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Abstract

:

Material science is a broad discipline focused on subjects such as metals, ceramics, polymers, electronics, and composite materials. Each of these fields covers areas associated with designing, synthesizing, and manufacturing, materials. These are tasks in which the use of technology may constitute paramount importance, reducing cost and time to develop new materials and substituting try-and-error standard procedures. This study aimed to analyze, quantify and map the scientific production of research on the fourth industrial revolution linked to material science studies in Scopus and Web of Science databases from 2017 to 2021. For this bibliometric analysis, the Biblioshiny software from RStudio was employed to categorize and evaluate the contribution of authors, countries, institutions, and journals. VOSviewer was used to visualize their collaboration networks. As a result, we found that artificial intelligence represents a hotspot technology used in material science, which has become usual in molecular simulations and manufacturing industries. Recent studies aim to provide possible avenues in the discovery and design of new high-entropy alloys as well as to detect and classify corrosion in the industrial sector. This bibliometric analysis releases an updated perspective on the implementations of technologies in material science as a possible guideline for future worldwide research.
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1. Introduction


Material science is fundamental for discovering, designing, and casting the human world. It encompasses diverse disciplines such as chemistry, metallurgy, and solid-state physics, among others, to correlate materials’ properties with their composition and structure. These efforts serve as raw materials for engineers to develop applications in electronics, nuclear, construction, communications, food, and other industries. However, successful results are troublesome since try-and-error methodologies take time and resources. Hence, material science relies on computational techniques to increase design reliability and precision, opening space for a new industrial automatization era [1,2,3].



The fourth industrial revolution, also known as Industry 4.0, is composed of many technologies from which data mining [4] and artificial intelligence (AI) stands out in material science [5], which can be incorporated together [6]. Machine learning [7,8] and its deep learning branch [9,10] are the most used algorithms from AI. For these emerging tools to function, having data of quality is essential. Therefore, pretreatment steps are always required regardless of the data source; experimental, computational, or industrial [11]. Experimental data supply information about the chemical composition, material properties, testing conditions, processing parameters, etc. Computational data provide algorithm types, chemical details, computation constraints, etc. Industrial data cover property information, equipment applied, brand names, material names, and others. The stages necessary for introducing an AI model in industrial production include data management, model learning, model verification, model deployment, and cross-cutting aspects [12].



The application of technologies from industry 4.0 in material science is diverse, as shown in the following research works. Data mining has been used to classify martensite, pearlite, and bainite microstructures from their morphological parameters [13]. Machine learning algorithms have been introduced to predict stable lead-free hybrid organic-inorganic perovskites from unexplored perovskite data, identifying new stable compounds [14]. Deep learning -a preferred algorithm from machine learning- is gaining relevance in the design of photonic devices through deep neural networks, synthesizing multilayer structures based on the thickness of each layer as input parameters [15].



Bibliometrics has been found very useful to describe the impact and growth of a research field and determine its protagonists. It can be used with short or wide timeframes as observed in the work of Nandiyanto et al. [16], Vukić et al. [17], and Modak et al. [18] regarding chemical engineering issues. Likewise, the scientific community recommends using Scopus and WoS databases to carry out this type of review due to their known quality and flexibility to elaborate a robust query equation [19,20].



Few articles deal with the bibliometric analysis of industry 4.0 applied to material science. Advanced and smart manufacturing have been studied separately based on Scopus or Web of Science (WoS) databases, proving that industry 4.0 is exponentially increasing and just emerging, correspondingly [21,22]. Artificial neural network applications have been explored through Scopus, highlighting their importance in engineering fields [23]. Other studies have focused on quantifying the use of deep learning in structural crack detection [24] and AI in the textile industry [25] through WoS. These bibliometric studies have only covered certain areas of material science or industry 4.0 and have mainly employed only one database. This research aims to provide a wider and complete scientometric vision of industry 4.0 applied to material science. We took the recent 2017–2021 period, Scopus and WoS databases, covering several emerging topics, and utilized bibliometrix from RStudio for data mining. The following research questions were addressed:




	
Q1: How many research articles were annually published between 2017 and 2021 in material science linked to industry 4.0?



	
Q2: Who are the most cited authors in studies associated with industry 4.0?



	
Q3: Which papers are the most cited in material science combined with industry 4.0?



	
Q4: What journals host the highest quantities of papers in this research area?



	
Q5: What are the leaders’ institutions in the focused research field?



	
Q6: What are the most active sponsor institutions in the selected period?



	
Q7: What are the top ten countries publishing on this subject?








Bibliometric research can lead to the development and discovery of trends in a field, helping the scientific community to identify new hotbeds of innovation based on a recent window of observation [26]. This bibliometric analysis provides an updated perspective of the implementations of technologies from industry 4.0 in material science as a scientific reference for subsequent research.




2. Materials and Methods


2.1. Study Design


We opted for a bibliometric analysis to numerically measure the scientific activity of industry 4.0 as it is applied to materials science. This decision was made based on the high number of scientific articles collected from Scopus and WoS between 2017 and 2021.




2.2. Data Source


The Scopus and Web of Science databases were selected due to their widespread reputation for hosting high-quality journals and research documents. Institutional access was required to download and corroborate the content of the study files.




2.3. Search Strategy


We introduced an extended list of keywords in both databases, covering material science and industry 4.0 topics (see Figure 1). In search of articles that are relevant to industry 4.0, the words used were the following: data science, industry 4.0, augmented reality, computer science, remote sensing, artificial intelligence, 3D scanning, data mining, data analytics, data handling, data processing, big data, data visualization, internet of things, and machine learning. The selected words to represent material science were: material, alloys, polymers, metals, nanomaterials, minerals, plastics, ceramics, catalyst, biomaterials, molecular, organic materials, inorganic materials, corrosion, material synthesis, and manufacturing. These keywords were obtained in a cyclical process in which, starting from the articles returned by the databases, more words were incorporated, covering the initially unforeseen topics. The established timeline covered data between 2017 and 2021, while the search was narrowed down to titles and keywords to increase the effectiveness of the search equation. Besides, only original articles were considered as the document type. Both web pages were consulted for the last time on 9 September 2022.




2.4. Bibliometric Analysis


Plots and tables combined the separately processed and analyzed data downloaded in BibTeX files from the Scopus and WoS databases. The Biblioshiny app from the RStudio cloud was used as a tool to obtain and organize both databases before manual manipulation. Biblioshiny offers data about the most productive countries, institutions, authors, research fields, and journals, as well as about keywords, h-index, impact factor, total citations, etc. [27]. Moreover, VOSviewer was included for data mining, mapping, and visualization of collaborative networks [28].




2.5. Limitations


The Scopus and WoS databases are not perfectly adapted to bibliometric analyses; therefore, they tend to return a certain amount of erroneous data that limits the conclusions to be drawn from them. In bibliometric studies, qualitative statements tend to be subjective since these analyses are essentially quantitative [29]. This type of review offers a short-term forecast of the area under investigation [30].





3. Results and Discussion


The findings delivered from each of the previously mentioned objectives will be presented in the following subsections based on the data taken from WoS and Scopus. Figure 1 shows that Scopus is the most used database to publish articles related to industry 4.0 in material science, more than doubling the number of documents hosted in WoS.



3.1. Trends in the Annual Production of Original Papers


Figure 2a shows that the introduction of technologies from industry 4.0 within material science areas slightly increased from 2017 to 2019; however, it showed sharp growth after this point. One of the technologies that has presented an important increase in recent years is machine learning; however, it is still a developing tool that requires a higher degree of fine-tuning before we can see its complete potential [31].



There has been rapid adoption of digital technologies during the COVID-19 pandemic, triggering the additional implementation of artificial intelligence in material science [32]. As seen in Figure 2a, the number of published papers pertaining to the assessed subjects has grown exponentially in the past five years.



The mean total citation per year reached a higher peak in 2018, after which it decreased similarly in both databases (see Figure 2b). The decay of said metric may respond to the time required by the researchers to identify newly published works, their novelty, their accessibility, and the spreadability of science, among other reasons [33,34,35].




3.2. Most Cited Authors and Their Collaborations


The Scopus and WoS databases highlight Zhang Yan as one of the most productive researchers in issues related to industry 4.0 applicated to materials (see Table 1). As a general observation, Wang J. and Liu J. produced a higher quantity of TC, whereas Zhang Yan delivered the largest number of scientific papers. In addition, as shown in Figure 3a, Zhang Yan is the researcher with the most collaborations (60) in Scopus, followed by Li J. (51) and Wang J. (48) (see Table A1 from Appendix A). Although Wen C., Xue D., and Su Y. are the authors with the most link strengths from WoS, with 8 collaborations each. As such, Zhang Yan can be considered the most influential author in the studied subjects. In his latest research, he has used machine learning for material design and microstructure evolution prediction [36,37]. It is worth noting that images from Figure 2 are not tailored to the data of Table 1 since these networks’ charts are focused on searching for collaborations—total link strength—and they depend on the minimum number of articles per author and on the decision of presenting the interconnection of nodes. In this case, the node size is proportional to the number of associations per author. The same logic applies to the following VOSviewer figures and their interpretations, along with the document.




3.3. Most Cited Research Articles


As shown in Table 2, the three most-cited papers were written by Zhong RY. (2017), Tao F. (2018), and Frank AG. (2019). The work of Zhong is a review only hosted in Scopus that counts the highest number of citations and is about intelligent manufacturing [38]. The paper written by Tao deals with the use of big data in product life cycle management, proposing a new method for its design, manufacture, and service driven by digital twins [39]. Frank surveyed 92 manufacturing companies to study the implementation of the internet of things, cloud services, big data, and analytics in smart manufacturing, smart products, smart supply chain, and smart working. This research work highlighted the need for named technologies in Smart manufacturing since they play a central role within companies [40]. Furthermore, 60% of the topics extracted from Table 2 are associated with manufacturing in the industrial sector. At the same time, machine learning (ML) is the preferred technology, followed by its deep learning (DL) branch and big data. As previously argued, ML and DL -artificial intelligence- have become usual techniques for the discovery and design of materials at a molecular level. Regarding the use of big data, the so-called 5 V model has been found to be essential for data management and data preservation in the material science context. This model considers the variability of unstructured data, volume of data in zettabytes, velocity in streaming data, noise removal veracity, and added value [41].




3.4. Journals That Host a Higher Number of Articles


Table 3 shows that the journals with more participation in material science linked to technologies from the fourth revolution are Computational Materials Science, IEEE Access, and Journal of Physical Chemistry Letters. Even though, this latter source isn’t part of the WoS’ top three. The cumulate average of research works hosted in these three journals is below 8%, therefore, there exists a large spectrum of journals (>92%) publishing articles regarding material science addressing technologies from industry 4.0.



On the other hand, by introducing Bradford’s law, it was feasible to classify sources into core areas, related areas, and non-relevant areas concerning the targeted field, as observed in Equation (1).


   r 0  = 2 ln  (   e γ  Y  )   



(1)




where    r 0    represents the number of journals that make up the core area,  γ  is the Euler’s constant (~0.577), and  Y  is the number of papers published in the journal with the most hosted documents [42]. In this case, since we this study involves two databases,    Y 1  = 58     in Scopus and    Y 2  = 45   in WoS. Thus,    r  0 − 1    (  Scopus  )  ≅   9   and    r  0 − 2    (  WoS  )  ≅   9  . As a result, only the source Applied Sciences-Basel from WoS is removed from the core collection, bearing in mind that ACS Applied Materials & Interfaces from Scopus is inside the WoS list of publications with the higher JCR impact factor. Also, it is noteworthy that Computational Materials Science is the preferred journal to publish articles around industry 4.0 connected with material sciences.




3.5. Most Productive Institutions and Their Collaborations


Considering an array of only interconnected nodes in VOSviewer, Scopus and WoS delivered the same result regarding the most productive institutions. The top 3 universities in Scopus publish more papers than those in WoS. Accordingly, the University of Science and Technology Beijing is positioned as the most contributive institution, followed by the University of California and Shanghai University (see Table 4). Meanwhile, from the collaborative viewpoint, the Chinese Academy of Sciences is positioned as the most collaborative institution with a total link strength of 58, as counted in Table A2 from Appendix B and as appreciated in Figure 4b. Other research studies have highlighted the implementation of technologies from industry 4.0 at the Chinese Institute of Computer Science [43].



In this regard, Scopus did not provide visual evidence regarding the leader institution, (see Figure 4a) but indicated partial partnerships among most universities. Table A2 shows that below the Chinese Academy of Sciences, its managed institution, the University of Chinese Academy of Sciences, hosts 22 fewer partnerships. The dominance of China and the United States is visible in Table 4. Nevertheless, Figure 3b suggests that new organizations, such as Curtin University from Australia, have been increasing their teamwork in the past few years.




3.6. Most Participative Funding Agencies


The studied databases were consistent in finding the National Natural Science Foundation of China (NSFC) and the National Science Foundation (NSF) from the United States as the principal funding agencies (see Table 5). Both institutions have been compared according to their influence on the development of artificial intelligence-associated research in the past decade [44]. The main findings suggest that from 2010 to 2019, the NSF supported more AI research than the NSFC, injecting 1.7 billion more dollars into research. Despite the greater volume of published works by the NSFC, reaching 15 thousand more papers than the NSF, it awarded less money. However, it is expected that by 2023 the NSFC will surpass the NSF in the quantity of money awarded. In the addition to these two mighty powers, organizations from Belgium and Germany are financing research in industry 4.0 to sustain the growth of the field in Europe countries.




3.7. Most Contributing Countries and Their Collaborations


Scopus and WoS coincide in attributing the leading countries in materials science studies developed under the perspective of industry 4.0. China ranks as the country that has successfully incorporated ideas, technology, and innovation from computers to the architecture of materials and additive manufacturing [45]. In spite of the higher number of citations received by the studies carried out by the United States rendering to Scopus (see Table 6). Two rungs below, countries like Japan, Germany, and the United Kingdom, appear with standardized scientific productions.



The esteemed position of China in this field is not a matter of luck since this country thoroughly planned today’s ubication by introducing the “Made in China 2025” plan, which was directed to catch up with industry 4.0 technologies. This plan was ten years ahead of planning that pursued to become the country a global manufacturing powerhouse [46]. However, despite Chinese expectations, only 57% of their companies are adequately prepared for Industry 4.0 technologies. This low average of prepared companies to receive these technologies in China is surpassed by the United States (71%) and Germany (68%) [47].



According to the databases explored, among the most collaborative countries are the United States, China, and United Kingdom (see Table A3 in Appendix C). The first two countries, however, are interchanged in the first places in Scopus and WoS. This perhaps demonstrates a preference by China to publish in WoS journals (see Figure 5) as a result of its policy to measure research excellence [48]. Otherwise, Figure 5 shows that India, Turkey, and the Czech Republic are countries that have increased their collaborations in recent years.



Keywords are loyal representations of scientific research works in articles, and their frequent implementations may reflect the hotspots of a particular study field. The word-cloud visualization of Scopus and WoS database in Biblioshiny (see Figure 6) allowed us to define the most relevant keyword introduced by authors in material science associated with industry 4.0 technologies.



We highlight smart manufacturing, additive manufacturing, and molecular dynamics as part of the material science keywords while machine learning, deep learning, and big data for industry 4.0. As previously mentioned most productive institutions may fluctuate, yet, more generally, machine learning and deep learning are the most prioritized technologies in material science studies (see Figure A1 in Appendix D). Machine learning and deep learning are recognized as the brains behind smart manufacturing. In this regard, both technologies are used for decision-making support systems, fault diagnosis, predictive analytics, advanced robotics, and scheduling [49]. Additive manufacturing, also known as 3D printing, is used to determine fabrication parameters, quality of the workpieces, and processing time. Furthermore, it is expected that additive manufacturing will achieve 5d-printing, through the implementation of time and artificial intelligence tools as the fourth and fifth dimensions, respectively [50]. In the case of molecular dynamics, artificial intelligence is employed to contribute to understanding materials’ properties by simulating the interaction of atoms and molecules. Even though some studies lead to considerable differences between accuracy and efficiency, machine learning and deep learning are still considered helpful tools to match efficiency with ac-curacy in molecular simulation [51].



On the other hand, Figure 7 shows possible new trends for technologies from the fourth industrial revolution based on the keywords extracted from both studied databases. While AI technologies continue to be tightly associated with new trends, it is notable that materials science fields, such as high entropy alloys and corrosion, are gaining traction in computer sciences. The predictive properties of high entropy alloys may allow for the design of new materials by selecting key-related features of alloys [52]. Additionally, the detection and classification of corrosive issues from images of industrial facilities have been successfully performed through AI [53]. We believe these applications belong to a new pathway of industry 4.0 as applied to material science and serve as a guide for future routes to be explored by scientists.





4. Conclusions


This bibliographic review brings us closer to the recent growing interest shown by institutions, journals, researchers, countries, and funding agencies in the study of material science linked to the emerging technological tools provided by industry 4.0. The main conclusions delivered by responding to each one of the settled research questions are the following:




	
The production of original papers in the explored field is exponentially growing.



	
A minimum of 14 published papers are required to become one of the most cited authors on the tracked type of research.



	
Most cited articles in these fields deal with artificial intelligence and big data applications in manufacturing industries.



	
The top journals preferred to spread initiatives of industry 4.0 in conjunction with the material science field count with a JCR higher than 2.5.



	
The most productive institutions delivered at least 22 documents to be part of the top ten.



	
Funding agencies pursuing the top ten of given awards need to support a minimum of 16 papers.



	
China and the United States are the most implicated countries regarding the fourth industrial revolution applied to material science, whose success stems from the incorporation of specific public policies.



	
Deep learning represents the most attractive technology in machine learning to perform new studies in material science.








Even though AI is the research hotspot technology in material science studies, and it has become commonly used in molecular simulations and manufacturing issues, opportunities stills exist to discover and design new high entropy alloys and corrosion detection. In general terms, this bibliometric analysis offers an updated viewpoint regarding material science for developing subsequent research and generating consciousness about the impact of introducing new technologies in the promotion, discovery, design, management, and operation of materials used by companies.







Author Contributions


A.A.-M. and J.O.-A. carried out the literature review, data analysis, and discussion of results, and drafted the manuscript. D.C.P.Q. and A.A.-A. helped with extracting data and manipulating the used software. A.A.-M. communicates with the editor. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Data Availability Statement


The used databases can be freely downloaded from the Web of Science and Scopus websites.




Conflicts of Interest


The authors declare no conflict of interest.





Appendix A




[image: Table] 





Table A1. The top 5 most collaborative authors in industry 4.0 applied to material science from 2017 to 2021.






Table A1. The top 5 most collaborative authors in industry 4.0 applied to material science from 2017 to 2021.





	

	
Scopus

	
WoS




	
Rank

	
Author

	
No. of Paper

	
T. Link Strength

	
Author

	
No. of Paper

	
T. Link Strength






	
1st

	
Zhang Y

	
44

	
60

	
Wen C

	
5

	
8




	
2nd

	
Li J

	
32

	
51

	
Su Y

	
5

	
8




	
3rd

	
Wang J

	
37

	
48

	
Xue D

	
6

	
8




	
4th

	
Liu Y

	
38

	
44

	
Liang H

	
5

	
5




	
5th

	
Li Y

	
33

	
42

	
Qiao Z

	
5

	
5
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Table A2. The top 5 most collaborative institutions in industry 4.0 applied to material science from 2017 to 2021.






Table A2. The top 5 most collaborative institutions in industry 4.0 applied to material science from 2017 to 2021.





	

	
Scopus

	
WoS




	
Rank

	
Institution

	
No. of Paper

	
T. Link Strength

	
Institution

	
No. of Paper

	
T. Link Strength






	
1st

	
Technical University of Berlin

	
8

	
14

	
Chinese academy of sciences

	
27

	
58




	
2nd

	
University of Zilina

	
10

	
12

	
University of Chinese academy of sciences

	
14

	
32




	
3rd

	
Cadi Ayyad University

	
3

	
8

	
Northwestern polytechnic university

	
12

	
32




	
4th

	
The institute of smart big data analytics

	
5

	
8

	
University of science and technology Beijing

	
18

	
31




	
5th

	
University of Chinese academy of sciences

	
7

	
8

	
Georgia institute of technology

	
8

	
26
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Table A3. The top 5 countries in industry 4.0 applied to material science from 2017 to 2021.






Table A3. The top 5 countries in industry 4.0 applied to material science from 2017 to 2021.





	

	
Scopus

	
WoS




	
Rank

	
Country

	
Total, Link Strength

	
Country

	
Total, Link Strength






	
1st

	
United States

	
252

	
China

	
154




	
2nd

	
China

	
176

	
United States

	
143




	
3rd

	
United Kingdom

	
63

	
United Kingdom

	
70




	
4th

	
Germany

	
56

	
Germany

	
45




	
5th

	
India

	
33

	
Australia

	
31
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Figure A1. Relationship between institutions, countries and most used keywords in industry 4.0 applied to material science from 2017 to 2021 from (a) Scopus and (b) WoS. 
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Figure 1. Flowchart of used bibliometric methodology. 
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Figure 2. The year-wise of publication (a) and total citation (TC) (b) from WoS and Scopus from 2017 to 2021. 
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Figure 3. The most collaborative authors in material science combined with industry 4.0 from 2017 to 2021 in (a) Scopus and (b) WoS, considering a minimum of 12 and 5 documents in VOSviewer, respectively. Each node’s size is proportional to the number of associations per author. 
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Figure 4. The most collaborative institutions in material science combined with industry 4.0 from 2017 to 2021 in (a) Scopus and (b) WoS, considering a minimum of 1 document in VOSviewer. Each node’s size is proportional to the number of associations per institution. 
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Figure 5. The most collaborative countries in material science joined with industry 4.0 from 2017 to 2021 in (a) Scopus and (b) WoS, considering a minimum of seven documents in VOSviewer. Each node’s size is proportional to the number of associations per country. 
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Figure 6. Word clouds of authors’ keywords in industry 4.0 applied to material science from 2017 to 2021 from (a) Scopus and (b) WoS. 
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Figure 7. Keywords most used by authors in material science studies combined with industry 4.0 from 2017 to 2021 in (a) Scopus and (b) WoS, considering a minimum of eight and five occurrences in VOSviewer, respectively. Each node’s size is proportional to the keywords’ frequency of use. 
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Table 1. The top 10 most-cited authors in material science coupled with industry 4.0 from 2017 to 2021.
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Scopus

	
WoS




	
Rank

	
Author

	
h-Index

	
TC

	
No. of Paper

	
Author

	
h-Index

	
TC

	
No. of Paper






	
1st

	
Zhang Y

	
16

	
1452

	
44

	
Zhang Y

	
12

	
886

	
23




	
2nd

	
Liu Y

	
16

	
1606

	
39

	
Li Y

	
9

	
321

	
21




	
3rd

	
Wang J

	
18

	
2453

	
37

	
Li H

	
9

	
314

	
20




	
4th

	
Wang Y

	
15

	
690

	
33

	
Zhang Z

	
8

	
230

	
19




	
5th

	
Li J

	
14

	
797

	
32

	
Liu Y

	
8

	
897

	
18




	
6th

	
Li Y

	
14

	
624

	
31

	
Li J

	
8

	
159

	
17




	
7th

	
Zhang Z

	
11

	
348

	
30

	
Wang J

	
11

	
956

	
15




	
8th

	
Zhang J

	
12

	
862

	
28

	
Wang Y

	
8

	
216

	
14




	
9th

	
Li X

	
11

	
470

	
27

	
Zhang L

	
6

	
755

	
14




	
10th

	
Li H

	
11

	
364

	
25

	
Zhang X

	
9

	
181

	
14
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Table 2. The top 10 most-cited articles in industry 4.0 applied to material science from 2017 to 2021 [14,38,39,40].
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	Autor, Year
	Document Title and Journal Name
	Journal Name
	TC Scopus
	TC WoS





	Zhong RY, 2017
	Intelligent Manufacturing in the Context of Industry 4.0: A Review
	Engineering
	1207
	N/A



	Tao F, 2018
	Digital twin-driven product design, manufacturing, and service with big data
	Int J Adv Manuf Technol
	1136
	822



	Frank AG, 2019
	Industry 4.0 technologies: Implementation patterns in manufacturing companies
	Int J Prod Econ
	795
	633



	Wang J, 2018
	Deep learning for smart manufacturing: Methods and applications
	J Manuf Syst
	747
	583



	Wu Z, 2018
	MoleculeNet: a benchmark for molecular machine learning
	Chem Sci
	637
	N/A



	Qi Q, 2018
	Digital twin and big data towards smart manufacturing and industry 4.0: 360-degree comparison
	IEEE Access
	595
	434



	Schütt KT, 2018
	SchNet—A deep learning architecture for molecules and materials
	J Chem Phys
	579
	N/A



	Ghobakhloo M, 2018
	The future of manufacturing industry: a strategic roadmap toward Industry 4.0
	J Manuf Technol Manage
	503
	N/A



	Liu Y, 2017
	Materials discovery and design using machine learning
	J Materiomics
	NA
	469



	Chmiela S, 2017
	Machine learning of accurate energy-conserving molecular force fields
	Sci Adv
	461
	N/A
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Table 3. Top 10 most articles hosted by the journal in industry 4.0 applied to material science from 2017 to 2021.
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Scopus

	
WoS




	
Rank

	
Journal Name

	
No. of Papers (%)N = 2157

	
Impact Factor

SJR (2021)

	
Journal Name

	
No. of Papers (%)

N = 937

	
Impact Factor

JCR (2021)






	
1st

	
Computational Materials Science

	
58 (2.69)

	
0.777

	
Computational Materials Science

	
45 (4.80)

	
3.572




	
2nd

	
IEEE Access

	
38 (1.76)

	
0.927

	
IEEE Access

	
26 (2.77)

	
3.476




	
3rd

	
Journal of Physical Chemistry Letters

	
32 (1.48)

	
2.009

	
International Journal of Advanced Manufacturing Technology

	
19 (2.03)

	
NA




	
4th

	
Journal of Chemical Information and Modeling

	
31 (1.44)

	
1.223

	
ACS Applied Materials & Interfaces

	
15 (1.60)

	
10.383




	
5th

	
Journal of Physical Chemistry C

	
30 (1.39)

	
1.103

	
Journal of Intelligent Manufacturing

	
15 (1.60)

	
7.136




	
6th

	
NPJ Computational Materials

	
29 (1.34)

	
2.967

	
Advanced Theory and Simulations

	
14 (1.49)

	
4.105




	
7th

	
Sustainability (Switzerland)

	
26 (1.21)

	
0.664

	
Journal of Manufacturing Systems

	
13 (1.39)

	
9.498




	
8th

	
Chemistry of Materials

	
24 (1.11)

	
2.93

	
Materials & Design

	
13 (1.39)

	
9.417




	
9th

	
Journal of Chemical Physics

	
24 (1.11)

	
1.103

	
Acta Materialia

	
11 (1.17)

	
9.209




	
10th

	
ACS Applied Materials & Interfaces

	
23 (1.07)

	
2.143

	
Applied Sciences-Basel

	
11 (1.17)

	
2.838
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Table 4. The top 10 most-productive institutions in industry 4.0 applied to material science from 2017 to 2021.
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Scopus

	
WoS




	
Rank

	
Affiliations

	
Country

	
No. of Paper

	
Affiliations

	
Country

	
No. of Paper






	
1st

	
University of Science and Technology Beijing

	
China

	
59

	
University of Science and Technology Beijing

	
China

	
55




	
2nd

	
University of California

	
United States

	
47

	
Shanghai University

	
China

	
42




	
3rd

	
Shanghai University

	
China

	
42

	
University of Chinese Academy of Sciences

	
China

	
28




	
4th

	
Massachusetts Institute of Technology

	
United States

	
38

	
Nanyang Technological University

	
Singapore

	
26




	
5th

	
Zhejiang University

	
China

	
33

	
Chongqing University

	
China

	
25




	
6th

	
Shanghai Jiao Tong University

	
China

	
30

	
Beihang University

	
China

	
24




	
7th

	
University of Chinese Academy of Sciences

	
China

	
28

	
Northwestern Polytech University

	
China

	
24




	
8th

	
Chongqing University

	
China

	
24

	
University of Illinois

	
United States

	
24




	
9th

	
South China University of Technology

	
China

	
24

	
Guangzhou University

	
China

	
22




	
10th

	
Tsinghua University

	
China

	
24

	
Zhejiang University

	
China

	
22
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Table 5. The top 10 most-participative funding agencies in industry 4.0 applied to material science from 2017 to 2021.
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Scopus

	
WoS




	
Rank

	
Affiliations

	
Country

	
No. of Paper

	
Affiliations

	
Country

	
No. of Paper






	
1st

	
National Natural Science Foundation of China

	
China

	
350

	
National Natural Science Foundation of China

	
China

	
184




	
2nd

	
National Science Foundation

	
United States

	
182

	
National Science Foundation

	
United States

	
68




	
3rd

	
U.S. Department of Energy

	
United States

	
122

	
National Key Research and Development Program of China

	
China

	
44




	
4th

	
National Key Research and Development Program of China

	
China

	
94

	
Fundamental Research Funds for The Central Universities

	
China

	
35




	
5th

	
Office of Science

	
United States

	
79

	
U.S. Department of Energy

	
United States

	
33




	
6th

	
Fundamental Research Funds for the Central Universities

	
China

	
72

	
Ministry of Education Culture Sports Science and Technology

	
Japan

	
25




	
7th

	
Japan Society for the Promotion of Science

	
Japan

	
52

	
European Commission

	
Belgium

	
23




	
8th

	
Ministry of Science and Technology of the People’s Republic of China

	
China

	
50

	
Japan Society for the Promotion of Science

	
Japan

	
22




	
9th

	
Horizon 2020 Framework Programme

	
Belgium

	
49

	
German Research Foundation

	
Germany

	
18




	
10th

	
Basic Energy Sciences

	
United States

	
48

	
Grants-in-Aid for Scientific Research

	
Japan

	
16
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Table 6. The top 10 countries in industry 4.0 applied to material science from 2017 to 2021.
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Scopus

	
Wos




	
Rank

	
Country

	
Frequency

	
Total Citations

	
Country

	
Frequency

	
Total Citations






	
1st

	
China

	
1453

	
11514

	
China

	
1226

	
7238




	
2nd

	
United States

	
1318

	
12957

	
United States

	
784

	
4661




	
3rd

	
Japan

	
311

	
1310

	
Japan

	
210

	
698




	
4th

	
Germany

	
246

	
1448

	
Germany

	
175

	
684




	
5th

	
United Kingdoms

	
229

	
1673

	
India

	
162

	
325




	
6th

	
India

	
227

	
795

	
South Korea

	
158

	
413




	
7th

	
South Korea

	
210

	
1158

	
United Kingdoms

	
149

	
998




	
8th

	
Canada

	
107

	
545

	
Australia

	
92

	
393




	
9th

	
Australia

	
106

	
524

	
Spain

	
87

	
208




	
10th

	
Spain

	
103

	
462

	
Singapore

	
76

	
547

















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file4.png
uﬁiﬁéi‘éity of-science-and technology beijing _-
——university_of californiamm

.__shanghai"university s
massachusetts m*sbtu_l_teqnf tgg:%nnlngt“}r=-

machine learning o

deep learning

s
.

ind ustn{__fl:[f-.

e

artificial intelligence

(a)

united kingdom





nav.xhtml


  ChemEngineering-07-00002


  
    		
      ChemEngineering-07-00002
    


  




  





media/file8.jpg
No. Doc. Indexed

800

TC per v

1031

27w ;e 2m 2m





media/file11.png
Lo M@ﬁﬂﬁﬁmﬂn <J
% .P .

IS
X %
......,.%p ¢
aan o ..b

2018 2019 2020 2021

2017

& VOSviewer

(a)

liu, yang

zhang, lei

wei
ong

.

giao
lian

2017 2018 2019 2020 2021

lu, wemcong

’.. VOSviewer

(b)





media/file6.jpg
Data Sources: Scopus and Wos
Time Frame: 2017-2021

Initial Search
Scopus (N= 5863), WoS (N= 1694)

Time Frame: 2017-2021
Scopus (N= 3717), WoS (N= 1176)

Other Time Frame
Scopus (N=2146), Wos (N=518)

Article Type
Scopus (N=2219), WoS (N=1025)

Other Document Types

"] Scopus (N=1498), Wos (N=151)

Recognized by
Bibliometrix
157), Wos (N=937)

Documents not recognized by
Bibliometrix
Scopus (N= 62), WoS (N= 85)

Included in the Analysis
Scopus (N= 2157), Wos (N= 937)






media/file13.png
faculty of o

the big data orlthmlcan /
J4 & é

'5 VOSviewer

sej niv

waseda univ

lehigh univ

tongj

/
/

/ /
/ .'//
cu I’.JI'TIV

'g VOSviewer

uni z (
karlsru ‘tec/hhol |

case wester
|

Spll'u Pret @ersuty buc T~

/ / \ . ™~
/ / P \\
= ’ N \\\.

” / , g ~
t|m. e the bucharest university of
£ ad

. 2017 2018 2019 2020 2021 |

(a)

do.k univ

irvine
serve univ

univ ¢

|
natl ener’echnol la

2017 2018 2019 2020 2021

(b)





media/file10.jpg
|

Avosiewse

®





media/file7.png
Data Sources: Scopus and WoS
Time Frame: 2017-2021

Y

Initial Search
Scopus (N= 5863), WoS (N= 1694)

Y

Time Frame: 2017-2021
Scopus (N=3717), WoS (N=1176)

Other Time Frame
Scopus (N=2146), WoS (N=518)

Y

Article Type
Scopus (N=2219), WoS (N= 1025)

Other Document Types
Scopus (N=1498), WoS (N=151)

Y

Recognized by
Bibliometrix
Scopus (N=2157), WoS (N= 937)

Documents not recognized by
Bibliometrix
Scopus (N=62), WoS (N= 88)

Y

Included in the Analysis
Scopus (N=2157), WoS (N= 937)






media/file12.jpg
P —

P -

Hvosuener

)





media/file3.jpg





media/file18.jpg
®





media/file9.png
Mo, Doc. Indexed

800 —

600 =

400 —

-4 & A M
N = T o O
] I I ] |

10 10.31

lean TC perYear

148

' I [ I [ [ | [ | | |

6 7.03

W17 2018 2019 720 2021 2017 2018 2019 2020 2021
Year Year

(a) (b)





media/file14.jpg
Avosvener
—

®





media/file16.jpg
ditive fianufacturing
manufac!

i ta mining i
sDig datafmiias,

industry 4 0 llee“ plearning
deep learning bigdath

dditive manuiacturing artificial Imellluence

@ ®





media/file5.png
deep learning
japan
—m— e
G E LTI ATTY i - '-—\.‘ .manufacturmg
.mdla ____—:—— | Jindustry 4.0

(b)

china
machine learning
Lusd \ ’

univ'sci.and technol beijing Il
';hang ai'unjv

Ing LI | —
unw cnme eha 0 S| —
an‘:.fartg technol uniy: s





media/file15.png
P |
czech
Gepy

" VOSviewer
2017 2018 2019 2020 2021

'5 VOSviewer
2017 2018 2019 2020 2021

(b)





media/file0.png





media/file17.png
convolutional neural network

additive manufacturing

convolutional neural networks intelligent I]lllg simulation
Sma" man“facl“"“g cassicaion tlata mining susmented reaity
internet of things hig data ﬂ';’;‘,','l‘,‘,'g',;'ﬂ",ng s :

uuuuuuuuuuuuu molecular llvnamlcs

ausmented -mI random forest 4 0 I materials rl“"“"'"’"I ll?ﬂ
"5' v rvll III g prediction n l" g [l alag

cmerascstien gdtlllwe manulactllrmu al’llllclal Illlelll!lellce

artificial neural network

(a) (b)





media/file19.png
materials design

high entropy alloys ‘metal-organic frameworks

alloydesigr? predictiv"nodeling data Oie»nrje
aluminum alloy ® ! ? featureeelectlon :
! ari T f
.V\L matenals\‘gr,ma IS ‘ .‘ e circular‘gnomy
® dét:é‘ning / [\ N\,
high-entropy alloys @ \ N
' 1 euraletworks <> lﬁt \ big data@nalytics.
o microstructur € ".. ’ simulation — A ’ sustainability
< B \ § / 71 \
machi
lean manufacturing
convolutlonaleural ne things g v
moIecuIQdockln.g 0 digitalization

< _. -mte&gent n‘lufacturlng.

P “internet ofithings (iot) &
';aniﬁEiEI neural networks L4

neural&twork
~ density fun@)nal thgor)‘

convolutional neural networks

‘ma“chin@earning 3d~p“1ting
9 .
g - 1ising 2d materials
&VOSVlewer
2017 2018 2019 2020 2021
(a)
© remotejsensing
0
N ° m&ls
compi; .r"‘ ” Qeature §tract|on
Y —
A\ W | data,ﬂodeD
\ ;redlCt;\’mOddS arttﬁc;al intelligence (ai) @
finite elen‘nt analysis / -
@lcroﬁuﬁure ‘jee @ —y :
Smart ma, acturlng
aIon‘asngn ’. PY
j ’fa;, ‘*'., }\
hlg/ent oy a os“ S 3 bloc'hae
P -
@machir ~4.0
’d'rug c'tv‘g /. i . 3 x @
wltoc /) aC n ev“'g »\“ - internet oft mgs(lot)
5 ‘ ‘ \ . .
Qnechaﬂca.)ro‘pertles\ 2d mé \g‘s"m.t'on ¢ o ir@llige’nt r@nufacturing
‘ M ™Y \ cyber-physigal systems®
precq:lon hdictiy’n)odeling yber-physipal sy
polymers A /’ /1 /) ®
| hetal-or’gan‘ffameworks
| i o o |
.\ \ Fjensity fqn(‘mal theory
mole‘culi‘iynamic's
; thermal conductivi
ﬁVOSV|ewer ol v

2017 2018 2019 2020 2021

(b)





media/file2.jpg





