongside transport agents, sealed at the same vacuum as
BP and annealed at 650 ◦C with the same temperature gradient maintained in the furnace
for the synthesis of AsxP1−x compounds.
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2.2. Raman Spectroscopy

BP and two compositions of AsxP1−x (x = 0.2 and 0.6) were crushed to approximately
10 µm and placed on marked glass slides. Before the Raman spectra of crushed samples
were quickly measured, the Raman shift of silicon (520 cm−1) was used to calibrate the
equipment. This was performed for subsequent measurements to avoid shifts in the spectra
caused by poor calibration. The glass slides bearing the samples were then placed in an
open bath that had a digital hygrometer placed beside it. The average relative humidity
and temperature for this experiment were 35 ± 5% and 25 ◦C, respectively. The Raman
spectrum for each sample was measured every day to study their systematic degradation
until they ultimately degraded. While the total degradation of the samples occurred at
different times, it required 19 days to conclude this experiment.

2.3. Electrical Transport Measurements

The in situ thermoelectric power (TEP) and four-probe resistance of BP were measured
by positioning two small thermocouples (Chromel (KP)/Alumel) and two current leads
on a 4 mm by 4 mm2 BP sample with the aid of small silver epoxy [15,25]. An edge of
the sample was fitted on an aluminum plate with a resistive heater (∼100 Ω) beneath.
The sample holder carrying the sample and electrical leads were put in a quartz reactor
and pumped with a turbomolecular pump down to 10−7 Torr. TEP and resistance were
measured carefully in real time as the sample was heated gently from room temperature
up to 560 K and kept at this temperature for 12 h. The sample was then cooled to room
temperature for 3 h and exposed to ambient conditions for 72 h. This procedure was
replicated for As0.4P0.6 and obtained results were analyzed. The setup for the explained
process is illustrated in Figure 1.
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3. Results and Discussion
3.1. Raman Spectroscopy

The Raman spectra of unexposed synthesized samples are shown in Figure 2. BP
shows its signature vibration modes centered at 357, 432 and 460 cm−1 and are assigned
the notations A1

g, B2g and A2
g [22,24–26], respectively. AsxP1−x alloys typically exhibit three

regimes of Raman vibration modes [15]. There are three As–As vibration modes detected
between 200 and 300 cm−1, two As–P modes that appear between 300– and 30 cm−1 while,
similar to BP, three P–P vibration modes appear between approximately 330 and 500 cm−1.
The notations for the As–As modes are also A1

g, B2g and A2
g, respectively.
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different chemical compositions.

The Raman spectra for BP and AsxP1−x alloys measured after continuous exposure
to air are presented in Figure 3. BP (Figure 3a), expectedly, degraded faster relative to
AsxP1−x alloys (Figure 3b,c). Similarly, Figure S1 shows that the P-P vibration modes for
BP quenched faster than those of As0.2P0.8. BP is susceptible to photo-assisted oxidation
which causes it to degrade and adversely affects its electronic and optical properties.
The degradation of BP is only mildly inhibited by low concentrations of As in As0.2P0.8
(Figure 3b). On the other hand, As0.6P0.4 (Figure 3c) showed much better stability as it was
able to inhibit oxygen attacks for a much longer period. While it required BP 9 days to
degrade totally, As0.2P0.8 and As0.6P0.4 fully degraded after 11 and 19 days, respectively.
It is noteworthy to mention that the samples studied in this experiment were all multi-
layered. One of the evidences of degradation in multi-layered BP is the blueshift of its
Raman peak positions [27] (Figure S3) as a result of the loss of layers as phosphoric acids
etch the material top-down [6,8]. The kinetics of oxidation of BP and AsxP1−x were further
analyzed by fitting the normalized total Raman intensity for each sample as shown in
Figure 3d. The fitted curves correspond to a monoexponential decay function, exp

(−t
τ

)
.
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The decay function parameters are presented in Table S1. It can be inferred that BP decays
almost three times faster than As0.6P0.4.
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Figure 3. Results derived from Raman spectroscopy. (a–c) Degradation maps showing time evolution
of Raman spectra upon exposure to ambient environment for BP, As0.2P0.8, and As0.6P0.4, respectively.
(d) The total Raman intensity as a function of exposure time for BP (As0P1), As0.2P0.8 and As0.6P0.4.
The initial (t = 0) total intensity for all three samples was normalized to 1.

Since the oxidation of BP is a chemical process, it makes sense to use a chemical
approach to inhibit it. Figure S2 shows the relatively fast quenching of P-P Raman peak
intensities for BP and As0.2P0.8 relative to As0.6P0.4. This shows that alloying BP with high
concentration of As limits the possibility of light-induced O2 generation and abating the
oxidation process [8,14].

3.2. In situ Transport Property Measurements of BP and As0.4P0.6

The normalized TEP for As0.4P0.6 shows better stability in ambient environment than
BP (Figure 4a) after over 10 h of annealing and cooling in a vacuum. The degradation
kinetics for BP and As0.4P0.6 correspond to a monoexponential model,

(
1 − exp

(−t
τ

))
. The

coupling between the thermal and electrical phenomena in BP deteriorates relatively faster
because of the photo-assisted oxygen degradation of the P-P bond [6]. After over 500 min
of exposure to ambient conditions, the TEP of As0.4P0.6 demonstrated stability, settling
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approximately 1.4 times slower than BP (Table S2). Chemically modifying BP with As atoms
to ensure oxygen sequestration has proven to ensure better stability in transport properties
of interest. Figure 4b also shows the sustained stability of the four-probe resistance of
As0.4P0.6 over BP after exposure to air. The normalized resistance for BP shows a rapid
drop after approximately 40 min of exposure while the resistance of As0.4P0.6 decreases
much slower. The resistance of BP and As0.4P0.6 also fitted well with a monoexponential
decay function as shown in Figure 4a. The metallic character of As also contributes to
the stabilized electrical transport properties of AsxP1−x. The normalized resistance for BP
decays approximately four times faster than BP as shown in Table S3.
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The difference in degradation characteristics in Raman spectroscopy and electrical trans-
port measurement data originates from the difference in experimental procedures. Raman
studies were performed on samples that were already exposed to air (oxygen and moisture)
and it reflects the long-term degradation properties showing longer time constants (days)
shown in Table S1. However, TEP and resistance were studied right after they were exposed
to air from their degassed states and the transport properties reflect changes in thermal and
electrical properties with shorter time constants (minutes) shown in Tables S2 and S3. The
discrepancy in the time constant values observed in resistance (Table S2) and TEP (Table S3)
data is due to the grain boundary effects and other scattering events that only influence the
resistance. The room temperature TEP for BP and As0.4P0.6 were of 250 µV/K and 145 µV/K,
respectively (Figure S4a). This confirms the dominance of hole concentrations (p-type) in
these semiconductors. The corresponding room temperature four-probe resistances for BP
and As0.4P0.6 were 0.27 Ω and 0.085 Ω, respectively (Figure S4b).

In general, whenever a semiconductor is exposed to humid air, a charge transfer is
expected between the adsorbed water film and the solid in a direction that tends to bring
the Fermi energy (EF) of the material to an equilibrium with the electrochemical potential
of the film. This is based on the electron exchange between the material and the aqueous
redox couple O2 + 4H+ + 4e− 
 2H2O [28]. All key components originate from normal
humid air: the water film provides both a medium for the electrochemical reaction as well
as the O2 and the H+ (the protons arise from acidity generated by CO2 that is present in
air). Previously, this mechanism has been proposed and used to explain a long-standing
problem of a curious phenomenon—undoped diamond—an exceedingly good insulator,
showing substantial conductivity when exposed to air [20]. This mechanism has also been
shown to play an important role in other carbon materials [29–32], as well as in inorganic
materials, such as GaN and ZnO [33,34]. Reported values of the Fermi energy (EF) of carbon
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solids, such as graphite, diamond, carbon nanotubes, and graphene are all well above
the electrochemical potential of the oxygen redox couple in air (−5.3 eV) [28]. Therefore,
the redox couple can serve as an external acceptor and be responsible for EF pinning and
modified electrical properties of these materials [34,35].

Previous studies have reported the work function for BP to range from ~5.17 eV for
monolayer to ~4.58 eV for tri-layer. This varies inversely with the number of BP layers [36].
The valence band edges of BP are above the O2/O−

2 redox couple in air [6,14,27], alloying
with As causes a shift in the Fermi level so that it approaches the redox potential of O2/O−

2
as shown in Figure 5, which is consistent with the prediction that band bending (and charge
transfer) will be minimal and the Fermi energy throughout the solid will be pinned close to
that of the redox couple in the adsorbed water film. Yang et al. observed this phenomenon
(i.e., Fermi level pinning) with Te-doped BP where ambient degradation was inhibited and
Te-doped devices demonstrated impressive retained mobility of over 200 cm2 v−1 s−1 [14].
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Figure 5. Band diagrams explaining the electron exchange between BP/AsxP1−x AsxP1−x material
systems and the aqueous redox couple (a) before and (b) after exposure to ambient conditions.

4. Conclusions

The environmental stability of BP and AsxP1−x was studied by evaluating their optical
and electrical transport properties under controlled conditions. The Raman analysis of BP
and AsxP1−x when exposed to air indicated that BP degraded nearly three times faster than
As0.6P0.4 . This emphasizes that increasing the concentration of As atoms in BP improves
its stability. The degradation times for BP, As0.2P0.8, and As0.4P0.6 were recorded as 4, 5,
and 11 days, respectively. Additionally, the electrical transport properties of As0.4P0.6 and
BP after being exposed to air showed that the thermal and electrical coupling between P-P
in BP was improved through alloying with As atoms. The kinetics of the charge transfer-
related evolution of electrical transport parameters followed exponential growth (TEP) and
exponential decay (resistance) models, respectively. The TEP of As0.4P0.6 stabilized slower
than BP by 1.4 times, while BP’s resistance decayed faster than As0.4P0.6 by four times after
being exposed to ambient conditions. The redox potential of AsxP1−x is closer to the O2/O−

2
(−4.5 eV) compared to BP, leading to reduced charge transfer effects and degradation at
the surface–water interface. Furthermore, when cooled and annealed samples of As0.4P0.6
and BP were exposed to ambient conditions, it was determined that the normalized TEP
and four-probe resistance of As0.4P0.6 were relatively stable compared to BP.
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power (TEP); Table S3: Decay function parameters for normalized resistance; Figure S4: Response of the
electrical transport properties of BP and As0.4P0.6 to heating and cooling. (a) TEP and (b) resistance.
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